JPH04151866A - Manufacture of semiconductor storage device - Google Patents
Manufacture of semiconductor storage deviceInfo
- Publication number
- JPH04151866A JPH04151866A JP2275831A JP27583190A JPH04151866A JP H04151866 A JPH04151866 A JP H04151866A JP 2275831 A JP2275831 A JP 2275831A JP 27583190 A JP27583190 A JP 27583190A JP H04151866 A JPH04151866 A JP H04151866A
- Authority
- JP
- Japan
- Prior art keywords
- film
- conductive films
- storage node
- transistor
- gate electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 125000006850 spacer group Chemical group 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000003990 capacitor Substances 0.000 claims abstract description 4
- 230000015654 memory Effects 0.000 claims description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 18
- 238000009792 diffusion process Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、トランジスタと容量素子とでメモリセルが構
成されている半導体メモリ、特に、積層容量型DRAM
と称されている半導体メモリの製造方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory in which a memory cell is composed of a transistor and a capacitive element, particularly a stacked capacitive DRAM.
The present invention relates to a method of manufacturing a semiconductor memory called ``.
本発明は、上記の様な半導体メモリの製造方法において
、トランジスタのゲート電極による段差部における側壁
スペーサで容量素子の記憶ノードに空洞を形成すること
によって、プロセスの増大を抑制しつつ動作マージンの
大きな半導体メモリを製造することができる様にしたも
のである。The present invention provides a semiconductor memory manufacturing method as described above, in which a cavity is formed in a storage node of a capacitive element using a sidewall spacer in a stepped portion formed by a gate electrode of a transistor. This makes it possible to manufacture semiconductor memories.
積層容量型DRAMを微細化しても所定のセル容量を確
保して動作マージンを確保するために、従来はトランジ
スタのゲート電極による段差を大きくしていた。Conventionally, in order to ensure a predetermined cell capacitance and an operating margin even when the stacked capacitor DRAM is miniaturized, the step difference between the gate electrodes of the transistors has been increased.
即ち、トランジスタのゲート電極による段差を大きくす
ると、トランジスタのソース・ドレイン領域上からゲー
ト電極上にまで広がっている記憶ノードの表面積が大き
くなり、これによってセル容量が大きくなる。That is, when the step difference caused by the gate electrode of the transistor is increased, the surface area of the storage node that extends from above the source/drain region of the transistor to above the gate electrode becomes large, thereby increasing the cell capacitance.
しかし、大規模メモリでは、パターン段差を低減させる
ために、横方向の縮小に伴って縦方向の縮小も必要にな
ってきている。However, in large-scale memories, in order to reduce pattern steps, it is becoming necessary to reduce the size in the vertical direction along with the reduction in the horizontal direction.
このため、トランジスタのゲート電極による段差を大き
くすることによって記憶ノードの表面積を大きくすると
いう従来の技術は、採用できなくなってきている。For this reason, the conventional technique of increasing the surface area of a storage node by increasing the step difference caused by the gate electrode of a transistor is no longer applicable.
本発明による半導体メモリの製造方法では、トランジス
タのゲート電極I5による段差部を跨ぎ且つ互いに積層
されている複数の導電膜23.25と、前記段差部にお
いて前記複数の導電膜23.25に挟まれている側壁ス
ペーサ24とを形成し、前記複数の導電膜23.25の
各層を容量素子の記憶ノード27のパターンに加工する
ことと、この加工によって露出した前記側壁スペーサ2
4を除去することとを順次に繰り返し、前記加工を施さ
れた前記複数の導電膜23.25の表面に誘電体膜を形
成する。In the method for manufacturing a semiconductor memory according to the present invention, a plurality of conductive films 23.25 are stacked on each other across a step portion formed by a gate electrode I5 of a transistor, and a plurality of conductive films 23.25 are sandwiched between the plurality of conductive films 23.25 at the step portion. forming sidewall spacers 24 that are exposed by this process, processing each layer of the plurality of conductive films 23 and 25 into a pattern of a storage node 27 of a capacitive element;
4 is sequentially repeated to form a dielectric film on the surfaces of the plurality of conductive films 23 and 25 subjected to the processing.
本発明による半導体メモリの製造方法では、複数の導電
膜23.25に挟まれていた側壁スペーサ24を除去す
ることによって、これら複数の導電膜23.25同士の
間に空洞26が形成され、導電膜23.25のうちの空
洞26の内面にも誘電体膜が形成される。In the method for manufacturing a semiconductor memory according to the present invention, by removing the sidewall spacer 24 sandwiched between the plurality of conductive films 23, 25, a cavity 26 is formed between the plurality of conductive films 23, 25, and a conductive film 23, 25 is formed. A dielectric film is also formed on the inner surface of the cavity 26 of the film 23.25.
従って、ゲート電極15による段差が小さくても、記憶
ノード27である導電膜23.25の表面積が大きく、
セル容量が大きい。Therefore, even if the step caused by the gate electrode 15 is small, the surface area of the conductive film 23.25, which is the storage node 27, is large.
Large cell capacity.
しかも、複数の導電膜23.25の積層及び側壁スペー
サ24の形成も、これらの導電膜23.25の加工及び
側壁スペーサ24の除去も、同様なプロセスを順次に繰
り返すだけでよい。Moreover, the stacking of a plurality of conductive films 23, 25, the formation of sidewall spacers 24, the processing of these conductive films 23, 25, and the removal of sidewall spacers 24 only need to be repeated in sequence.
以下、本発明の一実施例を、第1図及び第2図を参照し
ながら説明する。An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.
本実施例では、第1A図に示す様に、S+基板11の表
面に素子分離用のSiO□膜12(第2図)をLOCO
3法でまず形成し、このSiO□膜12に囲まれている
素子形成領域13の表面にゲート酸化膜であるSiO□
膜14膜形4する。In this embodiment, as shown in FIG. 1A, a SiO□ film 12 (FIG. 2) for element isolation is formed on the surface of the S+ substrate 11 by LOCO.
A gate oxide film of SiO□ is formed on the surface of the element formation region 13 surrounded by this SiO□ film 12.
Membrane 14 membrane type 4.
そして、SiO□膜12.14上にポリサイド膜15と
SiO□膜16とを順次に堆積させ、これらのStO□
膜16とポリサイド膜15とをトランジスタのゲート電
極のパターンに加工する。Then, a polycide film 15 and a SiO□ film 16 are sequentially deposited on the SiO□ film 12.14, and these StO□
The film 16 and the polycide film 15 are processed into a pattern of a gate electrode of a transistor.
その後、ポリサイド膜15とSiO□膜12.16とを
マスクにしてSi基板11中へn型不純物を低濃度にイ
オン注入することによって、素子形成領域13中にn−
拡散層17を形成する。Thereafter, n-type impurities are ion-implanted into the Si substrate 11 at a low concentration using the polycide film 15 and the SiO□ film 12.16 as masks, thereby n-
A diffusion layer 17 is formed.
そして、5iOz膜21をCVDで全面に堆積させ、こ
のSiO□膜21膜対1てRIEによるエッチバックを
行う。これによって、ポリサイド膜15及び5i02膜
16の側部に、SiO□膜21膜対1る側壁スペーサを
形成する。なお、SiO□膜21膜対1るRIE時に、
5in2膜14も同時にエツチングされる。Then, a 5iOz film 21 is deposited on the entire surface by CVD, and the SiO□ film 21 is etched back by RIE. As a result, sidewall spacers are formed on the sides of the polycide film 15 and the 5i02 film 16, one pair of the SiO□ film 21. In addition, during RIE of 21 SiO□ films,
The 5in2 film 14 is also etched at the same time.
次いで、ポリサイド膜15とSiO□膜12.16.2
1とをマスクにしてSi基vi、Il中へn型不純物を
高濃度にイオン注入することによって、素子形成領域1
3中にn゛拡散層22を形成する。Next, the polycide film 15 and the SiO□ film 12.16.2
1 as a mask, n-type impurities are ion-implanted into the Si base vi and Il at a high concentration.
3, an n diffusion layer 22 is formed.
このn゛拡散層22と既述のn−拡散層17とがトラン
ジスタのソース・ドレイン領域になり、これらの拡散層
22.17とゲート電極であるポリサイド膜15とでL
D D構造のトランジスタが完成する。This n-diffusion layer 22 and the previously mentioned n-diffusion layer 17 become the source/drain regions of the transistor, and these diffusion layers 22.17 and the polycide film 15, which is the gate electrode, form an L
A transistor with a D D structure is completed.
その後、n型不純物を添加した多結晶Si膜23つまり
DOPO3膜を、全面に堆積させる。この堆積によって
、n゛拡散層22と多結晶Si膜23とがコンタクトす
る。Thereafter, a polycrystalline Si film 23 doped with n-type impurities, ie, a DOPO3 film, is deposited over the entire surface. This deposition brings the n' diffusion layer 22 and the polycrystalline Si film 23 into contact.
次に、第1B図に示す様に、SiO□膜24をCVDで
全面に堆積させ、このSho□膜24膜対4てRIEに
よるエッチバックを行う。これによって、ポリサイド膜
15及びSiO2膜16膜上6段差部における多結晶S
i膜23の側部に、SiO□膜24膜条4る側壁スペー
サを形成する。Next, as shown in FIG. 1B, a SiO□ film 24 is deposited on the entire surface by CVD, and the Sho□ film 24 is etched back by RIE. As a result, the polycrystalline S in the six step portions on the polycide film 15 and the SiO2 film 16 is
A side wall spacer having a SiO□ film 24 and a film strip 4 is formed on the side of the i film 23.
そして、n型不純物を添加した多結晶Si膜25つまり
DOPO3膜を、再び全面に堆積させる。Then, a polycrystalline Si film 25 doped with n-type impurities, that is, a DOPO3 film, is deposited again on the entire surface.
この堆積によって、多結晶Si膜23上に多結晶Si膜
25が積層されると共に、SiO□膜24膜条4晶Si
膜23.25に挟まれる。Through this deposition, the polycrystalline Si film 25 is laminated on the polycrystalline Si film 23, and the SiO□ film 24
Sandwiched between membranes 23.25.
その後、多結晶Si膜25上にレジスト膜(図示せず)
を形成し、このレジスト膜を記憶ノードのパターンに加
工する。After that, a resist film (not shown) is formed on the polycrystalline Si film 25.
This resist film is processed into a pattern of storage nodes.
次に、第1C図に示す様に、上述のレジスト膜をマスク
にして、多結晶Si膜25に対するRIBを行う。この
結果、ポリサイド膜15及びSiO□膜16膜上6段差
部を跨ぐ様に、多結晶Si膜25がバターニングされる
。Next, as shown in FIG. 1C, RIB is performed on the polycrystalline Si film 25 using the above-mentioned resist film as a mask. As a result, the polycrystalline Si film 25 is patterned so as to straddle the six step portions on the polycide film 15 and the SiO□ film 16.
多結晶5ill125がバターニングされると5in2
膜24が露出するまで、今度は、露出している5iO7
膜24をウェットエツチングによって除去する。When polycrystalline 5ill125 is buttered, it becomes 5in2
This time, the exposed 5iO7 is removed until the membrane 24 is exposed.
Film 24 is removed by wet etching.
このウェットエツチングによって、バターニングされて
残っている多結晶Si膜25の下層に位置する部分のS
iO□膜24膜条4される。By this wet etching, the S of the portion located below the polycrystalline Si film 25 remaining after patterning is removed.
The iO□ film 24 film strip 4 is formed.
この結果、記憶ノードのパターンの多結晶Si膜25と
全面に残っている多結晶Si膜23との間に、記憶ノー
ドのパターンを横断するトンネル状の空洞26が形成さ
れる。As a result, a tunnel-shaped cavity 26 that crosses the storage node pattern is formed between the polycrystalline Si film 25 of the storage node pattern and the polycrystalline Si film 23 remaining on the entire surface.
そして、上述のレジスト膜をマスクにして、多結晶Si
膜23に対するRIEを更に行って、多結晶Si膜23
.25から成る記憶ノード27を完成させる。Then, using the above resist film as a mask, polycrystalline Si
RIE is further performed on the film 23 to form a polycrystalline Si film 23.
.. A storage node 27 consisting of 25 is completed.
その後は、多結晶Si膜23.25の表面に誘電体膜(
図示せず)を形成し、更にこの誘電体膜」二にプレート
電極(図示せず)を形成して、容量素子を完成させる。Thereafter, a dielectric film (
A capacitive element is completed by forming a plate electrode (not shown) on this dielectric film (not shown) and then forming a plate electrode (not shown) on this dielectric film.
この時、多結晶Si膜23.25間に空洞26が形成さ
れているので、この空洞26の内面にも誘電体膜が形成
され、更にこの状態で空洞26がプレート電極によって
埋められる。At this time, since a cavity 26 is formed between the polycrystalline Si films 23 and 25, a dielectric film is also formed on the inner surface of this cavity 26, and further, in this state, the cavity 26 is filled with a plate electrode.
従って、空洞26の内面にも蓄電可能であり、記憶ノー
ド27の表面積が大きくて、本実施例では大きなセル容
量を得ることができる。Therefore, electricity can be stored on the inner surface of the cavity 26, and the surface area of the storage node 27 is large, so that a large cell capacity can be obtained in this embodiment.
なお、本実施例では、2層の多結晶Si膜23.25に
よって記憶ノード27を構成し、多結晶Si膜23.2
5の間にのみ空洞26を形成したが、3層以上の多結晶
Si膜によって記憶ノードを構成し、各層の多結晶Si
膜の間に多重に空洞を形成することもできる。Note that in this embodiment, the storage node 27 is constituted by the two-layer polycrystalline Si film 23.25, and the polycrystalline Si film 23.2
Although the cavity 26 is formed only between the polycrystalline Si film 5 and the
Multiple cavities can also be formed between the membranes.
しかも、空洞を何重に形成する場合であっても、空洞2
6を形成するための既述のプロセスと同様のプロセスを
繰り返すだけでよい。Moreover, no matter how many layers of cavities are formed, the cavities 2
It is only necessary to repeat a process similar to that already described for forming 6.
本発明による半導体メモリの製造方法では、同様なプロ
セスを順次に繰り返すだけでセル容量を大きくすること
ができるので、プロセスの増大を抑制しつつ動作マージ
ンの大きな半導体メモリを製造することができる。In the method for manufacturing a semiconductor memory according to the present invention, the cell capacity can be increased simply by repeating similar processes one after another, so it is possible to manufacture a semiconductor memory with a large operating margin while suppressing an increase in the number of processes.
第1図は本発明の一実施例を順次に示しており第2図の
I−I線に沿う側断面図、第2図は一実施例の途中過程
にあるメモリセルの平面図である。
なお図面に用いた符号において、
15・−一−−〜−一−−−−−−−−−−−ポリサイ
ド膜23−−−−−−−−−−−−−−一多結晶Si膜
24−−−−−−−−−−−−一−−−−5rOz膜2
5−−−−−−−−−−−−−−−一多結晶Si膜26
−−−−−−−−−−−−一空洞
27−−−−−−−−−−−−−−−−−記憶ノードで
ある。FIG. 1 sequentially shows an embodiment of the present invention, and is a side sectional view taken along line II in FIG. 2, and FIG. 2 is a plan view of a memory cell in the middle of the embodiment. In addition, in the symbols used in the drawings, 15. 24--------------5rOz film 2
5-------------Polycrystalline Si film 26
----------- One cavity 27--------------- Storage node.
Claims (1)
る半導体メモリの製造方法において、前記トランジスタ
のゲート電極による段差部を跨ぎ且つ互いに積層されて
いる複数の導電膜と、前記段差部において前記複数の導
電膜に挟まれている側壁スペーサとを形成し、 前記複数の導電膜の各層を前記容量素子の記憶ノードの
パターンに加工することと、この加工によって露出した
前記側壁スペーサを除去することとを順次に繰り返し、 前記加工を施された前記複数の導電膜の表面に誘電体膜
を形成する半導体メモリの製造方法。[Scope of Claims] A method for manufacturing a semiconductor memory in which a memory cell is constituted by a transistor and a capacitor, comprising: a plurality of conductive films stacked on each other and spanning a step formed by a gate electrode of the transistor; forming a sidewall spacer sandwiched between the plurality of conductive films in the section, processing each layer of the plurality of conductive films into a pattern of a storage node of the capacitor, and forming the sidewall spacer exposed by this processing. A method of manufacturing a semiconductor memory, wherein a dielectric film is formed on the surface of the plurality of processed conductive films by sequentially repeating the steps of removing and removing the plurality of conductive films.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2275831A JP2946720B2 (en) | 1990-10-15 | 1990-10-15 | Method for manufacturing semiconductor memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2275831A JP2946720B2 (en) | 1990-10-15 | 1990-10-15 | Method for manufacturing semiconductor memory |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04151866A true JPH04151866A (en) | 1992-05-25 |
JP2946720B2 JP2946720B2 (en) | 1999-09-06 |
Family
ID=17561039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2275831A Expired - Fee Related JP2946720B2 (en) | 1990-10-15 | 1990-10-15 | Method for manufacturing semiconductor memory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2946720B2 (en) |
-
1990
- 1990-10-15 JP JP2275831A patent/JP2946720B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2946720B2 (en) | 1999-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2875588B2 (en) | Method for manufacturing semiconductor device | |
JPH03246966A (en) | Semiconductor memory device and its manufacture | |
JPH02312269A (en) | Semiconductor memory device and manufacture thereof | |
JPH0439964A (en) | Dram cell and lamination type capacitor and manufacture thereof | |
JP2682509B2 (en) | Method for manufacturing semiconductor device | |
KR930008583B1 (en) | Stacked capacitor and manufacturing method thereof | |
JPH04264767A (en) | Semiconductor device and manufacture thereof | |
JPH01130557A (en) | Semiconductor memory and manufacture thereof | |
JPH01253956A (en) | Semiconductor memory device and its manufacture | |
JPH04151866A (en) | Manufacture of semiconductor storage device | |
JPS63197368A (en) | Semiconductor device and its manufacture | |
KR950005467B1 (en) | Method of fabricating stacked capacitor with multi vertical storage mode | |
KR100381019B1 (en) | Method for forming storage node electrode of semiconductor memory device | |
KR960006721B1 (en) | Stacked capacitor fabrication process | |
KR100253330B1 (en) | Manufacturing method for capacitor | |
KR950013900B1 (en) | Dram cell manufacturing process | |
KR100248806B1 (en) | Semiconductor memory device and the manufacturing method thereof | |
JPH03214767A (en) | Manufacture of semiconductor device | |
KR100233560B1 (en) | Dram device and its fabricating method | |
KR0151183B1 (en) | Semiconductor memory device manufacturing method | |
KR930009584B1 (en) | Method for manufacturing a capacitor | |
JP2858228B2 (en) | Semiconductor memory device and method of manufacturing the same | |
KR100442779B1 (en) | Method for manufacturing dram device | |
JPH0243766A (en) | Manufacture of semiconductor memory device | |
JPH01280350A (en) | Semiconductor memory device and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |