JPH04150108A - Surface acoustic wave element - Google Patents

Surface acoustic wave element

Info

Publication number
JPH04150108A
JPH04150108A JP27105690A JP27105690A JPH04150108A JP H04150108 A JPH04150108 A JP H04150108A JP 27105690 A JP27105690 A JP 27105690A JP 27105690 A JP27105690 A JP 27105690A JP H04150108 A JPH04150108 A JP H04150108A
Authority
JP
Japan
Prior art keywords
electrode
surface acoustic
acoustic wave
interdigital
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27105690A
Other languages
Japanese (ja)
Inventor
Toshihiko Kitano
北野 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27105690A priority Critical patent/JPH04150108A/en
Publication of JPH04150108A publication Critical patent/JPH04150108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To realize a low loss surface acoustic wave element by always making the propagation speed of surface acoustic wave of the electrode digit of a couple of interdigital electrodes arranged opposite to each other equal to the propagation speed of a surface acoustic wave of the inner side signal extraction electrode inserted between the electrode digits, a metallic conductor electrode and the propagation speed of the surface acoustic wave in a free space inserted among the electrodes. CONSTITUTION:The propagation speed of a surface acoustic wave of electrode digits 6, 8 is always made equal to the propagation speed of a surface acoustic wave of inner side signal extraction electrodes 5, 7 inserted between the electrode digits, a metallic conductor electrode 4 and the propagation speed of a surface acoustic wave in a free space inserted among the electrodes. Then the surface acoustic wave radiating from the point A of the interdigital electrode is refracted at the inner side signal extraction electrodes 5, 7 and the metallic film electrode 4 and propagated perpendicularly to the electrode digit 8 in the electrode digit of the tilted interdigital electrode 3 opposite thereto, and reached to a point B. Thus, the increase in the loss of the propagate surface acoustic wave is not entirely caused.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は弾性表面波素子に関し、特にレーダ電波測定装
置の受信部に用いられる弾性表面波素子であって、弾性
表面波の伝搬方向に対してすだれ状電極を傾斜させて形
成した弾性表面波素子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a surface acoustic wave device, and in particular to a surface acoustic wave device used in a receiving section of a radar radio wave measuring device, which The present invention relates to a surface acoustic wave element formed by tilting the truss electrodes.

〔従来の技術〕[Conventional technology]

レーダ電波測定装置などにおいて、周波数を実時間で測
定する種種の方式がある。マイクロスキャン方式は、遅
延傾斜の符号の異なる弾性表面波分散形遅延線を組合せ
、時間軸上に実時間で周波数情報を表示できるものとし
て多用されている。
There are various methods for measuring frequencies in real time in radar radio wave measuring devices and the like. The microscan method is widely used as a system that combines surface acoustic wave dispersion type delay lines with different signs of delay slopes and can display frequency information in real time on the time axis.

このマイクロスキャン方式に用いられる弾性表面波分散
形遅延線は、広帯域であること、周波数分解能の点から
比較的低遅延分散であることが要求される。たとえば、
周波数帯域500MHz、遅延分散1μsとすると、周
波数分解能は約I MHzとなり、500チャンネルフ
ィルタバンク相当のマイクロスキャンが得られることに
なる。
The surface acoustic wave dispersion type delay line used in this microscan method is required to have a wide band and relatively low delay dispersion in terms of frequency resolution. for example,
Assuming a frequency band of 500 MHz and a delay dispersion of 1 μs, the frequency resolution will be approximately I MHz, and a microscan equivalent to a 500 channel filter bank will be obtained.

このような低遅延分散の弾性表面波を実現するには、通
常の対向電極型では困難である。つまり、周波数の広帯
域化を実現するには中心周波数を上げ比帯域を下げる必
要があるか、この場合、低遅延分散の素子で実現すると
電極指対数が少なくなり、周波数リップル増大の原因と
なる。
It is difficult to realize surface acoustic waves with such low delay and dispersion using a normal counter-electrode type. In other words, in order to achieve a wide frequency band, it is necessary to raise the center frequency and lower the fractional band, or in this case, if it is achieved using an element with low delay dispersion, the number of electrode finger pairs will be reduced, which will cause an increase in frequency ripple.

方、リップルを低域するために遅延分散の大きな電極構
造とすると、すだれ状電極の弾性表面波伝搬方向の長さ
が長くなり、1μs程度の低遅延分散が構造上実現でき
ない。そこで第2図に示す傾斜電極が従来提案されてい
る。
On the other hand, if an electrode structure with large delay dispersion is used to reduce ripples in a low range, the length of the interdigital electrode in the surface acoustic wave propagation direction becomes long, and a low delay dispersion of about 1 μs cannot be realized due to the structure. Therefore, a tilted electrode shown in FIG. 2 has been proposed.

この傾斜電極は、電極指の中心を結ぶ線が、弾性表面波
の伝搬方向に対し傾斜、かつ傾斜の程度が異なる傾斜形
すだれ状電極11.13を対向させるもので、傾斜形す
だれ状電極11.13の弾性表面差の伝搬方向と対直な
方向に設けた仮想軸01 01’に対する遅延分散が大
きくとれ、かつ傾斜形すだれ電極11.13の遅延分散
は小さくすることが出来る。なお、12.14は電極指
、15.16は内側信号取出し電極、17は弾性表面波
である。
In this inclined electrode, the line connecting the centers of the electrode fingers is inclined with respect to the propagation direction of the surface acoustic wave, and the inclined interdigital electrodes 11 and 13 having different degrees of inclination face each other. It is possible to obtain a large delay dispersion with respect to the virtual axis 01 01' provided in a direction perpendicular to the propagation direction of the elastic surface difference of .13, and to make the delay dispersion of the inclined interdigital electrodes 11 and 13 small. Note that 12.14 is an electrode finger, 15.16 is an inner signal extraction electrode, and 17 is a surface acoustic wave.

第3図は従来の弾性表面波素子の遅延分散周波数特性図
で、横軸を周波数、縦軸を遅延時間とし、21は第2図
の傾斜形すだれ状電極11と仮想軸0□−〇1′との遅
延分散特性、22は第2図の傾斜形すだれ状電極13と
仮想軸01 01’との遅延分散特性、23は遅延分散
特性21と22の差の遅延分散を示す。従って、このよ
うな構造では、遅延分散特性21.22による値を大き
くすべく傾斜を急峻にしても傾斜の差を小さくすれば、
前述のような周波数リップルが少なく、かつ低分散遅延
の素子を実現することができる。
FIG. 3 is a delay dispersion frequency characteristic diagram of a conventional surface acoustic wave element, where the horizontal axis is the frequency and the vertical axis is the delay time. 21 is the inclined interdigital electrode 11 in FIG. 2 and the virtual axis 0□-〇1 22 is the delay dispersion characteristic between the inclined interdigital interdigital electrode 13 and the virtual axis 0101' in FIG. 2, and 23 is the delay dispersion characteristic of the difference between the delay dispersion characteristics 21 and 22. Therefore, in such a structure, even if the slope is made steeper to increase the value of the delay dispersion characteristic 21.22, if the difference in slope is made smaller,
It is possible to realize an element with less frequency ripple and low dispersion delay as described above.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来提案されている傾斜すだれ状電極は、第2
図に示すように、弾性表面波速度が、格子状電極からな
る傾斜形すだれ状電極と、−様電極からなる内側信号取
出し電極と、電極がない自由表面上ではそれぞれ異なる
ため、対向する一方の傾斜形すだれ状電極の点Aで発生
した弾性表面波17は、内側信号取出し電極のBで屈折
され、さらに対応する他方の傾斜形すだれ状電極13の
内側信号取り出し電極のCで屈折され電極指]4に到達
する。この時、弾性表面波は電極指14と直交していな
いため損失は弾性表面波の発生点、したがって周波数に
よって異なってくるという欠点がある。
The above-mentioned conventionally proposed inclined interdigital electrode has a second
As shown in the figure, the surface acoustic wave velocity differs between the inclined interdigital interdigital electrode made of the grid electrode, the inner signal extraction electrode made of the −-like electrode, and the free surface where there is no electrode. The surface acoustic wave 17 generated at point A of the slanted interdigital electrode is refracted at B of the inner signal extraction electrode, and further refracted at C of the inner signal extraction electrode of the other corresponding slanted interdigital electrode 13. ] Reach 4. At this time, since the surface acoustic waves are not orthogonal to the electrode fingers 14, there is a drawback that the loss varies depending on the generation point of the surface acoustic waves and therefore the frequency.

本発明の目的は上述した欠点を除去し、傾斜形すだれ状
電極において弾性表面波の屈折による損失増大を大幅に
抑圧した弾性表面波素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a surface acoustic wave element in which an increase in loss due to refraction of surface acoustic waves in inclined interdigital electrodes is significantly suppressed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の弾性表面波素子は、複数の電極指と信号取出し
電極から成るすだれ状電極の電極指間隔を弾性表面波の
伝搬方向に沿って徐徐に変化させ、かつ各電極指の中心
を結ぶ中心線が弾性表面波の伝搬方向に対して傾斜する
ように形成した対向する一対の傾斜形すだれ状電極を圧
電性基板上に設けた弾性表面波素子において、前記一対
の傾斜形すだれ状電極間の前記圧電性基板上に前記−対
の傾斜形すだれ状電極の形成方向に沿って帯状の金属膜
電極を形成し、前記一対の傾斜形すだれ状電極の内側に
形成された一対の内側取出し電極と隣接する前記電極指
との一対の境界線間の弾性表面波伝搬方向に沿った長さ
と、前記一対の内側信号取出し電極および前記金属膜電
極の弾性表面波伝搬方向に沿った長さとの比が一定とな
るようにした構成を有する。
The surface acoustic wave element of the present invention has a interdigital interdigital electrode consisting of a plurality of electrode fingers and a signal extraction electrode. In a surface acoustic wave element in which a pair of opposing slanted interdigital electrodes are provided on a piezoelectric substrate, the lines of which are formed to be inclined with respect to the propagation direction of surface acoustic waves. A band-shaped metal film electrode is formed on the piezoelectric substrate along the direction in which the pair of inclined interdigital electrodes are formed, and a pair of inner extraction electrodes formed inside the pair of inclined interdigital electrodes are formed on the piezoelectric substrate. The ratio of the length along the surface acoustic wave propagation direction between the pair of boundary lines between the adjacent electrode fingers and the length of the pair of inner signal extraction electrodes and the metal film electrode along the surface acoustic wave propagation direction is It has a configuration in which it remains constant.

また本発明の弾性表面波素子は、前記一対の傾斜形すだ
れ状電極の電極指間隔を弾性表面波の伝搬方向に沿って
線形に拡大するチャーブ形とした構成を有する。
Further, the surface acoustic wave element of the present invention has a chirve-shaped configuration in which the electrode finger spacing of the pair of inclined interdigital electrodes is linearly expanded along the propagation direction of the surface acoustic wave.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は、本発明になる弾性表面波素子の一実施例を示
す平面図である。圧電性基板1状に電極指間隔が弾性表
面波の伝搬方向に沿って徐徐に変化している傾斜形すだ
れ状電極2,3が形成されている。これらの傾斜形すだ
れ状電極の電極指6.8の間隔は、第1図では、左から
右へ行くに従い、徐徐に線形に増加していくチャーブ形
となっている。さらに各傾斜形すだれ状電極の内側信号
取出し電極5,7の間には、帯状の金属膜電極4が形成
されている。この金属膜電極4の幅は、第1図に示すよ
うに、弾性表面波伝搬方向、すなわち各電極指に垂直な
方向の直線PQ(P、Qは各内側信号取出し電極と電極
指の境界上にある〉が内側取出し電極5,7を横切る点
をSおよび■なる関係式を満足する構成となっている。
FIG. 1 is a plan view showing an embodiment of a surface acoustic wave element according to the present invention. Inclined interdigital interdigital electrodes 2 and 3 are formed on a piezoelectric substrate 1, and the electrode finger spacing gradually changes along the propagation direction of surface acoustic waves. In FIG. 1, the spacing between the electrode fingers 6.8 of these inclined interdigital electrodes is in the form of a chirve that gradually increases linearly from left to right. Further, a band-shaped metal film electrode 4 is formed between the inner signal extraction electrodes 5 and 7 of each inclined interdigital electrode. As shown in FIG. 1, the width of the metal film electrode 4 is determined by a straight line PQ in the surface acoustic wave propagation direction, that is, in a direction perpendicular to each electrode finger (P, Q are on the boundary between each inner signal extraction electrode and the electrode finger). The structure is such that the point where the curve (2) crosses the inner lead-out electrodes 5, 7 satisfies the relational expressions S and (2).

ここで、Vfは圧電性基板1の自由表面上の弾性表面波
伝搬速度、Vmは同じ圧電性基板1上の金属膜をコート
した金属膜電極4上での弾性表面波速度、Viは同じ圧
電性基板1上の電極指向の弾性表面伝搬速度で、電極指
幅及び間隔の幅が等しい通常の場合は、近似的に次の(
2)式で求められる。
Here, Vf is the surface acoustic wave propagation velocity on the free surface of the piezoelectric substrate 1, Vm is the surface acoustic wave velocity on the metal film electrode 4 coated with a metal film on the same piezoelectric substrate 1, and Vi is the surface acoustic wave propagation velocity on the free surface of the piezoelectric substrate 1. In the normal case where the electrode-directed elastic surface propagation velocity on the flexible substrate 1 and the electrode finger width and the interval width are equal, approximately the following (
2) It is determined by the formula.

このような構成の弾性表面波素子では、電極指では、電
極指6.8の弾性表面波の伝搬速度と、これら電極指に
挟まれた圧側信号取出し電極57、金属膜電極4および
これら各電極に挟まれた自由空間を伝搬する弾性表面波
の平均伝搬速度が常に等しくなり、傾斜形すだれ状電極
のA点から放射された弾性表面波は、内側信号取出し電
$i5゜7および金属膜電極4では屈折するが対向する
傾斜形すだれ状電極3の電極指内では電極指8に垂直に
伝搬してB点に達し、伝搬弾性表面波の損失増加を全く
生することがないようにすることができる。
In the surface acoustic wave element having such a configuration, the electrode fingers have the following characteristics: the propagation velocity of the surface acoustic waves of the electrode fingers 6.8, the compression side signal extraction electrode 57 sandwiched between these electrode fingers, the metal film electrode 4, and each of these electrodes. The average propagation velocity of the surface acoustic waves propagating in the free space sandwiched between them is always equal, and the surface acoustic waves radiated from the point A of the inclined interdigital electrode are Although the wave is bent at point 4, it propagates perpendicularly to the electrode finger 8 within the electrode finger of the opposing inclined interdigital electrode 3 and reaches point B, so that there is no increase in the loss of the propagating surface acoustic wave. I can do it.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、対向配設した一対
の傾斜形すだれ状電極の電極指の弾性表面波の伝搬速度
と、これら電極指にはさまれた内側信号取出し電極、こ
の内側信号取出し電極間に形成した金属膜電極およびこ
れらの電極とを常に等しくすることができることにより
、一方の傾斜形すだれ状電極から放射された弾性表面波
は対向する傾斜形すだれ状電極の電極指内では、電極指
に垂直に伝搬して、電極などにより屈折されることによ
り生ずる弾性表面波の損失増加を全く抑圧し、極めて低
損失な弾性表面波素子を提供することが出来るという効
果がある。
As explained above, according to the present invention, the propagation speed of the surface acoustic wave of the electrode fingers of a pair of inclined interdigital electrodes arranged opposite to each other, the inner signal extraction electrode sandwiched between these electrode fingers, and the inner signal Since the metal film electrodes formed between the extraction electrodes and these electrodes can always be made equal, the surface acoustic wave emitted from one inclined interdigital electrode is not transmitted within the electrode fingers of the opposing inclined interdigital electrode. This has the effect of completely suppressing the increase in loss of surface acoustic waves caused by propagating perpendicularly to the electrode fingers and being refracted by the electrodes, thereby providing an extremely low-loss surface acoustic wave element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の弾性表面波素子の一実施例の平面図、
第2図は従来の弾性表面波素子の平面図、第3図は従来
の弾性表面波素子の遅延分散周波数特性図である。 1・・・圧電性基板、2.3・・・傾斜形すだれ状電極
、4−・・金属膜電極、5,7・・・内側信号取出し電
極、6,8・・・電極指、11.13山傾斜形すだれ電
極、12.14・・・電極指、15.16・・・内側信
号取出し電極、17.18・・・弾性評面波、21・・
傾斜形すだれ状電極11と仮想軸0+  0+ ′との
遅延分散特性、22・・・傾斜形すだれ状電極13と仮
想軸0.−o、 ′との遅延分散特性、23・・遅延分
散特性21と22の差の遅延分散。
FIG. 1 is a plan view of an embodiment of the surface acoustic wave element of the present invention;
FIG. 2 is a plan view of a conventional surface acoustic wave device, and FIG. 3 is a delay dispersion frequency characteristic diagram of the conventional surface acoustic wave device. DESCRIPTION OF SYMBOLS 1... Piezoelectric substrate, 2.3... Inclined interdigital electrode, 4-... Metal film electrode, 5, 7... Inner signal extraction electrode, 6, 8... Electrode finger, 11. 13 sloped blind electrode, 12.14... electrode finger, 15.16... inner signal extraction electrode, 17.18... elastic evaluation plane wave, 21...
Delay dispersion characteristics between the inclined interdigital electrode 11 and the virtual axis 0+0+', 22...The inclined interdigital electrode 13 and the virtual axis 0. -o, delay dispersion characteristics with ', 23...delay dispersion of the difference between delay dispersion characteristics 21 and 22.

Claims (2)

【特許請求の範囲】[Claims] 1. 複数の電極指と信号取出し電極から成るすだれ状
電極の電極指間隔を弾性表面波の伝搬方向に沿って徐徐
に変化させ、かつ各電極指の中心を結ぶ中心線が弾性表
面波の伝搬方向に対して傾斜するように形成した対向す
る一対の傾斜形すだれ状電極を圧電性基板上に設けた弾
性表面波素子において、前記一対の傾斜形すだれ状電極
間の前記圧電性基板上に前記一対の傾斜形すだれ状電極
の形成方向に沿って帯状の金属膜電極を形成し、前記一
対の傾斜形すだれ状電極の内側に形成された一対の内側
取出し電極と隣接する前記電極指との一対の境界線間の
弾性表面波伝搬方向に沿った長さと、前記一対の内側信
号取出し電極および前記金属膜電極の弾性表面波伝搬方
向に沿った長さとの比が一定となるようにしたことを特
徴とする弾性表面波素子。
1. The interdigital interdigital electrode consisting of a plurality of electrode fingers and a signal extraction electrode is arranged such that the interdigital interdigital spacing is gradually changed along the propagation direction of the surface acoustic wave, and the center line connecting the centers of each electrode finger is aligned in the propagation direction of the surface acoustic wave. In a surface acoustic wave device in which a pair of opposing inclined interdigital transducer electrodes are provided on a piezoelectric substrate, the pair of inclined interdigital electrodes are disposed on the piezoelectric substrate between the pair of inclined interdigital electrodes. A band-shaped metal film electrode is formed along the direction in which the inclined interdigital electrodes are formed, and a pair of boundaries between a pair of inner extraction electrodes formed inside the pair of inclined interdigital electrodes and the adjacent electrode fingers are formed. The ratio between the length of the line along the surface acoustic wave propagation direction and the length of the pair of inner signal extraction electrodes and the metal film electrode along the surface acoustic wave propagation direction is made constant. surface acoustic wave device.
2. 前記一対の傾斜形すだれ状電極の電極指間隔を弾
性表面波の伝搬方向に沿って線形に拡大するチャープ形
としたことを特徴とする請求項1記載の弾性表面波素子
2. 2. The surface acoustic wave device according to claim 1, wherein the electrode finger spacing of the pair of inclined interdigital electrodes is chirped so as to expand linearly along the propagation direction of the surface acoustic wave.
JP27105690A 1990-10-09 1990-10-09 Surface acoustic wave element Pending JPH04150108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27105690A JPH04150108A (en) 1990-10-09 1990-10-09 Surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27105690A JPH04150108A (en) 1990-10-09 1990-10-09 Surface acoustic wave element

Publications (1)

Publication Number Publication Date
JPH04150108A true JPH04150108A (en) 1992-05-22

Family

ID=17494788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27105690A Pending JPH04150108A (en) 1990-10-09 1990-10-09 Surface acoustic wave element

Country Status (1)

Country Link
JP (1) JPH04150108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140097421A (en) 2012-10-31 2014-08-06 미츠비시 쥬우고오 마시나리 테크노로지 가부시키가이샤 Device for measuring electrical resistance of tire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149817A (en) * 1980-04-23 1981-11-19 Nec Corp Dispersion delay line of elastic surface wave

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149817A (en) * 1980-04-23 1981-11-19 Nec Corp Dispersion delay line of elastic surface wave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140097421A (en) 2012-10-31 2014-08-06 미츠비시 쥬우고오 마시나리 테크노로지 가부시키가이샤 Device for measuring electrical resistance of tire

Similar Documents

Publication Publication Date Title
JPS62188512A (en) Surface elastic wave resonator, surface elastic wave resonator filter and manufacture of them
US4144508A (en) Surface acoustic wave filters
JPS5834049B2 (en) surface acoustic wave device
GB2123637A (en) Surface acoustic wave device
US4365220A (en) Surface wave circuit device
JPH04150108A (en) Surface acoustic wave element
EP0074781B1 (en) Surface acoustic wave filter
JP2628985B2 (en) Improved surface acoustic wave filter
JP2685537B2 (en) Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same
JPH02272817A (en) Surface acoustic wave device, its manufacture and communication equipment using the device
JPH0383408A (en) Surface acoustic wave element
JPS6216051B2 (en)
JPH05121996A (en) Surface acoustic wave filter
JPH0214811B2 (en)
JPH02260908A (en) Surface acoustic wave device
JPH02198211A (en) Surface acoustic wave resonator
JPH09148879A (en) Surface acoustic wave device
JPS6143311Y2 (en)
JPH05114830A (en) Surface acoustic wave filter
JPH0422210A (en) Surface acoustic wave element
SU552667A1 (en) Counter-pin transducer surface acoustic waves
JPH0595250A (en) Surface acoustic wave device
JPS624890B2 (en)
JPH0311685B2 (en)
JPS6327112A (en) Surface acoustic wave element