JPH0311685B2 - - Google Patents

Info

Publication number
JPH0311685B2
JPH0311685B2 JP58232444A JP23244483A JPH0311685B2 JP H0311685 B2 JPH0311685 B2 JP H0311685B2 JP 58232444 A JP58232444 A JP 58232444A JP 23244483 A JP23244483 A JP 23244483A JP H0311685 B2 JPH0311685 B2 JP H0311685B2
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
zinc oxide
film
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58232444A
Other languages
Japanese (ja)
Other versions
JPS60124111A (en
Inventor
Ryuichi Asai
Takeshi Okamoto
Shoichi Minagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP23244483A priority Critical patent/JPS60124111A/en
Priority to US06/677,712 priority patent/US4567392A/en
Priority to GB08430699A priority patent/GB2152315B/en
Priority to DE3444749A priority patent/DE3444749C2/en
Publication of JPS60124111A publication Critical patent/JPS60124111A/en
Publication of JPH0311685B2 publication Critical patent/JPH0311685B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、高効率で動作し得る構造の表面弾性
波素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface acoustic wave device having a structure that can operate with high efficiency.

弾性体表面に沿つて伝播する表面弾性波を利用
した各種表面弾性波素子が最近盛んに開発されつ
つある。この理由としては、第1に表面弾性波の
伝播速度は電磁波速度の約10-5倍であり、素子の
小型化と高密度化が可能であること。
Recently, various surface acoustic wave devices that utilize surface acoustic waves propagating along the surface of an elastic body have been actively developed. The reasons for this are, first, that the propagation speed of surface acoustic waves is approximately 10 -5 times the speed of electromagnetic waves, making it possible to miniaturize and increase the density of devices.

第2に表面弾性波は物質表面を伝播するため伝
送路の任意の場所から信号のタツピングが可能で
あること。第3に物質表面にエネルギーが集中し
ていることから、光や半導体のキヤリアとの相互
作用を利用したデバイス、あるいは高いエネルギ
ー密度により非線形効果を利用したテバイスに応
用できること。
Second, since surface acoustic waves propagate on material surfaces, signals can be tapped from any location along the transmission path. Third, because energy is concentrated on the surface of a material, it can be applied to devices that utilize interaction with light or semiconductor carriers, or devices that utilize nonlinear effects due to high energy density.

第4にその製造技術にIC技術が活用できるた
め、ICと組み合わせた新しい素子の実現が期待
できること、等が挙げられる。
Fourth, since IC technology can be used for its manufacturing technology, it is expected that new devices combined with ICs will be realized.

第1図および第2図は従来の表面弾性波素子の
構造を示すもので、1ばニオブ酸リチウム
(LiNbO3)からなる圧電基板で132°Yカツトされ
たものからなり、2はシリコンからなる半導体基
板で(100)面とほぼ等価な面でカツトされたも
のからなり、3は酸化亜鉛(ZnO)からなる圧電
薄膜で(0001)面とほぼ等価な面が上記シリコン
基板2のカツト面と平行になるように形成された
ものからなり、4,5は上記ニオブ酸リチウム基
板1上および酸化亜鉛膜3上に互いに交差するよ
うに設けられたくし型電極で、例えば4は入力電
極、5は出力電極として使用される。
Figures 1 and 2 show the structure of a conventional surface acoustic wave device, in which 1 is a piezoelectric substrate made of lithium niobate (LiNbO 3 ) cut at 132°Y, and 2 is made of silicon. 3 is a piezoelectric thin film made of zinc oxide (ZnO) whose surface is almost equivalent to the (0001) plane and is the cut plane of the silicon substrate 2. 4 and 5 are comb-shaped electrodes provided on the lithium niobate substrate 1 and the zinc oxide film 3 so as to intersect with each other. For example, 4 is an input electrode, and 5 is an input electrode. Used as output electrode.

ここで入力電極4から励振された表面弾性波は
上記ニオブ酸リチウム基板1表面あるいは酸化亜
鉛膜3表面を伝播して出力電極5から取り出され
る。
Here, the surface acoustic wave excited from the input electrode 4 propagates on the surface of the lithium niobate substrate 1 or the surface of the zinc oxide film 3 and is extracted from the output electrode 5.

これらの構造において第1図においては表面弾
性波としてレイリー波を用いて伝播させた場合、
素子特性上重要な指標である電気機械結合係数K
の二乗値K2は約5.5%と大きな値が得られるので、
この利点を活かして種々の分野に応用されてい
る。
In these structures, in Figure 1, when Rayleigh waves are used as surface acoustic waves to propagate,
Electromechanical coupling coefficient K, which is an important index for device characteristics
The square value of K 2 can be obtained as a large value of about 5.5%, so
Taking advantage of this advantage, it has been applied to various fields.

しかしその反面基板が単一材料から構成されて
いるために、電気機械結合係数Kが基板結晶軸方
向およびそれに対する表面弾性波の伝播方向によ
つて固定化されてしまう欠点がある。
However, since the substrate is made of a single material, there is a drawback that the electromechanical coupling coefficient K is fixed depending on the substrate crystal axis direction and the propagation direction of the surface acoustic wave relative to the substrate crystal axis direction.

この点第2図においては表面弾性波としてセザ
ワ波を用いてシリコン基板2の〔011〕軸方向と
ほぼ等価な方向に伝播させた場合、酸化亜鉛膜3
の膜厚h1を解析によつて求まる或る値に選ぶこと
によりK2特性に柔軟性を持たせることができ、
また第1図構造よりも大きな電気機械結合係数K
を得ることができる。例えば上記酸化亜鉛膜厚h1
をωh1=8000(ωは表面弾性波の角周波数)に選
ぶことによりK2は約6.04%を得ることができる。
In this regard, in FIG. 2, when Sezawa waves are used as surface acoustic waves and are propagated in a direction approximately equivalent to the [011] axis direction of the silicon substrate 2, the zinc oxide film 3
By selecting the film thickness h 1 to a certain value determined by analysis, flexibility can be given to the K 2 characteristics,
Also, the electromechanical coupling coefficient K is larger than that of the structure shown in Figure 1.
can be obtained. For example, the above zinc oxide film thickness h 1
By choosing ωh 1 = 8000 (ω is the angular frequency of the surface acoustic wave), K 2 can be approximately 6.04%.

しかしこの構造では酸化亜鉛膜3はスパツタ技
術等により形成されるが、上記のように最適特性
を得るにはその膜厚を比較的大きく形成する必要
があるため生産性の点でコストアツプになるのが
避けられない欠点がある。このためできるだけ小
さな膜厚でできるだけ大きな電気機械結合係数K
が得られるような構造が望まれている。
However, in this structure, the zinc oxide film 3 is formed by sputtering technology, etc., but as mentioned above, in order to obtain the optimum characteristics, it is necessary to form the film with a relatively large thickness, which increases costs in terms of productivity. However, there are some unavoidable drawbacks. Therefore, the electromechanical coupling coefficient K is as large as possible with the smallest possible film thickness.
A structure that provides the following is desired.

本発明は以上の問題に対処してなされたもの
で、(100)面とほぼ等価な面でカツトされたシリ
コン基板と、このシリコン基板上に形成された二
酸化シリコン膜と、この二酸化シリコン膜上に
(0001)面とほぼ等価な面が上記シリコン基板の
カツト面と平行になるように形成された酸化亜鉛
膜と、該酸化亜鉛膜と上記二酸化シリコン膜との
間に形成された導電膜と、この酸化亜鉛膜上に形
成された電極とを含み、上記シリコン基板の
〔011〕軸方向とほぼ等価な方向に表面弾性波を伝
播させるように構成して従来欠点を除去するよう
にした表面弾性波素子を提供することを目的とす
るものである。以下図面を参照して本発明実施例
説明する。
The present invention was made in response to the above problems, and consists of a silicon substrate cut with a plane approximately equivalent to the (100) plane, a silicon dioxide film formed on the silicon substrate, and a silicon dioxide film formed on the silicon dioxide film. a zinc oxide film formed so that a plane substantially equivalent to the (0001) plane is parallel to the cut plane of the silicon substrate, and a conductive film formed between the zinc oxide film and the silicon dioxide film. , an electrode formed on the zinc oxide film, and a surface configured to propagate surface acoustic waves in a direction substantially equivalent to the [011] axis direction of the silicon substrate to eliminate conventional defects. The object is to provide an acoustic wave element. Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明実施例による表面弾性波素子を
示す断面図、11は(100)面とほぼ等価な面で
カツトされたシリコン基板、12はこのシリコン
基板11上に形成された膜厚h2を有する二酸化シ
リコン(SiO2)膜、13はこの二酸化シリコン
膜12上に(0001)面とほぼ等価な面が上記シリ
コン基板11のカツト面と平行になるように形成
された膜厚h1を有する酸化亜鉛膜、14,15は
各々互いに交差するように形成されたくし型電極
からなる入力電極および出力電極、16は上記酸
化亜鉛膜13と二酸化シリコン膜12間に形成さ
れた導電膜で膜厚は無限に小さいことが望まし
い。
FIG. 3 is a cross-sectional view showing a surface acoustic wave device according to an embodiment of the present invention, 11 is a silicon substrate cut in a plane substantially equivalent to the (100) plane, and 12 is a film thickness h formed on this silicon substrate 11. 2 , a silicon dioxide (SiO 2 ) film 13 is formed on this silicon dioxide film 12 so that a plane substantially equivalent to the (0001) plane is parallel to the cut plane of the silicon substrate 11, and has a thickness h 1 14 and 15 are input and output electrodes formed of interdigitated electrodes, respectively, and 16 is a conductive film formed between the zinc oxide film 13 and the silicon dioxide film 12. It is desirable that the thickness be infinitely small.

なお上記導電膜16あるいは酸化亜鉛膜13は
くし型電極14,15の少なくとも交差幅部分の
真下に位置するように形成されることが望まし
い。
Note that the conductive film 16 or the zinc oxide film 13 is desirably formed so as to be located directly below at least the crossing width portion of the comb-shaped electrodes 14 and 15.

以上の構造{ZnO(0001)/SiO2/Si(100)
〔011〕と略記}の表面弾性波素子に対し、表面弾
性波としてセザワ波を用いてシリコン基板11の
〔011〕軸方向とほぼ等価な方向に電播させること
により第4図および第5図のようなK2特性曲線
が得られた。
The above structure {ZnO(0001)/SiO 2 /Si(100)
4 and 5 by applying electric current to the surface acoustic wave device (abbreviated as [011]) in a direction substantially equivalent to the [011] axis direction of the silicon substrate 11 using Sezawa waves as surface acoustic waves. A K 2 characteristic curve like this was obtained.

第4図において横軸は二酸化シリコン膜12の
膜厚h2の厚さをωh2(ωは角周波数)で示し、縦
軸は電気機械結合係数Kの二乗値K2を百分率で
示すものである。また第5図において横軸は酸化
亜鉛膜h1の厚さをωh1(ωは角周波数)で示し、
縦軸は電気機械結合係数Kの二乗値K2を百分率
で示すものである。第4図においてはωh1=7000
に設定した状態でωh2を変化させた(望ましくは
126〜10000の範囲内で)場合のK2の変化を示し、
第5図においてはωh2=1000に設定した状態で
ωh1を変化させた(望ましくは4200〜15000の範
囲内で)場合のK2の変化を示している。
In FIG. 4, the horizontal axis shows the thickness h2 of the silicon dioxide film 12 in ωh2 (ω is the angular frequency), and the vertical axis shows the square value K2 of the electromechanical coupling coefficient K in percentage. be. In addition, in FIG. 5, the horizontal axis indicates the thickness of the zinc oxide film h 1 as ωh 1 (ω is the angular frequency),
The vertical axis indicates the square value K 2 of the electromechanical coupling coefficient K in percentage. In Figure 4, ωh 1 = 7000
ωh 2 was changed with the setting set to (preferably
126 to 10000) shows the change in K2 for the case,
FIG. 5 shows the change in K 2 when ωh 1 is changed (preferably within the range of 4200 to 15000) with ωh 2 =1000.

第4図および第5図から明らかなように、酸化
亜鉛膜13の膜厚h1および二酸化シリコン膜12
の膜厚h2を各々ωh1=7000およびωh2=1000に選
ぶことにより、A点において極大値K2=6.12%が
得られた。
As is clear from FIGS. 4 and 5, the thickness h 1 of the zinc oxide film 13 and the silicon dioxide film 12
By selecting the film thicknesses h 2 of ωh 1 =7000 and ωh 2 =1000, respectively, a maximum value K 2 =6.12% was obtained at point A.

上記値は第2図の従来構造で得られた値(K2
=6.04%、ωh1=8000)よりも大であり、しかも
酸化亜鉛13の膜厚h1は二酸化シリコン膜12を
介在させることにより従来のωh1=8000からωh1
=7000へと小さくすることができる。
The above value is the value obtained with the conventional structure shown in Figure 2 (K 2
= 6.04%, ωh 1 = 8000), and the film thickness h 1 of the zinc oxide 13 is reduced from the conventional ωh 1 = 8000 to ωh 1 by interposing the silicon dioxide film 12.
= 7000.

これにより生産性の点でコストダウンを計るこ
とができる。
This makes it possible to reduce costs in terms of productivity.

また酸化亜鉛膜13の膜厚h1および二酸化シリ
コン膜12と膜厚h2を前記した範囲内で種々調整
することにより、特性の点で従来構造より優れた
柔軟性を持つた表面弾性波素子を実現することが
できる。
In addition, by adjusting the film thickness h 1 of the zinc oxide film 13 and the film thickness h 2 of the silicon dioxide film 12 variously within the above-mentioned ranges, a surface acoustic wave element with superior flexibility than the conventional structure in terms of characteristics can be obtained. can be realized.

なおシリコン基板11のカツト面は(100)面
とほぼ等価な面、酸化亜鉛膜13ほ(0001)面と
ほぼ等価な面およびシリコン基板11の伝播軸は
〔011〕軸方向とほぼ等価な方向の場合に例をとつ
て説明したが、それらに示した所定値から10°以
下の傾きを有している場合でも素子特性には本質
的差異は認められない。
The cut plane of the silicon substrate 11 is approximately equivalent to the (100) plane, the zinc oxide film 13 is approximately equivalent to the (0001) plane, and the propagation axis of the silicon substrate 11 is approximately equivalent to the [011] axis direction. Although the explanation has been given by taking the example of the case shown in FIG. 2, there is no essential difference in the device characteristics even if the slope is 10 degrees or less from the predetermined value shown therein.

第6図は本発明の他の実施例としてコンボルバ
用素子に適用した例を示すもので、17は酸化亜
鉛膜13上の入力電極14と出力電極15間に設
けられたゲート電極である。
FIG. 6 shows another embodiment of the present invention applied to a convolver element, in which 17 is a gate electrode provided between the input electrode 14 and the output electrode 15 on the zinc oxide film 13.

この構造によれば前実施例同様にK2特性に優
れた素子を得ることができる。
With this structure, it is possible to obtain an element with excellent K 2 characteristics as in the previous embodiment.

なおくし型電極を用いずとも、シリコン基板1
1、二酸化シリコン膜12および酸化亜鉛膜13
内に発生する電気的ポテンシヤルを利用する素子
の実現が期待できる。
Furthermore, even without using a comb-shaped electrode, the silicon substrate 1
1. Silicon dioxide film 12 and zinc oxide film 13
We can expect to realize devices that utilize the electrical potential generated within the device.

以上述べて明らかなように本発明によれば、
(100)面とほぼ等価な面でカツトされたシリコン
基板と、このシリコン基板上に形成された二酸化
シリコン膜と、この二酸化シリコン膜上に
(0001)面とほぼ等価な面が上記シリコン基板の
カツト面と平行になるように形成された酸化亜鉛
膜と、該酸化亜鉛膜と上記二酸化シリコン膜との
間に形成された導電膜と、この酸化亜鉛膜上に形
成された電極とを含み、上記シリコン基板の
〔011〕軸方向とほぼ等価な方向に表面弾性波を伝
播させるように構成したものであるから、電気機
械結合係数を大きくとることができるので表面弾
性波素子を効率よく動作させることができる。
As is clear from the above description, according to the present invention,
A silicon substrate cut with a plane almost equivalent to the (100) plane, a silicon dioxide film formed on this silicon substrate, and a plane almost equivalent to the (0001) plane cut on this silicon dioxide film. A zinc oxide film formed parallel to the cut surface, a conductive film formed between the zinc oxide film and the silicon dioxide film, and an electrode formed on the zinc oxide film, Since it is configured to propagate surface acoustic waves in a direction approximately equivalent to the [011] axis direction of the silicon substrate, it is possible to increase the electromechanical coupling coefficient, allowing the surface acoustic wave device to operate efficiently. be able to.

なお本発明によればシリコン基板として集積回
路と共通基板を用いることにより、集積回路技術
を活用して機能素子と半導体素子を一体化した小
型かつ高密度な素子の実現が可能である。
According to the present invention, by using an integrated circuit and a common substrate as a silicon substrate, it is possible to realize a compact and high-density element that integrates a functional element and a semiconductor element by utilizing integrated circuit technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は共に従来例を示す断面
図、第3図および第6図は共に本発明実施例を示
す断面図、第4図および第5図は共に本発明によ
つて得られた結果を示す特性図である。 11……シリコン基板、12……二酸化シリコ
ン膜、13……酸化亜鉛膜、14……入力電極、
15……出力電極、16……導電膜、17……ゲ
ート電極。
1 and 2 are sectional views showing a conventional example, 3 and 6 are sectional views showing an embodiment of the present invention, and 4 and 5 are sectional views showing a conventional example. FIG. 11...Silicon substrate, 12...Silicon dioxide film, 13...Zinc oxide film, 14...Input electrode,
15... Output electrode, 16... Conductive film, 17... Gate electrode.

Claims (1)

【特許請求の範囲】 1 (100)面とほぼ等価な面でカツトされたシ
リコン基板と、このシリコン基板上に形成された
二酸化シリコン膜と、この二酸化シリコン膜上に
(0001)面とほぼ等価な面が上記シリコン基板の
カツト面と平行になるように形成された酸化亜鉛
膜と、該酸化亜鉛膜と二酸化シリコン膜との間に
形成された導電膜と、この酸化亜鉛膜上に形成さ
れた電極とを含み、上記シリコン基板の[011]
軸方向とほぼ等価な方向に表面弾性波を伝播させ
るように構成したことを特徴とする表面弾性波素
子。 2 上記導電膜の厚さが上記二酸化シリコン膜及
び酸化亜鉛膜の厚さよりも極めて薄いことを特徴
とする特許請求の範囲第1項記載の表面弾性波素
子。 3 上記結晶面およびその伝播軸が所定結晶面お
よび伝播軸方向から10°以内の傾きを持つことを
特徴とする特許請求の範囲第1項記載の表面弾性
波素子。 4 上記表面弾性波素子としてセザワ波を用いる
ことを特徴とする特許請求の範囲第1項又は第3
項記載の表面弾性波素子。 5 上記酸化亜鉛膜の膜厚h1が、4200ωh1
15000(ただし、ωは表面弾性波の角周波数)の範
囲に属することを特徴とする特許請求の範囲第1
項乃至第4項のいずれかに記載の表面弾性波素
子。 6 上記電極がくし型構造を有すること特徴とす
る特許請求の範囲第1項乃至第5項のいずれかに
記載の表面弾性波素子。 7 上記導電膜が上記くし型電極の交差幅部分の
真下に位置することを特徴とする特許請求の範囲
第1項乃至第6項のいずれかに記載の表面弾性波
素子。
[Claims] 1. A silicon substrate cut with a plane substantially equivalent to the (100) plane, a silicon dioxide film formed on the silicon substrate, and a silicon dioxide film cut on the silicon dioxide film with a plane substantially equivalent to the (0001) plane. a zinc oxide film formed such that its surface is parallel to the cut surface of the silicon substrate; a conductive film formed between the zinc oxide film and the silicon dioxide film; and a conductive film formed on the zinc oxide film. [011] of the silicon substrate.
A surface acoustic wave element configured to propagate surface acoustic waves in a direction substantially equivalent to an axial direction. 2. The surface acoustic wave device according to claim 1, wherein the conductive film is extremely thinner than the silicon dioxide film and the zinc oxide film. 3. The surface acoustic wave device according to claim 1, wherein the crystal plane and its propagation axis have an inclination within 10 degrees from the predetermined crystal plane and propagation axis direction. 4. Claim 1 or 3, characterized in that a Sezawa wave is used as the surface acoustic wave element.
The surface acoustic wave device described in Section 1. 5 The film thickness h 1 of the above zinc oxide film is 4200Ωh 1
15,000 (where ω is the angular frequency of the surface acoustic wave)
The surface acoustic wave device according to any one of items 1 to 4. 6. The surface acoustic wave device according to any one of claims 1 to 5, wherein the electrode has a comb-shaped structure. 7. The surface acoustic wave device according to claim 1, wherein the conductive film is located directly below the intersecting width portion of the comb-shaped electrodes.
JP23244483A 1983-12-09 1983-12-09 Surface elastic wave element Granted JPS60124111A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23244483A JPS60124111A (en) 1983-12-09 1983-12-09 Surface elastic wave element
US06/677,712 US4567392A (en) 1983-12-09 1984-12-04 Sezawa surface-acoustic-wave device using ZnO(0001)/SiO2 / Si(100)(011)
GB08430699A GB2152315B (en) 1983-12-09 1984-12-05 Surface acoustic wave device
DE3444749A DE3444749C2 (en) 1983-12-09 1984-12-07 Component forming acoustic surface waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23244483A JPS60124111A (en) 1983-12-09 1983-12-09 Surface elastic wave element

Publications (2)

Publication Number Publication Date
JPS60124111A JPS60124111A (en) 1985-07-03
JPH0311685B2 true JPH0311685B2 (en) 1991-02-18

Family

ID=16939365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23244483A Granted JPS60124111A (en) 1983-12-09 1983-12-09 Surface elastic wave element

Country Status (1)

Country Link
JP (1) JPS60124111A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852702A (en) * 1996-02-28 1998-12-22 Minolta Co., Ltd. Thin film optical waveguide and optical deflecting device
WO2012107388A1 (en) 2011-02-07 2012-08-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Transparent acoustically active device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856513A (en) * 1981-03-05 1983-04-04 Clarion Co Ltd Surface acoustic wave element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856513A (en) * 1981-03-05 1983-04-04 Clarion Co Ltd Surface acoustic wave element
JPS5863214A (en) * 1981-03-05 1983-04-15 Clarion Co Ltd Surface acoustic wave element

Also Published As

Publication number Publication date
JPS60124111A (en) 1985-07-03

Similar Documents

Publication Publication Date Title
JPH0336326B2 (en)
JPH025327B2 (en)
JPH0218614B2 (en)
JPS60169210A (en) Surface wave device
JPS584485B2 (en) frequency selection device
US4562371A (en) Rayleigh surface-acoustic-wave device using ZnO(0001)/SiO2 /Si(111) [11]
US4567392A (en) Sezawa surface-acoustic-wave device using ZnO(0001)/SiO2 / Si(100)(011)
JPH0311686B2 (en)
JP3107381B2 (en) Surface acoustic wave device
US4531107A (en) Acoustic surface wave device
JPH0311685B2 (en)
US4707631A (en) Isotropic acoustic wave substrate
JP3194784B2 (en) Surface acoustic wave device
JPH02198211A (en) Surface acoustic wave resonator
JP3166445B2 (en) Elastic convolver
JP2619364B2 (en) Surface acoustic wave filter
JP2534041B2 (en) Surface acoustic wave device
JPH0314362B2 (en)
JPH0435926B2 (en)
JPS5844809A (en) Frequency selecting device
JPS6327112A (en) Surface acoustic wave element
JPS5837727B2 (en) frequency selection device
JPS5941603B2 (en) surface acoustic wave device
JPH0425213A (en) Surface acoustic wave convolver
JPS596609A (en) Elastic surface wave device