JPH04149345A - Double steel pipe type structure member for truss - Google Patents

Double steel pipe type structure member for truss

Info

Publication number
JPH04149345A
JPH04149345A JP27445290A JP27445290A JPH04149345A JP H04149345 A JPH04149345 A JP H04149345A JP 27445290 A JP27445290 A JP 27445290A JP 27445290 A JP27445290 A JP 27445290A JP H04149345 A JPH04149345 A JP H04149345A
Authority
JP
Japan
Prior art keywords
steel pipe
structural member
bending
pipe structural
bending resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27445290A
Other languages
Japanese (ja)
Other versions
JPH0742759B2 (en
Inventor
Katsuhiko Imai
克彦 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawatetsu Steel Products Co Ltd
Original Assignee
Kawatetsu Steel Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawatetsu Steel Products Co Ltd filed Critical Kawatetsu Steel Products Co Ltd
Priority to JP2274452A priority Critical patent/JPH0742759B2/en
Priority to DE19914133203 priority patent/DE4133203C2/en
Priority to GB9121600A priority patent/GB2248862A/en
Publication of JPH04149345A publication Critical patent/JPH04149345A/en
Publication of JPH0742759B2 publication Critical patent/JPH0742759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/32Columns; Pillars; Struts of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/06Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/38Arched girders or portal frames
    • E04C3/40Arched girders or portal frames of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0408Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
    • E04C2003/0413Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section being built up from several parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0426Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section
    • E04C2003/043Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section the hollow cross-section comprising at least one enclosed cavity
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0447Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section circular- or oval-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0465Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section square- or rectangular-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0486Truss like structures composed of separate truss elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0486Truss like structures composed of separate truss elements
    • E04C2003/0491Truss like structures composed of separate truss elements the truss elements being located in one single surface or in several parallel surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

PURPOSE:To restrain the elastic and plastic buckling so as to allow an axial plastic deformation to increase, and to stabilize the same by inserting a bend- resistant steel pipe in a steel pipe structure member in a free condition with respect to the latter. CONSTITUTION:A bend-resistant steel pipe 3 is inserted in a steel pipe structure member 2 in a free condition with respect to the latter so as to prevent axial compression forces P, P acting upon the steel pipe structure 2, from being transmitted to the pipe 3. At this time, the steel pipe 3 is set to be close to the steel pipe structure member 2 so that the gap alpha between the bend resistant pipe 3 and the steel pipe structure 2 is set as small as possible. When the axial compression forces P, P act upon the steel pipe structure member 2 so that the steel pipe structure member initiates deforming, the bend-resistant steel pipe 3 restrains the pipe structure member 2 from flexing perpendicularly to its center axis. Further, even though the steel pipe structure member 2 initiates plastically deforming, it is deformed only in the axial direction so that the deformation can be large and stable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はトラス用二重鋼管型構造部材に係り、詳しくは
、トラス構造やすしかい構造を形成するため使用される
長尺な鋼管よりなる構造部材の弾塑性座屈を抑制すると
共に、軸方向への塑性変形量を大きくすることができる
ようにした二重細管型の構造部材に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a double steel pipe type structural member for a truss, and more specifically, to a structure made of long steel pipes used to form a truss structure or a sill structure. The present invention relates to a double capillary type structural member that suppresses elastic-plastic buckling of the member and can increase the amount of plastic deformation in the axial direction.

〔従来の技術〕[Conventional technology]

長尺な鋼管からなる構造部材を多数使用して大きい構造
物を構築する場合には、トラス構造やすしかい構造を採
用することが多い。例えば、地震などの動的な外力に基
づく軸方向の圧縮力に耐えることができるトラス構造を
設計する場合、構造部材の性能としては、座屈する前に
耐力を保持して十分変形できるのが理想的である。すな
わち、鋼管が座屈すれば、その耐力が一般的には急激に
低下するからである。したがって、座屈耐力以下の力に
基づいて構造部材が設計されたり、鋼管内にステイフナ
−を取り付けて補強したりすることになるが、その場合
には、動的な外力に対して構造部材は弾性応答となる。
When constructing a large structure using a large number of structural members made of long steel pipes, a truss structure or a sill structure is often adopted. For example, when designing a truss structure that can withstand axial compressive force caused by dynamic external forces such as earthquakes, the ideal performance of structural members is to maintain their strength and deform sufficiently before buckling. It is true. That is, if a steel pipe buckles, its yield strength generally decreases rapidly. Therefore, structural members are designed based on a force that is less than their buckling strength, or stiffeners are installed inside steel pipes for reinforcement, but in such cases, structural members cannot withstand dynamic external forces. It becomes an elastic response.

その結果、構造部材の塑性変形を利用する場合に比べて
、大きい設計応力を想定しておかなければならない。
As a result, larger design stresses must be assumed than when using plastic deformation of structural members.

また、トラス構造に類似するすしかい構造においても、
圧縮すしかいを弾性領域に保持しようとすると、地震が
あった場合などにはすしかいに大きな応力が発生するこ
とになり、隣接する柱や梁に非常に大きな力が作用して
、設計上不可能となることがしばしばある。なお、圧縮
すしかいの座屈後の耐力を評価して設計する方法もある
が、座屈後の象、激な耐力低下を適切に評価して、トラ
ス構造物に所要の耐震性能を付与することは、現在の技
術レベルでは容易でない。
In addition, in the waterway structure similar to the truss structure,
If an attempt is made to maintain a compressed insulator in the elastic region, large stresses will be generated in the insulator in the event of an earthquake, and a very large force will be applied to adjacent columns and beams, causing design problems. It is often possible. Although there is a method of designing by evaluating the strength of compressed water pipes after buckling, it is important to properly evaluate the sudden drop in strength after buckling to give the truss structure the required seismic performance. This is not easy at the current level of technology.

(発明が解決しようとする課題〕 そこで、本発明者は特願平1−340441号(198
9年12月28日出願)において、鋼管の座屈耐力より
小さい外力で塑性変形する脆弱部を左右端部に形成させ
た構造部材を提案した。これにおいては、所定以上の軸
方向圧縮力が作用すると、左右端部の脆弱部が塑性変形
することを、意図的に許容するようにしている。
(Problems to be Solved by the Invention) Therefore, the present inventors have
(filed on December 28, 2009) proposed a structural member in which weakened parts that are plastically deformed by an external force smaller than the buckling strength of a steel pipe are formed at the left and right ends. In this case, the weak parts at the left and right ends are intentionally allowed to undergo plastic deformation when an axial compressive force of a predetermined value or more is applied.

鋼管などの単管を用いた圧縮材では、−船釣に第13図
の実線で示すごとく、座屈理論による座屈荷重を越える
と急、激に耐力を失い、その変形量は極めて小さい。一
方、上記した脆弱部を設けた構造部材では、破線で示す
方向に向けて、鋼管の軸方向変形量を大きくすることが
できる。しかし、長尺な鋼管の全長にわたって塑性変形
させるというものではないので、構造部材の変形量には
限界がある。また、その脆弱部を形成させるために鋼管
端部に複雑でコストの高い機構を採用しなければならな
い問題がある。
Compressed materials using single pipes such as steel pipes suddenly and drastically lose their yield strength when exceeding the buckling load according to buckling theory, as shown by the solid line in Figure 13, and the amount of deformation is extremely small. On the other hand, in the structural member provided with the above-described fragile portion, the amount of axial deformation of the steel pipe can be increased in the direction shown by the broken line. However, since plastic deformation is not performed over the entire length of a long steel pipe, there is a limit to the amount of deformation of the structural member. Another problem is that a complicated and expensive mechanism must be employed at the end of the steel pipe in order to form the weakened portion.

本発明は上記の問題に鑑みなされたもので、その目的は
、複雑な形状の脆弱部を設けることなく安価に構造部材
を製作できること、長尺な構造部材の座屈による横撓み
を容易に抑制して、軸方向変形量を極めて大きくするこ
とができること、トラス構造物を構成する構造部材のう
ち所要の構造部材にのみ大変形を許容させるべく簡便に
対処させることができること、それによって、大規模地
震時に鋼構造物が急激に倒壊するのを抑制してラーメン
構造のような塑性変形による大きな耐震性を付与するこ
とができること、さらには、軸力を負担する構造部材の
座屈荷重を越えても、大きい耐力でもって軸方向の圧縮
力に耐えることができるようにすること、を実現するト
ラス用二重鋼管型構造部材を提供することである。
The present invention was made in view of the above problems, and its purpose is to be able to manufacture structural members at low cost without providing fragile parts with complicated shapes, and to easily suppress lateral deflection due to buckling of long structural members. The amount of deformation in the axial direction can be extremely large, and it is possible to easily handle large deformations in only the required structural members of the truss structure. It is possible to prevent steel structures from suddenly collapsing during an earthquake and provide great earthquake resistance through plastic deformation like a rigid frame structure, and furthermore, it can overcome the buckling load of structural members that bear axial force. Another object of the present invention is to provide a double steel pipe type structural member for a truss that can withstand compressive force in the axial direction with a large yield strength.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、網構造物を形成するトラスに用いられる鋼管
構造部材に適用される。その特徴とするところは、例え
ば第1図を参照して、鋼管構造部材2に作用する軸方向
の圧縮力Pが伝わらないようにその鋼管構造部材2に対
して自由状態にある曲げ抵抗鋼管3が、鋼管構造部材2
に嵌挿され、その曲げ抵抗鋼管3が、鋼管構造部材2と
対面する隙間αを可及的に小さくなるように、鋼管構造
部材2に近接して配置される。そして、鋼管構造部材2
に軸方向の圧縮力Pが作用してその鋼管構造部材2が変
形しはじめたとき、その鋼管構造部材2がその管軸線2
m(第3図参照)に対して直角方向へ撓むのを、曲げ抵
抗鋼管3によって抑制することができるようにしたこと
である。
INDUSTRIAL APPLICATION This invention is applied to the steel pipe structural member used for the truss which forms a net structure. Its characteristics include, for example, referring to FIG. 1, a bending resistant steel pipe 3 which is in a free state with respect to the steel pipe structural member 2 so that the axial compressive force P acting on the steel pipe structural member 2 is not transmitted. However, steel pipe structural member 2
The bending resistance steel pipe 3 is placed close to the steel pipe structural member 2 so that the gap α facing the steel pipe structural member 2 is made as small as possible. And steel pipe structural member 2
When the compressive force P in the axial direction acts on the steel pipe structural member 2 and the steel pipe structural member 2 begins to deform, the steel pipe structural member 2
The bending resistance steel pipe 3 can suppress bending in the direction perpendicular to m (see FIG. 3).

なお、曲げ抵抗鋼管3を鋼管構造部材2に内挿してもよ
いし、第5図のように、外挿しておいてもよい。
Note that the bending resistance steel pipe 3 may be inserted into the steel pipe structural member 2, or may be inserted outside the steel pipe structure member 2 as shown in FIG.

さらには、第8図に示すように、曲げ抵抗鋼管3の全長
P3を、鋼管構造部材2が軸方向に塑性変形するとき許
容される予め決められた軸方向設定変形製βだけ、鋼管
構造部材2の全長!2より短くしておいてもよい。鋼管
構造部材2が軸方向設定変形製βだけ縮んだ後に、鋼管
構造部材2の耐力と曲げ抵抗鋼管3の耐力とで、軸方向
の圧縮力に対抗させることができるようになっていれば
よい。
Furthermore, as shown in FIG. 8, the total length P3 of the bending resistance steel pipe 3 is increased by a predetermined axially set deformation β that is allowed when the steel pipe structural member 2 is plastically deformed in the axial direction. Full length of 2! It may be made shorter than 2. It is only necessary that the yield strength of the steel pipe structural member 2 and the yield strength of the bending resistance steel pipe 3 be able to resist the compressive force in the axial direction after the steel pipe structural member 2 has shrunk by the axially set deformation β. .

〔作   用〕[For production]

鋼管構造部材2に軸方向の圧縮力Pが作用し、それが座
屈をはじめて管軸線2mに対して直角方向へ撓みが生し
ても、その圧縮力が伝わらない曲げ抵抗鋼管3による拘
束力で、鋼管構造部材2の撓み変形が規制される。した
がって、鋼管構造部材2は塑性変形をはじめても軸方向
へのみ変形する。その変形量は大きくかつ安定しており
、二重鋼管型構造部材1の採用されたトラス構造物4 
(第4図参照)では急激な倒壊が回避される。鋼管構造
部材2が塑性変形しても、曲げ抵抗鋼管3によって鋼管
構造部材2の座屈変形は軸対称的な提灯座屈12(例え
ば第10図参照)に誘導され、その変形も安定したもの
となって、鋼管構造部材2が腰折れするような曲がり変
形座屈の発生は防止される。なお、曲げ抵抗鋼管3が鋼
管構造部材2に内挿されていても外挿されていても、は
ぼ同様な変形をさせることができる。
Even if an axial compressive force P acts on the steel pipe structural member 2, which causes buckling and deflection in a direction perpendicular to the pipe axis 2m, the restraining force due to the bending resistance steel pipe 3 does not transmit the compressive force. Thus, the bending deformation of the steel pipe structural member 2 is regulated. Therefore, even if the steel pipe structural member 2 begins to undergo plastic deformation, it deforms only in the axial direction. The amount of deformation is large and stable, and the truss structure 4 employing the double steel pipe type structural member 1
(See Figure 4), sudden collapse is avoided. Even if the steel pipe structural member 2 is plastically deformed, the buckling deformation of the steel pipe structural member 2 is induced by the bending resistance steel pipe 3 into an axially symmetrical lantern buckling 12 (see, for example, Fig. 10), and the deformation is also stabilized. Therefore, the occurrence of bending deformation buckling that would cause the steel pipe structural member 2 to buckle is prevented. In addition, whether the bending resistance steel pipe 3 is inserted into the steel pipe structural member 2 or inserted into the steel pipe structural member 2, substantially the same deformation can be performed.

曲げ抵抗鋼管3の全長で3を、鋼管構造部材2が軸方向
に塑性変形するとき許容される予め決められた軸方向設
定変形製βだけ、鋼管構造部材2の全長!2より短くし
ておけば、鋼管構造部材2が軸方向設定変形製βだけ縮
んだ後は、その軸方向の圧縮力が曲げ抵抗鋼管3にも及
び、結局は、鋼管構造部材2の耐力と曲げ抵抗鋼管3の
耐力との総合した力で、実質的に二重鋼管型構造部材1
の耐力を上昇させ、トラス構造物の安全をより一層確保
することができる。
The total length of the bending resistance steel pipe 3 is 3, and the total length of the steel pipe structural member 2 is the predetermined axially set deformation β that is allowed when the steel pipe structural member 2 is plastically deformed in the axial direction! If it is made shorter than 2, after the steel pipe structural member 2 has shrunk by the axially set deformation β, the axial compressive force will also reach the bending resistance steel pipe 3, and the yield strength of the steel pipe structural member 2 will eventually increase. Combined with the strength of the bending resistance steel pipe 3, the double steel pipe type structural member 1 is effectively
It is possible to increase the proof strength of the truss structure and further ensure the safety of the truss structure.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、曲げ抵抗鋼管の拘束作用によって、鋼
管構造部材の撓みが抑制されるので、鋼管構造部材の管
軸線に対して直角方向への変形の少ない状態で、大きな
軸方向変形を起こさせることができ、また、変形が進ん
だ時点で、局部的に大きく塑性化した部分には軸対称形
の提灯座屈を起こさせることもできる。したがって、鋼
管構造部材の安定した塑性変形が得られ、耐力低下の少
ない大きな変形を持続させ、トラス構造物が大きい外力
を受けても、それで直ちに倒壊するというようなことを
防止できる。
According to the present invention, the bending of the steel pipe structural member is suppressed by the restraining action of the bending resistant steel pipe, so that large axial deformation can occur with little deformation in the direction perpendicular to the pipe axis of the steel pipe structural member. Furthermore, when the deformation progresses, axially symmetrical lantern buckling can occur in the locally significantly plasticized portion. Therefore, stable plastic deformation of the steel pipe structural member can be obtained, large deformation can be sustained with little reduction in proof strength, and even if the truss structure receives a large external force, it can be prevented from immediately collapsing.

また、曲げ抵抗鋼管の全長を、軸方向の塑性変形量のほ
かに鋼管構造部材の提灯座屈変形量を見込んだ程度の長
さにしておけば、二重鋼管型構造部材の変形をさらに増
大させることができる。
In addition, if the total length of the bending resistance steel pipe is set to a length that takes into account the amount of lantern buckling deformation of the steel pipe structural member in addition to the amount of plastic deformation in the axial direction, the deformation of the double steel pipe type structural member will be further increased. can be done.

以上のような構成の二重鋼管型構造部材を製作するにつ
いては、曲げ抵抗鋼管を嵌挿する程度でよく、安価で大
変形可能なトラス用の構造部材を得ることができる。
In order to manufacture a double steel pipe type structural member having the above configuration, it is sufficient to insert and insert a bending resistant steel pipe, and it is possible to obtain a structural member for a truss that is inexpensive and capable of large deformation.

〔実 施 例〕〔Example〕

以下に、本発明をその実施例の図面を参照しながら、詳
細に説明する。
Hereinafter, the present invention will be explained in detail with reference to drawings of embodiments thereof.

第1図は、本発明が適用された鋼構造物を形成する二重
鋼管型構造部材1の断面図である。その二重鋼管型構造
部材1を構成する鋼管構造部材2には、それに作用する
軸方向の圧縮力Pが伝わらないようにその鋼管構造部材
2に対して自由状態にある曲げ抵抗鋼管3が、第2図に
示すように、鋼管構造部材2に予め内挿されている。
FIG. 1 is a sectional view of a double steel pipe type structural member 1 forming a steel structure to which the present invention is applied. A bending resistant steel pipe 3 is placed in a free state relative to the steel pipe structural member 2 so that the axial compressive force P acting thereon is not transmitted to the steel pipe structural member 2 constituting the double steel pipe type structural member 1. As shown in FIG. 2, it is inserted into the steel pipe structural member 2 in advance.

この曲げ抵抗鋼管3は鋼管構造部材2に対して何らの接
続もされておらず、したがって、曲げ抵抗鋼管3は鋼管
構造部材2の中に嵌め込まれているだけである。この曲
げ抵抗鋼管3は、圧縮力を受けた鋼管構造部材2が座屈
しはじめて、第3図に示すように横方向へ、すなわち、
管軸線2mに対して直角方向へ撓むのを抑制する曲げ抵
抗機能を発揮するものである。それ故に、曲げ抵抗鋼管
3は、鋼管構造部材2の撓みに対抗することができる抵
抗を発揮するに相応しい断面形状と断面寸法が採用され
る。
This bending resistant steel pipe 3 is not connected to the steel pipe structural member 2 in any way, and therefore, the bending resistant steel pipe 3 is only fitted into the steel pipe structural member 2. In this bending resistance steel pipe 3, the steel pipe structural member 2 subjected to the compressive force begins to buckle, and as shown in FIG.
It exhibits a bending resistance function that suppresses bending in a direction perpendicular to the tube axis 2 m. Therefore, the bending-resistant steel pipe 3 has a cross-sectional shape and cross-sectional size suitable for exhibiting resistance capable of resisting the bending of the steel pipe structural member 2.

第1図に戻って、上記の鋼管構造部材2の内面2aと曲
げ抵抗鋼管3の外面3bとの隙間αは極めて小さ(され
ており、例えば外径60.5mmで厚み3.2mmの鋼
管構造部材2に対して、外径53.6nvといった曲げ
抵抗鋼管3が採用される。すなわち、各隙間αは例えば
0.25mmが確保されるようになっていて、それ故に
、鋼管構造部材2の内径と曲げ抵抗鋼管3の外径との差
は0.5mmとしている。
Returning to FIG. 1, the gap α between the inner surface 2a of the steel pipe structural member 2 and the outer surface 3b of the bending resistance steel pipe 3 is extremely small. A bending resistant steel pipe 3 with an outer diameter of 53.6 nv is used for the member 2. In other words, each gap α is set to, for example, 0.25 mm, and therefore the inner diameter of the steel pipe structural member 2 is The difference between the outer diameter of the bending resistance steel pipe 3 and the outer diameter of the bending resistance steel pipe 3 is 0.5 mm.

このように小さい径差とされているのは1、曲げ抵抗鋼
管3を鋼管構造部材2に嵌挿することか容易に行えるよ
うにするためである。それに加えて、後述するように、
圧縮力Pによって鋼管構造部材2が座屈荷重を受けると
、鋼管構造部材2が降伏して第3図のように横方向へ変
形していくとき、曲げ抵抗鋼管3が軸方向の力を受ける
ことなく完全な曲げ材として機能し、かつ、鋼管構造部
材2の横方向変位を直ちに拘束することができるように
するためである。
The reason why the diameter difference is so small is that the bending resistance steel pipe 3 can be easily inserted into the steel pipe structural member 2. In addition, as described below,
When the steel pipe structural member 2 receives a buckling load due to the compressive force P, the steel pipe structural member 2 yields and deforms in the lateral direction as shown in Fig. 3, and the bending resistance steel pipe 3 receives an axial force. This is to allow the steel pipe structural member 2 to function as a perfect bending member without any bending, and to immediately restrain lateral displacement of the steel pipe structural member 2.

ちなみに、曲げ抵抗銅管3として引抜銅管を採用してお
けば、その所要の寸法を得るための加工も容易である。
Incidentally, if a drawn copper tube is used as the bending resistance copper tube 3, it can be easily processed to obtain the required dimensions.

なお、鋼管構造部材2は例えば第4図に示したように矩
形でもよく、円形の曲げ抵抗銅管3との間に隙間αが確
保されていればよい。
Note that the steel pipe structural member 2 may be rectangular as shown in FIG. 4, for example, as long as a gap α is ensured between it and the circular bending resistance copper pipe 3.

ところで、上記の曲げ抵抗鋼管3は、第5図に示すよう
に、鋼管構造部材2に外挿するよう乙こしてもよい。こ
の場合には、鋼管構造部材2の外面2bと曲げ抵抗鋼管
3の内面3aとの対面部に隙間αが確保されることは言
うまでもない。
By the way, the above-mentioned bending resistance steel pipe 3 may be inserted into the steel pipe structural member 2 as shown in FIG. In this case, it goes without saying that a gap α is secured between the outer surface 2b of the steel pipe structural member 2 and the inner surface 3a of the bending resistant steel pipe 3.

第1図と第5図のいずれの構成の二重鋼管型構造部材1
でも、第6図に示すトラス構造物4においては、実線二
本で表した例えば片側三箇所の構造部材5.5に適用さ
れ、破線二本で表した構造部材6や他の一本線で表した
構造部材7,8には必ずしも通用する必要がない。すな
わち、地震などによる外力がトラス構造物4に作用した
場合には、構造部材5.5における応力が極めて大きく
なり、少なくとも所要の構造部材にのみ対処させれば充
分であるからである。
Double steel pipe type structural member 1 having either of the configurations shown in Fig. 1 and Fig. 5
However, in the truss structure 4 shown in Fig. 6, it is applied to, for example, three structural members 5.5 on one side, which are represented by two solid lines, and the structural members 6, which are represented by two broken lines, and another one, which is represented by a single line. It does not necessarily have to be applicable to the structural members 7 and 8 that have been used. That is, when an external force due to an earthquake or the like acts on the truss structure 4, the stress in the structural members 5.5 becomes extremely large, and it is sufficient to deal with the stress only in at least the required structural members.

ちなみに、曲げ抵抗鋼管3は鋼管構造部材2の全長にわ
たって嵌挿する必要はなく、第7図に示すように、一つ
の水平な長い鋼管構造部材5のうち座屈の対象となる部
位にのみ曲げ抵抗鋼管3を介在させておけばよい。この
場合には、曲げ抵抗鋼管3を所望の位置に保持させるた
めに、曲げ抵抗鋼管3のいずれかの一点9を鋼管構造部
材2に予め溶接しておけばよい。−点での接続であれば
、鋼管構造部材2に作用した軸方向の圧縮力Pが曲げ抵
抗鋼管3の軸方向に及ぶことはない。
Incidentally, the bending resistance steel pipe 3 does not need to be inserted over the entire length of the steel pipe structural member 2, and as shown in FIG. The resistance steel pipe 3 may be interposed. In this case, in order to hold the bending resistant steel pipe 3 at a desired position, any one point 9 of the bending resistant steel pipe 3 may be welded to the steel pipe structural member 2 in advance. If the connection is made at the - point, the axial compressive force P acting on the steel pipe structural member 2 will not be applied to the bending resistance steel pipe 3 in the axial direction.

ところで、鋼管構造部材2が第8図に示すような端部ネ
ジ機構10を有するエンド部材11を備え、図示しない
ネジを用いて鋼管構造部材2,2を相互に接続するよう
な場合には、曲げ抵抗鋼管3を鋼管構造部材2に内挿し
た後、エンド部材11.11を溶接によって鋼管構造部
材2の先端部に取り付けるようにすればよい。
By the way, when the steel pipe structural member 2 is provided with an end member 11 having an end screw mechanism 10 as shown in FIG. 8, and the steel pipe structural members 2 are connected to each other using screws (not shown), After the bending resistant steel pipe 3 is inserted into the steel pipe structural member 2, the end member 11.11 may be attached to the tip of the steel pipe structural member 2 by welding.

このように構成された二重鋼管型構造部材1を採用した
トラス構造物4に地震などによる外力で、第6図に示し
た実線二本の二重鋼管型構造部材11に軸方向の圧縮力
Pが作用すると、第3図のように、各鋼管構造部材2は
座屈をはじめて、その管軸線2mに対して直角方向へ撓
む。曲げ抵抗鋼管3は鋼管構造部材2に対して自由状態
にあることから、横方向の抵抗を発揮し、鋼管構造部材
2の撓みが抑制される。
When the truss structure 4 employing the double steel tube type structural member 1 configured as described above is subjected to an external force such as an earthquake, an axial compressive force is applied to the double steel tube type structural member 11 shown in the two solid lines shown in FIG. When P acts, each steel pipe structural member 2 begins to buckle and bends in a direction perpendicular to its pipe axis 2m, as shown in FIG. Since the bending resistance steel pipe 3 is in a free state with respect to the steel pipe structural member 2, it exerts resistance in the lateral direction, and the bending of the steel pipe structural member 2 is suppressed.

構造部材が例えば単なる一重管であれば、圧縮力を受け
て座屈をはじめるあたりは、単管が降伏するかしないか
の微妙なところにある。したがって、そのときの横方向
の変形と軸方向の変形とを一本の単管に負担させると、
その変形に耐える能力が小さくなる。しかし、上記した
ように、軸方向変形を鋼管構造部材2に負担させ、撓み
変形を曲げ抵抗鋼管3に負担させて、それぞれの負担を
分離させておくと、横方向の変形すなわち撓みを抑制し
ながら軸方向の変形を大きくすることができる。
If the structural member is, for example, a simple single pipe, the point at which it begins to buckle under compression is the delicate point where the single pipe will yield or not. Therefore, if the lateral deformation and axial deformation at that time are borne by a single pipe,
Its ability to withstand deformation becomes smaller. However, as described above, if the axial deformation is borne by the steel pipe structural member 2 and the bending deformation is borne by the bending resistance steel pipe 3, and the respective loads are separated, lateral deformation, that is, bending can be suppressed. However, the deformation in the axial direction can be increased.

このような二重鋼管型構造部材1を構成させるには、曲
げ抵抗鋼管3を鋼管構造部材2に単に嵌挿させればよく
、二重鋼管型構造部材1の製作は極めて容易となる。ま
た、必要とする部位だけに曲げ抵抗鋼管3を介在させれ
ばよく、鍔管使用量の増大も抑制される。
In order to construct such a double steel pipe type structural member 1, it is sufficient to simply fit the bending resistance steel pipe 3 into the steel pipe structural member 2, and the production of the double steel pipe type structural member 1 becomes extremely easy. Furthermore, the bending resistance steel pipe 3 only needs to be interposed in the necessary portions, and an increase in the amount of flanged pipes used is also suppressed.

ここで、鋼管構造部材2の外径が60.5m+n、肉厚
が3.211II11、断面積A2が5.76C111
” 、座屈応力σ。
Here, the outer diameter of the steel pipe structural member 2 is 60.5m+n, the wall thickness is 3.211II11, and the cross-sectional area A2 is 5.76C111.
”, buckling stress σ.

が3.Ot/cm”、断面二次モーメントI2が23.
7cm+’、断面係数22が7.84cm’ 、長さ1
2が2030mmであるときに、鋼管構造部材2が降伏
しても座屈を起こさせないようにするための曲げ抵抗鋼
管3の断面積を計算する。なお、鋼管構造部材2は、そ
の細゛長比が100のかなり細長い構造部材であって、
弾性座屈するものとする。
3. Ot/cm", and the moment of inertia I2 is 23.
7cm+', section modulus 22 is 7.84cm', length 1
2 is 2030 mm, calculate the cross-sectional area of the bending resistance steel pipe 3 to prevent buckling even if the steel pipe structural member 2 yields. The steel pipe structural member 2 is a fairly elongated structural member with a slenderness ratio of 100,
It shall be elastically buckled.

鋼管構造部材2の降伏軸力Pyは、 σyX Az=5.76X3.0=17.3 を鋼管構
造部材2の座屈耐力p crは、fcxA2×ν =0.954X5.76X1.9=10.4 tただし
、rcは座屈応力度、νは座屈安全率である。
The yield axial force Py of the steel pipe structural member 2 is σyX Az=5.76X3.0=17.3, and the buckling strength p cr of the steel pipe structural member 2 is fcxA2×ν=0.954X5.76X1.9=10. 4 twhere rc is the degree of buckling stress and ν is the buckling safety factor.

また、撓みを5mm許容した状態で鋼管構造部材2を降
伏させるとすると、第9図に示した力の釣り合いから、
横力PLは、2XP、Xtanθ= 2 x17.3x
o、5/101.5 =0.17tとなる。
Furthermore, if the steel pipe structural member 2 is allowed to bend by 5 mm, then from the balance of forces shown in Fig. 9,
Lateral force PL is 2XP, Xtanθ=2 x17.3x
o, 5/101.5 = 0.17t.

要するに、0.171ン程度の横方向の拘束力、すなわ
ち、鋼管構造部材2が5mm変形したときに曲げ抵抗鋼
管3から0.17 トンの反力が働けば、この二重鋼管
型構造部材1は座屈しないで変形し続けるようになる。
In short, if a lateral restraining force of about 0.171 tons, that is, a reaction force of 0.17 tons from the bending resistance steel pipe 3 when the steel pipe structural member 2 is deformed by 5 mm, this double steel pipe structural member 1 will continue to deform without buckling.

次に、第3図および第9図を参照して、曲げ抵抗鋼管3
の必要とする断面二次モーメントI3を求める。なお、
変形量δと断面二次モーメントlzとの関係は、 δ−P L×12 ”/48E X I 3であり、各
数値を代入すると、 0.5 =O,1,7X203’/48x2]00x 
I 3すなわち、I3は28.2cm’となる。この計
算結果から、曲げ抵抗鋼管3の断面二次モーメントlz
は、鋼管構造部材2の23.7crn’の20%増程度
でよいことが分かる。
Next, with reference to FIGS. 3 and 9, the bending resistance steel pipe 3
Find the required moment of inertia I3. In addition,
The relationship between the amount of deformation δ and the moment of inertia lz is δ-PL×12”/48E
I3, that is, I3 is 28.2 cm'. From this calculation result, the moment of inertia lz of the bending resistance steel pipe 3
It can be seen that approximately 20% increase from 23.7 crn' of the steel pipe structural member 2 is enough.

また、降伏応力σヶ=3.Ot/cn+2と仮定して、
曲げ抵抗鋼管3が弾性域にあるために必要な断面係数Z
、は、σ、 −M/Z、の関係から、3.0  =0.
17X203 /(Z、X 4 )すなわち、Z、=2
.37cm3となる。この場合の曲げ抵抗鋼管3の断面
係数73は、鋼管構造部材3の断面係数22より小さく
てもよいことが分かる。
Also, yield stress σ = 3. Assuming Ot/cn+2,
Necessary section modulus Z for the bending resistance steel pipe 3 to be in the elastic region
, is 3.0 = 0. from the relationship σ, −M/Z.
17X203 / (Z, X 4 ), that is, Z, = 2
.. It becomes 37cm3. It can be seen that the section modulus 73 of the bending resistance steel pipe 3 in this case may be smaller than the section modulus 22 of the steel pipe structural member 3.

以上の考察から、曲げ抵抗鋼管3は鋼管構造部材2に比
べて寸法的に大きなものである必要がなく、二重鋼管型
構造部材1の曲げ抵抗鋼管として充分に成り立つもので
ある。
From the above considerations, the bending resistant steel pipe 3 does not need to be dimensionally larger than the steel pipe structural member 2, and can be sufficiently used as the bending resistant steel pipe of the double steel pipe type structural member 1.

なお、通常、二重鋼管型構造部材1における鋼管構造部
材2は、その断面蹄状後に第10図もしくは第11図に
示すような提灯座屈12を起こして最大耐力に至るが、
降伏直後から提灯座屈12に至るまでには、大きな変形
量が得られる。この場合、提灯座屈直前で鋼管構造部材
2の全長の1%程度の縮み変形(上記した寸法の鋼管構
造部材では約20mm )が可能である。そして、上述
の曲げ抵抗鋼管3は鋼管構造部材2の提灯座屈の起こる
方向を常に軸対称形で外側方向もしくは内側方向へ誘導
することになり、その変形は極めて安定したものとなる
。それ故に、第12図に示したような曲げ変形13が起
こって腰折れ状態となることはなく、耐力が急激に低下
することがない。そのような安定した変形によってトラ
ス構成物も大きく変形するが、直ちに倒壊するようなこ
とはなく、その大きな変形に気付いて構造物外へ避難す
る時間を確保することができる。
Normally, the steel pipe structural member 2 of the double steel pipe type structural member 1 undergoes lantern buckling 12 as shown in FIG. 10 or FIG. 11 after its hoof-shaped cross section and reaches its maximum yield strength.
A large amount of deformation is obtained immediately after yielding until the lantern buckles 12. In this case, it is possible for the steel pipe structural member 2 to shrink by about 1% of the total length (approximately 20 mm for a steel pipe structural member having the above dimensions) just before the lantern buckles. The bending resistance steel pipe 3 described above always guides the direction in which lantern buckling of the steel pipe structural member 2 occurs outward or inward in an axially symmetrical manner, and its deformation becomes extremely stable. Therefore, the bending deformation 13 as shown in FIG. 12 does not occur and the bending condition does not occur, and the yield strength does not suddenly decrease. Due to such stable deformation, the truss structure is also greatly deformed, but it does not collapse immediately, and it is possible to secure time to notice the large deformation and evacuate from the structure.

ところで、第8図に示したように、曲げ抵抗鋼管3の全
長!3を、鋼管構造部材2が軸方向に塑性変形するとき
許容される予め決められた軸方向設定変形製β(=β/
2+β/2)だけ、鋼管構造部材2の全長12より短く
しておく。このようにすれば、鋼管構造部材2が軸方向
設定変形製βだけ変形した後は、二重鋼管型構造部材1
に作用する軸方向の圧縮力を、鋼管構造部材2の耐力と
曲げ抵抗鋼管3の耐力との総合力で対抗させることがで
きる。
By the way, as shown in Fig. 8, the total length of the bending resistance steel pipe 3! 3 is a predetermined axially set deformation β (=β/
2+β/2) shorter than the total length 12 of the steel pipe structural member 2. In this way, after the steel pipe structural member 2 is deformed by the axially set deformation β, the double steel pipe structural member 1
The compressive force in the axial direction acting on the steel pipe can be counteracted by the combined force of the proof stress of the steel pipe structural member 2 and the proof stress of the bending resistant steel pipe 3.

すなわち、曲げ抵抗鋼管3による鋼管構造部材2の撓み
を防止している状態で、鋼管構造部材2が断面降伏する
と、第10図や第11図に表したように、曲げ抵抗鋼管
3に拘束されて軸対称形した提灯座屈12を起こしなが
ら、鋼管構造部材2はその最大耐力に至る。その最大耐
力を越えて、鋼管構造部材2が軸方向設定変形製βだけ
変形すれ・ば、その後の圧縮力は曲げ抵抗鋼管3にも及
び、鋼管構造部材2の耐力および曲げ抵抗鋼管3の耐力
とで対抗される。その結果、二重鋼管型構造部材1の実
質的な耐力上昇効果が発揮され、トラス構造物の安全性
がより高く確保される。
In other words, if the steel pipe structural member 2 yields in cross section while the bending resistant steel pipe 3 is preventing the steel pipe structural member 2 from bending, it will be restrained by the bending resistant steel pipe 3 as shown in FIGS. 10 and 11. The steel pipe structural member 2 reaches its maximum strength while causing the axially symmetrical lantern buckling 12. If the steel pipe structural member 2 deforms by the axially set deformation β exceeding its maximum proof stress, the subsequent compressive force will also reach the bending resistance steel pipe 3, and the proof stress of the steel pipe structural member 2 and the proof stress of the bending resistance steel pipe 3 will increase. It is countered with. As a result, the effect of substantially increasing the yield strength of the double steel tube type structural member 1 is exhibited, and the safety of the truss structure is further ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋼管構造部材に曲げ抵抗鋼管を内挿した場合の
二重鋼管型構造部材の水平配置状態における縦断面図、
第2図は第1図における横断面図、第3図は弾性座屈状
態にある二重鋼管型構造部材の断面図、第4図は異なる
形状の鋼管構造部材が採用された二重鋼管型構造部材の
横断面図、第5図は鋼管構造部材に曲げ抵抗細管を外挿
した場合の二重鋼管型構造部材の縦断面図、第6図は二
重鋼管型構造部材が部分的に、採用されたトラス構造物
の全体模式図、第7図は第6図の要部拡大図、第8図は
エンド部材を有する鋼管構造部材に曲げ抵抗鋼管を内挿
した二重鋼管型構造部材の断面図、第9図は座屈状態に
おける横方向の撓みに対抗する横力を計算するための鋼
管構造部材の模式図、第10図および第11図は提灯座
屈を模式的に示した二重鋼管型構造部材の部分断面図、
第12図は曲げ変形した構造部材の模式図、第13図は
単管の座屈荷重に対する軸方向変形量を表すグラフであ
る。 1−二重鋼管型構造部材、2−・−鋼管構造部材、2m
−一管軸線、3・−曲げ抵抗鋼管、P−・・軸方向の圧
縮力、α−隙間、β−軸方向設定変形長。 特許出願人   川鉄建材工業株式会社代理人 弁理士
 吉村 勝俊(ほか1名)第 図 第 図 第10 図 第 図 第11 図
Fig. 1 is a vertical cross-sectional view of a double steel pipe type structural member in a horizontally arranged state when a bending resistance steel pipe is inserted into the steel pipe structural member;
Figure 2 is a cross-sectional view of Figure 1, Figure 3 is a cross-sectional view of a double steel pipe type structural member in an elastic buckling state, and Figure 4 is a double steel pipe type structure in which steel pipe structural members of different shapes are adopted. A cross-sectional view of a structural member, FIG. 5 is a longitudinal cross-sectional view of a double steel pipe type structural member when a bending resistance thin tube is extrapolated to a steel pipe structural member, and FIG. 6 is a vertical cross-sectional view of a double steel pipe type structural member partially An overall schematic diagram of the adopted truss structure, Figure 7 is an enlarged view of the main part of Figure 6, and Figure 8 is a double steel pipe type structural member in which a bending resistance steel pipe is inserted into a steel pipe structural member having an end member. 9 is a schematic diagram of a steel pipe structural member for calculating the lateral force that opposes lateral deflection in a buckled state. Figures 10 and 11 are two diagrams schematically showing lantern buckling. A partial cross-sectional view of a heavy steel pipe type structural member,
FIG. 12 is a schematic diagram of a structural member that has undergone bending deformation, and FIG. 13 is a graph showing the amount of axial deformation of a single pipe with respect to the buckling load. 1-Double steel pipe structural member, 2-・-Steel pipe structural member, 2m
- one pipe axis, 3 - bending resistance steel pipe, P - axial compressive force, α - clearance, β - axial direction set deformation length. Patent applicant Kawatetsu Kenzai Kogyo Co., Ltd. Agent Patent attorney Katsutoshi Yoshimura (and one other person) Figure 10 Figure 11

Claims (4)

【特許請求の範囲】[Claims] (1)鋼構造物を形成するトラスに用いられる鋼管構造
部材において、 上記鋼管構造部材に作用する軸方向の圧縮力が伝わらな
いようにその鋼管構造部材に対して自由状態にある曲げ
抵抗鋼管が、上記鋼管構造部材に嵌挿され、 前記曲げ抵抗鋼管は、上記鋼管構造部材と対面する隙間
が可及的に小さくなるように、鋼管構造部材に近接して
配置され、 上記鋼管構造部材に軸方向の圧縮力が作用してその鋼管
構造部材が変形しはじめたとき、その鋼管構造部材がそ
の管軸線に対して直角方向へ撓むのを、前記曲げ抵抗鋼
管によって抑制することができるようにしたことを特徴
とするトラス用二重鋼管型構造部材。
(1) In a steel pipe structural member used in a truss forming a steel structure, a bending resistant steel pipe is placed in a free state with respect to the steel pipe structural member so that the axial compressive force acting on the steel pipe structural member is not transmitted. , the bending resistance steel pipe is fitted into the steel pipe structural member, and the bending resistance steel pipe is disposed close to the steel pipe structural member so that the gap facing the steel pipe structural member is as small as possible; When the steel pipe structural member begins to deform due to compressive force in the direction, the bending resistant steel pipe can suppress the bending of the steel pipe structural member in a direction perpendicular to the pipe axis. A double steel pipe type structural member for truss, which is characterized by:
(2)前記曲げ抵抗鋼管は上記鋼管構造部材に内挿され
ていることを特徴とする請求項1に記載のトラス用二重
鋼管型構造部材。
(2) The double steel pipe structural member for a truss according to claim 1, wherein the bending resistance steel pipe is inserted into the steel pipe structural member.
(3)前記曲げ抵抗鋼管は上記鋼管構造部材に外挿され
ていることを特徴とする請求項1に記載のトラス用二重
鋼管型構造部材。
(3) The double steel pipe structural member for a truss according to claim 1, wherein the bending resistance steel pipe is extrapolated onto the steel pipe structural member.
(4)前記曲げ抵抗鋼管の全長は、前記鋼管構造部材が
軸方向に塑性変形するとき許容される予め決められた軸
方向設定変形長だけ、鋼管構造部材の全長より短くされ
、 上記鋼管構造部材が前記軸方向設定変形長だけ縮んだ後
に、鋼管構造部材の耐力と曲げ抵抗鋼管の耐力とで、軸
方向の圧縮力に対抗させることができるようにしたこと
を特徴とする請求項1、請求項2もしくは請求項3に記
載のトラス用二重鋼管型構造部材。
(4) The total length of the bending resistance steel pipe is made shorter than the total length of the steel pipe structural member by a predetermined axially set deformation length that is allowed when the steel pipe structural member undergoes plastic deformation in the axial direction, and the steel pipe structural member After shrinking by the set deformation length in the axial direction, the compressive force in the axial direction can be counteracted by the proof stress of the steel pipe structural member and the proof stress of the bending resistant steel pipe. The double steel pipe type structural member for a truss according to claim 2 or 3.
JP2274452A 1990-10-12 1990-10-12 Double steel pipe type structural member for truss Expired - Fee Related JPH0742759B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2274452A JPH0742759B2 (en) 1990-10-12 1990-10-12 Double steel pipe type structural member for truss
DE19914133203 DE4133203C2 (en) 1990-10-12 1991-10-07 Truss girder for steel construction trusses with a tubular steel construction part
GB9121600A GB2248862A (en) 1990-10-12 1991-10-11 Structural member resistant to buckling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2274452A JPH0742759B2 (en) 1990-10-12 1990-10-12 Double steel pipe type structural member for truss

Publications (2)

Publication Number Publication Date
JPH04149345A true JPH04149345A (en) 1992-05-22
JPH0742759B2 JPH0742759B2 (en) 1995-05-10

Family

ID=17541890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2274452A Expired - Fee Related JPH0742759B2 (en) 1990-10-12 1990-10-12 Double steel pipe type structural member for truss

Country Status (3)

Country Link
JP (1) JPH0742759B2 (en)
DE (1) DE4133203C2 (en)
GB (1) GB2248862A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097090A (en) * 2001-09-19 2003-04-03 Matsushita Electric Works Ltd Pole with collapse preventing function
JP2008095500A (en) * 2008-01-04 2008-04-24 Jfe Techno Research Corp Foundation structure of steel pipe pole
JP2009221755A (en) * 2008-03-17 2009-10-01 Takenaka Komuten Co Ltd Building
KR20150036625A (en) 2012-07-30 2015-04-07 제이에프이 시빌 가부시키가이샤 A pin joint type structural member made of double steel pipe for restaining buckling therrof
JP2019052416A (en) * 2017-09-12 2019-04-04 大和ハウス工業株式会社 Steel pole

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2652506B2 (en) * 1993-06-04 1997-09-10 川鉄建材株式会社 Double steel pipe type structural member for truss structure
DE9416928U1 (en) * 1994-10-20 1995-01-12 Bima Industrie-Service GmbH, 68199 Mannheim Telescopic sliding grille with saw protection
GB2299103B (en) * 1995-03-24 1998-11-11 Euro Stress Ltd Strut
DE19713195A1 (en) * 1997-03-27 1998-10-01 Voith Sulzer Papiermasch Gmbh Papermaking machine carrier beam
DE19741262A1 (en) * 1997-09-19 1999-03-25 Bayerische Motoren Werke Ag Hollow holder with interior reinforcement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976379A (en) * 1982-10-21 1984-05-01 三菱重工業株式会社 Earthquake-proof brace structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB594186A (en) * 1945-06-27 1947-11-05 Reginald Hugh Faro Tubes for structural purposes
US3981114A (en) * 1975-06-13 1976-09-21 General Motors Corporation Energy absorbing permanently deformable collapsible column
FR2481343A1 (en) * 1980-04-24 1981-10-30 Brochard Francois Xavier PROCESS FOR THE MANUFACTURE OF A BEAM, FROM HOLLOW ASSEMBLIES FITTED INTO ONE ANOTHER, AND "ISO-BEAM" THUS OBTAINED
ATE29267T1 (en) * 1981-06-19 1987-09-15 Karl S Koller LOAD-BEARING LOAD SUPPORT AND METHODS OF DESIGNING SUCH SUPPORT TO WITHSTAND CYCLIC LOADS ABOVE ITS LOAD LIMIT.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976379A (en) * 1982-10-21 1984-05-01 三菱重工業株式会社 Earthquake-proof brace structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097090A (en) * 2001-09-19 2003-04-03 Matsushita Electric Works Ltd Pole with collapse preventing function
JP4590810B2 (en) * 2001-09-19 2010-12-01 パナソニック電工株式会社 Pole with collapse prevention function
JP2008095500A (en) * 2008-01-04 2008-04-24 Jfe Techno Research Corp Foundation structure of steel pipe pole
JP4629114B2 (en) * 2008-01-04 2011-02-09 Jfeテクノリサーチ株式会社 Steel pipe column base structure
JP2009221755A (en) * 2008-03-17 2009-10-01 Takenaka Komuten Co Ltd Building
KR20150036625A (en) 2012-07-30 2015-04-07 제이에프이 시빌 가부시키가이샤 A pin joint type structural member made of double steel pipe for restaining buckling therrof
JP2019052416A (en) * 2017-09-12 2019-04-04 大和ハウス工業株式会社 Steel pole

Also Published As

Publication number Publication date
GB2248862A (en) 1992-04-22
DE4133203A1 (en) 1992-04-16
GB9121600D0 (en) 1991-11-27
JPH0742759B2 (en) 1995-05-10
DE4133203C2 (en) 1996-10-17

Similar Documents

Publication Publication Date Title
JPH04149345A (en) Double steel pipe type structure member for truss
JP2652506B2 (en) Double steel pipe type structural member for truss structure
JPH09221830A (en) Brace material and structure for fitting brace material to building
JP5021246B2 (en) Buckling stiffening brace
JP2007224575A (en) Triple pipe seismic control brace
WO2014021297A1 (en) Pin-joint-shaped double steel pipe buckling restraining structural member
JP2711994B2 (en) Double tube type structural member for space truss
JPH1136444A (en) Unbonded brace
JPH09221871A (en) Brace material, structure for fitting brace material to structural system, and manufacture of brace material
JP2008019632A (en) Buckling stiffening brace
JP2515253Y2 (en) Joining device for structural members with stress limiting element
JPH07324378A (en) Unbonded steel brace
JP3656346B2 (en) Seismic isolation column
JP3702363B2 (en) Articulated earthquake-resistant structural material
JP7492625B1 (en) Strength design method for buckling-restrained braces and filling materials
JP2000045395A (en) Connection type single pipe type structural member
JP2006299577A (en) Gap adjusted triple pipe damping brace
JP2006028737A (en) Triple pipe vibration control brace having length adjusting mechanism
JP2024083696A (en) Buckling-restrained bracing members, frame structure
JP2544851Y2 (en) Composite structural members
JPH05141042A (en) Steel-pipe concrete pole
JP3663561B2 (en) Steel beam
JP2005320688A (en) Seismic response control brace and architectural structure using this brace
JP2023146180A (en) steel beam
JP2000073460A (en) Bracing member

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees