JPH0742759B2 - Double steel pipe type structural member for truss - Google Patents

Double steel pipe type structural member for truss

Info

Publication number
JPH0742759B2
JPH0742759B2 JP2274452A JP27445290A JPH0742759B2 JP H0742759 B2 JPH0742759 B2 JP H0742759B2 JP 2274452 A JP2274452 A JP 2274452A JP 27445290 A JP27445290 A JP 27445290A JP H0742759 B2 JPH0742759 B2 JP H0742759B2
Authority
JP
Japan
Prior art keywords
steel pipe
structural member
bending
deformation
truss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2274452A
Other languages
Japanese (ja)
Other versions
JPH04149345A (en
Inventor
克彦 今井
Original Assignee
川鉄建材工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川鉄建材工業株式会社 filed Critical 川鉄建材工業株式会社
Priority to JP2274452A priority Critical patent/JPH0742759B2/en
Priority to DE19914133203 priority patent/DE4133203C2/en
Priority to GB9121600A priority patent/GB2248862A/en
Publication of JPH04149345A publication Critical patent/JPH04149345A/en
Publication of JPH0742759B2 publication Critical patent/JPH0742759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/32Columns; Pillars; Struts of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/06Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/38Arched girders or portal frames
    • E04C3/40Arched girders or portal frames of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0408Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
    • E04C2003/0413Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section being built up from several parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0426Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section
    • E04C2003/043Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section the hollow cross-section comprising at least one enclosed cavity
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0447Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section circular- or oval-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0465Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section square- or rectangular-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0486Truss like structures composed of separate truss elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0486Truss like structures composed of separate truss elements
    • E04C2003/0491Truss like structures composed of separate truss elements the truss elements being located in one single surface or in several parallel surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はトラス用二重鋼管型構造部材に係り、詳しく
は、トラス構造やすじかい構造を形成するため使用され
る長尺な鋼管よりなる構造部材の弾塑性座屈を抑制する
と共に、軸方向への塑性変形量を大きくすることができ
るようにした二重鋼管型の構造部材に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a double steel pipe type structural member for a truss, and more particularly, to a long steel pipe used for forming a truss structure or a stiff structure. The present invention relates to a double steel pipe type structural member capable of suppressing the elastic-plastic buckling of the structural member and increasing the amount of plastic deformation in the axial direction.

〔従来の技術〕[Conventional technology]

長尺な鋼管からなる構造部材を多数使用して大きい構造
物を構築する場合には、トラス構造やすじかい構造を採
用することが多い。例えば、地震などの動的な外力に基
づく軸方向の圧縮力に耐えることができるトラス構造を
設計する場合、構造部材の性能としては、座屈する前に
耐力を保持して十分変形できることが理想的である。す
なわち、鋼管が座屈すれば、その耐力が一般的には急激
に低下するからである。したがって、座屈耐力以下の力
に基づいて構造部材が設計されたり、鋼管内にスティフ
ナを取り付けて補強したりすることになるが、その場合
には、動的な外力に対して構造部材は弾性応答となる。
その結果、構造部材の塑性変形を利用する場合に比べ
て、大きい設計応力を想定しておかなければならない。
When a large structure is constructed by using a large number of structural members made of long steel pipes, a truss structure or a fine structure is often adopted. For example, when designing a truss structure that can withstand an axial compressive force based on a dynamic external force such as an earthquake, the ideal performance of structural members is to maintain the yield strength before buckling and to be sufficiently deformed. Is. That is, if the steel pipe buckles, its yield strength generally decreases rapidly. Therefore, structural members are designed based on the force below the buckling resistance, or stiffeners are installed in the steel pipe to reinforce, but in that case, the structural members are elastic against dynamic external force. It will be a response.
As a result, a large design stress must be assumed in comparison with the case where the plastic deformation of the structural member is used.

また、トラス構造に類似するすじかい構造においても、
圧縮すじかいを弾性領域に保持しようとすると、地震が
あった場合などにはすじかいに大きな応力が発生するこ
とになり、隣接する柱や梁に非常に大きな力が作用し
て、設計上不可能となることがしばしばある。なお、圧
縮すじかいの座屈後の耐力を評価して設計する方法もあ
るが、座屈後の急激な耐力低下を適切に評価して、トラ
ス構造物に所要の耐震性能を付与することは、現在の技
術レベルでは容易でない。
In addition, even in the squid structure similar to the truss structure,
If an attempt is made to hold the compression line in the elastic region, a large stress will be generated in the line in the event of an earthquake, and a very large force will be applied to the adjacent columns or beams, resulting in a design failure. Often possible. Although there is also a method of designing by evaluating the proof stress after buckling of the compression strands, it is not possible to properly evaluate the sudden decrease in proof stress after buckling and to provide the truss structure with the required seismic performance. , It is not easy at the current technical level.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

そこで、本発明者は特開平3−199560号公報において、
鋼管の座屈耐力より小さい外力で塑性変形する脆弱部を
左右端部に形成させた構造部材を提案した。これにおい
ては、所定以上の軸方向圧縮力が作用すると、左右端部
の脆弱部が塑性変形することを、意図的に許容するよう
にしている。
Therefore, the inventor of the present invention discloses in Japanese Patent Laid-Open No. 3-199560.
We proposed a structural member in which fragile parts that are plastically deformed by an external force smaller than the buckling strength of steel pipe are formed at the left and right ends. In this case, it is intentionally permitted to plastically deform the fragile portions at the left and right ends when an axial compression force of a predetermined value or more is applied.

鋼管などの単管を用いた圧縮材では、一般的に第11図の
実線で示すごとく、座屈理論による座屈荷重を越えると
急激に耐力を失い、その変形量は極めて小さい。一方、
上記した脆弱部を設けた構造部材では、破線で示す方向
に向けて、鋼管の軸方向変形量を大きくすることができ
る。しかし、長尺な鋼管の全長にわたって塑性変形させ
るというものではないので、構造部材の変形量には限界
がある。また、その脆弱部を形成させるために鋼管端部
に複雑でコストの高い機構を採用しなければならない問
題がある。
In the case of a compressed material using a single pipe such as a steel pipe, generally, as shown by the solid line in Fig. 11, when the buckling load according to the buckling theory is exceeded, the yield strength is rapidly lost and the amount of deformation is extremely small. on the other hand,
In the structural member provided with the fragile portion, the amount of axial deformation of the steel pipe can be increased in the direction indicated by the broken line. However, there is a limit to the amount of deformation of the structural member because it is not to plastically deform the entire length of a long steel pipe. In addition, there is a problem that a complicated and costly mechanism must be adopted at the end of the steel pipe to form the fragile portion.

本発明は上記の問題に鑑みなされたもので、その目的
は、複雑な形状の脆弱部を設けることなく安価に構造部
材を製作できること、長尺な構造部材の座屈による横撓
みを容易に抑制して、軸方向変形量を極めて大きくする
ことができること、トラス構造物を構成する構造部材の
うち所要の構造部材にのみ大変形を許容させるべく簡便
に対処させることができること、それによって、大規模
地震時に鋼構造物が急激に倒壊するのを抑制してラーメ
ン構造のような塑性変形による大きな耐震性を付与する
ことができること、さらには、軸力を負担する構造部材
の座屈荷重を越えても、大きい耐力でもって軸方向の圧
縮力に耐えることができるようにすることを実現するト
ラス用二重鋼管型構造部材を提供することである。
The present invention has been made in view of the above problems, and an object thereof is to be able to manufacture a structural member at low cost without providing a weak portion having a complicated shape, and to easily suppress lateral bending due to buckling of a long structural member. Therefore, the amount of axial deformation can be made extremely large, and it is possible to easily deal with only the required structural members of the structural members that make up the truss structure, so that large-scale deformation can be achieved. It is possible to suppress the rapid collapse of steel structures during an earthquake and to provide great earthquake resistance due to plastic deformation such as a rigid frame structure, and to exceed the buckling load of structural members that bear axial force. Another object of the present invention is to provide a double steel pipe type structural member for a truss that realizes the ability to withstand a compressive force in the axial direction with a large proof stress.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、鋼構造物を形成するトラスに用いられる鋼管
構造部材に適用される。その特徴とするところは、例え
ば第1図を参照して、鋼管構造部材2に作用する軸方向
の圧縮力Pが伝わらないようにその鋼管構造部材2に対
して自由状態にある曲げ抵抗鋼管3が,鋼管構造部材2
に内挿され、その曲げ抵抗鋼管3が、鋼管構造部材2と
対面する隙間αを可及的に小さくなるように、鋼管構造
部材2に近接して配置されていることである。
The present invention is applied to a steel pipe structural member used for a truss forming a steel structure. The characteristic point is, for example, referring to FIG. 1, a bending resistance steel pipe 3 which is in a free state with respect to the steel pipe structural member 2 so that an axial compressive force P acting on the steel pipe structural member 2 is not transmitted. But steel pipe structural member 2
The bending resistance steel pipe 3 is inserted into the steel pipe structural member 2 so as to minimize the gap α facing the steel pipe structural member 2 as much as possible.

なお、第7図に示すように、曲げ抵抗鋼管3の全長l
3を、鋼管構造部材2が軸方向に塑性変形するとき許容
される予め決められた軸方向設定変形長βだけ、鋼管構
造部材2の全長l2より短くしておくとよい。
As shown in FIG. 7, the total length l of the bending resistance steel pipe 3
It is preferable that the length 3 of the steel pipe structural member 2 is shorter than the total length l 2 of the steel pipe structural member 2 by a predetermined axially set deformation length β that is allowable when the steel pipe structural member 2 is plastically deformed in the axial direction.

〔作用〕[Action]

鋼管構造部材2に軸方向の圧縮力Pが作用し、それが座
屈をはじめて管軸線2mに対して直角方向へ撓みが生じて
も、その圧縮力が伝わらない内挿された曲げ抵抗鋼管3
による拘束力で、鋼管構造部材2の撓み変形が規制され
る。したがって、鋼管構造部材2は塑性変形をはじめて
も軸方向へのみ変形する。その変形量は大きくかつ安定
しており、二重鋼管型構造部材1の採用されたトラス構
造物4(第5図参照)では急激な倒壊が回避される。鋼
管構造部材2が塑性変形しても、内方への変形を阻止す
る曲げ抵抗鋼管3によって鋼管構造部材2の座屈変形は
外方に膨らむ軸対称的な提灯座屈12(例えば第9図参
照)に誘導され、その変形も安定したものとなって、鋼
管構造部材2が腰折れするような曲がり変形座屈の発生
は防止される。
Even if an axial compressive force P acts on the steel pipe structural member 2 and it begins to buckle and bends in a direction perpendicular to the pipe axis 2 m, the compressive force is not transmitted.
The bending force of the steel pipe structural member 2 is restricted by the restraining force of Therefore, the steel pipe structural member 2 is deformed only in the axial direction even when plastic deformation starts. The amount of deformation is large and stable, and in the truss structure 4 (see FIG. 5) in which the double steel pipe type structural member 1 is adopted, abrupt collapse is avoided. Even if the steel pipe structural member 2 is plastically deformed, the buckling deformation of the steel pipe structural member 2 is swelled outward by the bending resistance steel pipe 3 which prevents the steel pipe structural member 2 from deforming inward. (Refer to FIG. 3), the deformation becomes stable, and the bending deformation buckling such that the steel pipe structural member 2 bends at the waist is prevented.

曲げ抵抗鋼管3の全長l3を、鋼管構造部材2が軸方向に
塑性変形するとき許容される予め決められた軸方向設定
変形長βだけ、鋼管構造部材2の全長l2より短くしてお
けば(第7図参照)、鋼管構造部材2が軸方向設定変形
長βだけ縮んだ後は、その軸方向の圧縮力が曲げ抵抗鋼
管3にも及び、結局は、鋼管構造部材2の耐力と曲げ抵
抗鋼管3の耐力との総合した力で、実質的に二重鋼管型
構造部材1の耐力を上昇させ、トラス構造物の安全をよ
り一層確保することができる。
Bending the entire length l 3 of the resistance steel tube 3, steel structural member 2 only axial setting deformation length β of predetermined acceptable when plastically deformed in the axial direction, Oke made shorter than the total length l 2 of the steel pipe structural member 2 For example (see FIG. 7), after the steel pipe structural member 2 contracts by the axially set deformation length β, the axial compressive force also reaches the bending resistance steel pipe 3, and eventually the yield strength of the steel pipe structural member 2 It is possible to substantially increase the proof stress of the double steel pipe type structural member 1 by the combined force of the proof stress of the bending resistant steel pipe 3 and further secure the safety of the truss structure.

〔発明の効果〕〔The invention's effect〕

本発明によれば、内挿された曲げ抵抗鋼管による曲げ変
形を拘束する作用によって、鋼管構造部材の撓みが抑制
されるので、鋼管構造部材の管軸線に対して直角方向へ
の変形の少ない状態で、大きな軸方向変形を起こさせる
ことができ、また、変形が進んだ時点で、局部的に大き
く塑性化した部分には軸対称形の提灯座屈を起こさせる
こともできる。したがって、鋼管構造部材の安定した塑
性変形が得られ、耐力低下の少ない大きな変形を持続さ
せ、トラス構造物が大きい外力を受けても、それで直ち
に倒壊するというようなことを防止することができる。
According to the present invention, since the bending of the steel pipe structural member is restrained from bending by the action of restraining the bending deformation by the inserted bending resistance steel pipe, the deformation of the steel pipe structural member in the direction perpendicular to the pipe axis is small. Thus, a large axial deformation can be caused, and at the time of the deformation, a locally symmetric lantern buckling can be caused in the locally largely plasticized portion. Therefore, a stable plastic deformation of the steel pipe structural member can be obtained, a large deformation with a small decrease in yield strength can be sustained, and even if the truss structure receives a large external force, it is possible to prevent the truss structure from immediately collapsing.

また、曲げ抵抗鋼管の全長を、軸方向の塑性変形量のほ
かに鋼管構造部材の提灯座屈変形量を見込んだ程度の長
さにしておけば、二重鋼管型構造部材の変形をさらに増
大させることができる。
In addition, if the total length of the bending resistance steel pipe is set to a length that allows for the amount of lantern buckling deformation of the steel pipe structural member in addition to the amount of plastic deformation in the axial direction, the deformation of the double steel pipe type structural member will be further increased. Can be made.

以上のような構成の二重鋼管型構造部材を製作するにつ
いては曲げ抵抗鋼管を内挿する程度でよく、安価で大変
可能なトラス用の構造部材を得ることができる。
In order to manufacture the double steel pipe type structural member having the above-mentioned structure, it is sufficient to insert a bending resistance steel pipe, and it is possible to obtain a structural member for a truss that is inexpensive and very feasible.

〔実施例〕〔Example〕

以下に、本発明をその実施例の図面を参照しながら、詳
細に説明する。第1図は、本発明が適用された鋼構造物
を形成する二重鋼管型構造部材1の断面図である。その
二重鋼管型構造部材1を構成する鋼管構造部材2には、
それに作用する軸方向の圧縮力Pが伝わらないようにそ
の鋼管構造部材2に対して自由状態にある曲げ抵抗鋼管
3が、第2図に示すように、鋼管構造部材2に予め内挿
されている。
Hereinafter, the present invention will be described in detail with reference to the drawings of the embodiments. FIG. 1 is a sectional view of a double steel pipe type structural member 1 forming a steel structure to which the present invention is applied. The steel pipe structural member 2 constituting the double steel pipe type structural member 1 includes
A bending resistance steel pipe 3 which is in a free state with respect to the steel pipe structural member 2 so as not to transmit an axial compressive force P acting thereon is preliminarily inserted in the steel pipe structural member 2 as shown in FIG. There is.

この曲げ抵抗鋼管3は鋼管構造部材2に対して何らの接
続もされておらず、したがって、曲げ抵抗鋼管3は鋼管
構造部材2の中に嵌め込まれているだけである。この曲
げ抵抗鋼管3は、圧縮力を受けた鋼管構造部材2が座屈
しはじめて、第3図に示すように横方向へ、すなわち、
管軸線2mに対して直角方向へ撓むのを抑制する曲げ抵抗
機能を発揮するものである。それ故に、曲げ抵抗鋼管3
は、鋼管構造部材2の撓みに抵抗することができる抵抗
を発揮するに相応しい断面形状と断面寸法が採用され
る。
This bend-resistant steel pipe 3 is not connected to the steel pipe structural member 2 at all, so that the bend-resistant steel pipe 3 is only fitted into the steel pipe structural member 2. The bending-resistant steel pipe 3 begins to buckle when the steel pipe structural member 2 that receives a compressive force begins to move laterally, that is, as shown in FIG.
It has a bending resistance function of suppressing bending in a direction perpendicular to the tube axis 2 m. Therefore, bending resistance steel pipe 3
Has a cross-sectional shape and a cross-sectional dimension suitable for exerting resistance capable of resisting the bending of the steel pipe structural member 2.

第1図に戻って、上記の鋼管構造部材2の内面2aと曲げ
抵抗鋼管3の外面3bとの隙間αは極めて小さくされてお
り、例えば外径60.5mmで厚み3.2mmの鋼管構造部材2に
対して、外径53.6mmといった曲げ抵抗鋼管3が採用され
る。すなわち、各隙間αは例えば0.25mmが確保されるよ
うになっていて、それ故に、鋼管構造部材2の内径と曲
げ抵抗鋼管3の外径との差は0.5mmとしている。
Returning to FIG. 1, the gap α between the inner surface 2a of the steel pipe structural member 2 and the outer surface 3b of the bending resistant steel pipe 3 is extremely small. For example, in the steel pipe structural member 2 having an outer diameter of 60.5 mm and a thickness of 3.2 mm. On the other hand, a bending resistance steel pipe 3 having an outer diameter of 53.6 mm is adopted. That is, for example, 0.25 mm is secured for each gap α, and therefore, the difference between the inner diameter of the steel pipe structural member 2 and the outer diameter of the bending resistant steel pipe 3 is 0.5 mm.

このように小さい径差とされているのは、曲げ抵抗鋼管
3を鋼管構造部材2に内挿することが容易に行えるよう
にするためである。それに加えて、後述するように、圧
縮力Pによって鋼管構造部材2が座屈荷重を受けると、
鋼管構造部材2が降伏して第3図のように横方向へ変形
していくとき、曲げ抵抗鋼管3が軸方向の力を受けるこ
となく完全な曲げ抑止材として機能し、かつ、鋼管構造
部材2の横方向変位を直ちに拘束することができるよう
にするためである。
The reason why the diameter difference is small in this way is that the bending resistant steel pipe 3 can be easily inserted into the steel pipe structural member 2. In addition, as described later, when the steel pipe structural member 2 receives a buckling load due to the compressive force P,
When the steel pipe structural member 2 yields and is deformed in the lateral direction as shown in FIG. 3, the bending resistant steel pipe 3 functions as a complete bending restraint member without receiving an axial force, and the steel pipe structural member This is because the lateral displacement of 2 can be immediately restrained.

ちなみに、曲げ抵抗鋼管3として引抜鋼管を採用してお
けば、その所要の寸法を得るための加工も容易である。
なお、鋼管構造部材2は例えば第4図に示したように矩
形でもよく、円形の曲げ抵抗鋼管3との間に隙間αが確
保されていればよい。
By the way, if a drawn steel pipe is adopted as the bending resistance steel pipe 3, the work for obtaining the required dimension is easy.
The steel pipe structural member 2 may be rectangular as shown in FIG. 4, for example, as long as a gap α is secured between the steel pipe structural member 2 and the circular bending resistance steel pipe 3.

ところで、第1図の二重鋼管型構造部材1は、第5図に
示すトラス構造物4において実線二本で表した例えば片
側三箇所の構造部材5,5に適用され、破線二本で表した
構造部材6や他の一本線で表した構造部材7,8には必ず
しも適用する必要がない。すなわち、地震などによる外
力がトラス構造物4に作用した場合には、構造部材5,5
における応力が極めて大きくなり、少なくとも所要の構
造部材にのみ対処させれば充分であるからである。
By the way, the double steel pipe type structural member 1 of FIG. 1 is applied to, for example, the structural members 5 and 5 at three positions on one side, which are represented by two solid lines in the truss structure 4 shown in FIG. 5, and are represented by two broken lines. It is not always necessary to apply to the structural member 6 described above or the structural members 7 and 8 represented by other single lines. That is, when an external force such as an earthquake acts on the truss structure 4, the structural members 5, 5
This is because the stress in (1) becomes extremely large, and it is sufficient to deal with at least required structural members.

ちなみに、曲げ抵抗鋼管3は鋼管構造部材2の全長にわ
たって嵌挿する必要はなく、第6図に示すように、一つ
の水平な長い構造部材5のうち座屈の対象となる部位に
のみ曲げ抵抗鋼管3を介在させておけばよい。この場合
には、曲げ抵抗鋼管3を所望の位置に保持させるため
に、曲げ抵抗鋼管3のいずれかの一点9を鋼管構造部材
2に予め溶接しておけばよい。一点での接続であれば、
鋼管構造部材2に作用した軸方向の圧縮力Pが曲げ抵抗
鋼管3の軸方向に及ぶことはない。
By the way, the bending resistance steel pipe 3 does not need to be fitted over the entire length of the steel pipe structural member 2, and as shown in FIG. 6, only one portion of the horizontal long structural member 5 which is subject to buckling resists the bending resistance. The steel pipe 3 may be interposed. In this case, in order to hold the bending resistant steel pipe 3 at a desired position, any one point 9 of the bending resistant steel pipe 3 may be welded to the steel pipe structural member 2 in advance. If it is a single point connection,
The axial compressive force P acting on the steel pipe structural member 2 does not extend in the axial direction of the bending resistant steel pipe 3.

ところで、鋼管構造部材2が第7図に示すような端部ネ
ジ機構10を有するエンド部材11を備え、図示しないネジ
を用いて鋼管構造部材2,2を相互に接続するような場合
には、曲げ抵抗鋼管3を鋼管構造部材2に内挿した後、
エンド部材11,11を溶接によって鋼管構造部材2の先端
部に取り付けるようにすればよい。
By the way, in the case where the steel pipe structural member 2 is provided with the end member 11 having the end screw mechanism 10 as shown in FIG. 7 and the steel pipe structural members 2, 2 are mutually connected by using a screw (not shown), After inserting the bending resistance steel pipe 3 into the steel pipe structural member 2,
The end members 11, 11 may be attached to the tip of the steel pipe structural member 2 by welding.

このように構成された二重鋼管型構造部材1を採用した
トラス構造物4に地震などによる外力で、第5図に示し
た実線二本の二重鋼管型構造部材1,1に軸方向の圧縮力
Pが作用すると、第3図のように、各鋼管構造部材2は
座屈をはじめて、その管軸線2mに対して直角方向へ撓
む。曲げ抵抗鋼管3は鋼管構造部材2に対して自由状態
にあることから、横方向の抵抗を発揮し、鋼管構造部材
2の撓みが抑制される。
The truss structure 4 that adopts the double steel pipe type structural member 1 configured as described above is applied to the double steel pipe type structural members 1 and 1 shown in FIG. When the compressive force P acts, as shown in FIG. 3, each steel pipe structural member 2 begins to buckle and bends in a direction perpendicular to the pipe axis 2 m. Since the bending resistance steel pipe 3 is in a free state with respect to the steel pipe structural member 2, the bending resistance steel pipe 3 exerts lateral resistance and the bending of the steel pipe structural member 2 is suppressed.

構造部材が例えば単なる一重管であれば、圧縮力を受け
て座屈をはじめるあたりは、単管が降伏するかしないか
の微妙なところにある。したがって、そのときの横方向
の変形と軸方向の変形とを一本の単管に負担させると、
その変形に耐える能力が小さくなる。しかし、上記した
ように、軸方向変形を鋼管構造部材2に負担させ、撓み
変形を曲げ抵抗鋼管3に負担させて、それぞれの負担を
分離させておくと、横方向の変形すなわち撓みを抑制し
ながら軸方向の変形を大きくすることができる。
If the structural member is, for example, a simple single pipe, there is a delicate point where the single pipe yields or not when it begins to buckle under a compressive force. Therefore, when the lateral deformation and the axial deformation at that time are applied to one single pipe,
The ability to withstand that deformation is reduced. However, as described above, when the axial deformation is applied to the steel pipe structural member 2 and the bending deformation is applied to the bending resistance steel pipe 3 to separate the respective loads, lateral deformation, that is, bending is suppressed. However, the axial deformation can be increased.

このような二重鋼管型構造部材1を構成させるには、曲
げ抵抗鋼管3を鋼管構造部材2に単に内挿させればよ
く、二重鋼管型構造部材1の製作は極めて容易となる。
また、必要とする部位だけに曲げ抵抗鋼管3を介在させ
ればよく、鋼管使用量の増大も抑制される。
In order to configure such a double steel pipe type structural member 1, it is sufficient to simply insert the bending resistance steel pipe 3 into the steel pipe structural member 2, and the production of the double steel pipe type structural member 1 becomes extremely easy.
Further, it is sufficient to interpose the bending resistance steel pipe 3 only in a necessary portion, and an increase in the amount of steel pipe used can be suppressed.

ここで、鋼管構造部材2の外径が60.5mm、肉厚が3.2m
m、断面積A2が5.76cm2、座屈応力σが3.0t/cm2、断面
二次モーメントI2が23.7cm4、断面係数Z2が7.84cm3、長
さl2が2,030mmであるときに、鋼管構造部材2が降伏し
ても座屈を起こさせないようにするための曲げ抵抗鋼管
3の断面積を計算する。なお、鋼管構造部材2は、その
細長比が100のかなり細長い構造部材であって、弾性座
屈するものとする。
Here, the outer diameter of the steel pipe structural member 2 is 60.5 mm, and the wall thickness is 3.2 m.
m, sectional area A 2 is 5.76 cm 2 , buckling stress σ y is 3.0 t / cm 2 , moment of inertia I 2 is 23.7 cm 4 , sectional modulus Z 2 is 7.84 cm 3 , and length l 2 is 2,030 mm. Then, the cross-sectional area of the bending-resistant steel pipe 3 for preventing buckling even if the steel pipe structural member 2 yields is calculated. The steel pipe structural member 2 is a considerably elongated structural member having a slenderness ratio of 100 and elastically buckles.

鋼管構造部材2の降伏軸力Pyは、 σ×A2=5.76×3.0=17.3(t) 鋼管構造部材2の座屈耐力Pcrは、 fc×A2×ν=0.954×5.76×1.9=10.4(t) ただし、fcは座屈応力度、νは座屈安全率である。The yield axial force P y of the steel pipe structural member 2 is σ y × A 2 = 5.76 × 3.0 = 17.3 (t) The buckling strength P cr of the steel pipe structural member 2 is f c × A 2 × ν = 0.954 × 5.76 × 1.9 = 10.4 (t) where f c is the buckling stress level and ν is the buckling safety factor.

また、撓みを5mm許容した状態で鋼管構造部材2を降伏
させるとすると、第8図に示した力の釣り合いから、横
力PLは、 2×Py×tanθ=2×17.3×0.5/101.5=0.17(t) となる。
Further, assuming that the steel pipe structural member 2 is yielded in a state where the bending is allowed to be 5 mm, the lateral force P L is 2 × P y × tan θ = 2 × 17.3 × 0.5 / 101.5 from the balance of forces shown in FIG. = 0.17 (t).

要するに、0.17トン程度の横方向の拘束力、すなわち、
鋼管構造部材2が5mm変形したときに曲げ抵抗鋼管3か
ら0.17トンの反力が働けば、この二重鋼管型構造部材1
は座屈しないで変形し続けるようになる。
In short, the lateral restraining force of about 0.17 tons, that is,
If a reaction force of 0.17 tons acts from the bending resistance steel pipe 3 when the steel pipe structural member 2 is deformed by 5 mm, this double steel pipe type structural member 1
Will not buckle and will continue to deform.

次に、第3図および第8図を参照して、曲げ抵抗鋼管3
の必要とする断面二次モーメントI3を求める。なお、変
形量δと断面二次モーメントI3との関係は、δ=PL×l3
/48E×I3であり、各数値を代入すると、 0.5=0.17×2033/48×2,100×I3 すなわち、I3は28.2cm4となる。この計算結果から、曲
げ抵抗鋼管3の断面二次モーメントI3は、鋼管構造部材
2の23.7cm4の20%増程度でよいことが分かる。
Next, referring to FIG. 3 and FIG. 8, the bending resistance steel pipe 3
Find the moment of inertia of area I 3 required by. The relationship between the deformation amount δ and the second moment of area I 3 is δ = P L × l 3
/ 48E is a × I 3, by substituting each value, 0.5 = 0.17 × 203 3/ 48 × 2,100 × I 3 i.e., I 3 becomes 28.2cm 4. From this calculation result, it is understood that the second moment of area I 3 of the bending resistant steel pipe 3 may be increased by about 20% of 23.7 cm 4 of the steel pipe structural member 2.

また、降伏応力σ=3.0t/cm2と仮定して、曲げ抵抗鋼
管3が弾性域にあるために必要な断面係数Z3は、σ
M/Z3の関係から、 3.0=0.17×203/(Z3×4) すなわち、Z3=2。87cm3となる。この場合の曲げ抵抗
鋼管3の断面係数Z3は、鋼管構造部材2の断面係数Z2
り小さくてもよいことが分かる。
Further, assuming that the yield stress σ y = 3.0 t / cm 2 , the section modulus Z 3 required for the bending-resistant steel pipe 3 to be in the elastic region is σ y =
From the relationship of M / Z 3 , 3.0 = 0.17 × 203 / (Z 3 × 4), that is, Z 3 = 2.87 cm 3 . It is understood that the sectional modulus Z 3 of the bending resistant steel pipe 3 in this case may be smaller than the sectional modulus Z 2 of the steel pipe structural member 2.

以上の考察から、曲げ抵抗鋼管3は鋼管構造部材2に比
べて寸法的に大きなものである必要がなく、二重鋼管型
構造部材1の曲げ抵抗鋼管として充分に成り立つもので
ある。
From the above consideration, the bending resistance steel pipe 3 does not have to be dimensionally larger than the steel pipe structural member 2, and is sufficiently established as the bending resistance steel pipe of the double steel pipe type structural member 1.

なお、通常、二重鋼管型構造部材1における鋼管構造部
材2は、その断面降伏後に第9図に示すような軸対称を
した提灯座屈12を起こして最大耐力に至るが、降伏直後
から提灯座屈12に至るまでには、大きな変形量が得られ
る。この場合、提灯座屈直前で鋼管構造部材2の全長の
1%程度の縮み変形(上記した寸法の鋼管構造部材では
約20mm)が可能である。そして、上述の曲げ抵抗鋼管3
は鋼管構造部材2の提灯座屈の起こる方向を常に軸対称
形で外側方向へ誘導することになり、その変形は極めて
安定したものとなる。それ故に、第10図に示したような
曲げ変形13が起こって腰折れ状態となることはなく、耐
力が急激に低下することがない。そのような安定した変
形によってトラス構造物も大きく変形するが、直ちに倒
壊するようなことはなく、その大きな変形に気づいて構
造物外へ避難する時間を確保することができる。
Normally, the steel pipe structural member 2 in the double steel pipe type structural member 1 causes axisymmetric lantern buckling 12 as shown in FIG. 9 after the cross section yielding to reach the maximum proof stress. A large amount of deformation is obtained before the buckling 12. In this case, a contraction deformation of about 1% of the total length of the steel pipe structural member 2 (about 20 mm for the steel pipe structural member having the above-described size) is possible immediately before the lantern buckling. And the above-mentioned bending resistance steel pipe 3
Means that the direction in which the lantern buckling of the steel pipe structural member 2 occurs is always guided in the outward direction in an axially symmetrical manner, and the deformation thereof becomes extremely stable. Therefore, the bending deformation 13 as shown in FIG. 10 does not occur and the waist is not bent, and the proof stress does not drop sharply. Although the truss structure is also largely deformed by such stable deformation, it does not immediately collapse, and it is possible to secure a time to notice the large deformation and evacuate to the outside of the structure.

ところで、第7図に示したように、曲げ抵抗鋼管3の全
長l3を、鋼管構造部材2が軸方向に塑性変形するとき許
容される予め決められた軸方向設定変形長β(=β/2+
β/2)だけ、鋼管構造部材2の全長l2より短くしてお
く。このようにすれば、鋼管構造部材2が軸方向設定変
形長βだけ変形した後は、二重鋼管型構造部材1に作用
する軸方向の圧縮力を、鋼管構造部材2の耐力と曲げ抵
抗鋼管3の耐力との総合力で対抗させることができる。
By the way, as shown in FIG. 7, the total length l 3 of the bending resistance steel pipe 3 is determined by a predetermined axially set deformation length β (= β / = when the steel pipe structural member 2 is plastically deformed in the axial direction. 2+
Only β / 2) is made shorter than the total length l 2 of the steel pipe structural member 2. In this way, after the steel pipe structural member 2 is deformed by the axially set deformation length β, the axial compressive force acting on the double steel pipe type structural member 1 is changed to the proof stress of the steel pipe structural member 2 and the bending resistance steel pipe. It can be countered by the total strength with the proof strength of 3.

すなわち、曲げ抵抗鋼管3による鋼管構造部材2の撓み
を防止している状態で、鋼管構造部材2が断面降伏する
と、第9図に表したように、曲げ抵抗鋼管3に拘束され
て軸対称形した提灯座屈12を起こしながら、鋼管構造部
材2はその最大耐力に至る。その最大耐力を越えて、鋼
管構造部材2が軸方向設定変形長βだけ変形すれば、そ
の後の圧縮力は曲げ抵抗鋼管3にも及び、鋼管構造部材
2の耐力および曲げ抵抗鋼管3の耐力とで対抗される。
その結果、二重鋼管型構造部材1の実質的な耐力上昇効
果が発揮され、トラス構造物の安全性がより高く確保さ
れる。
That is, when the steel pipe structural member 2 yields in section while preventing the bending of the steel pipe structural member 2 by the bending resistant steel pipe 3, as shown in FIG. The steel pipe structural member 2 reaches its maximum proof stress while causing the lantern buckling 12. If the steel pipe structural member 2 is deformed by the axially set deformation length β beyond its maximum proof stress, the subsequent compressive force also extends to the bending resistant steel pipe 3 and the proof stress of the steel pipe structural member 2 and the proof stress of the bending resistant steel pipe 3. Will be opposed by.
As a result, the substantial strength increasing effect of the double steel pipe type structural member 1 is exerted, and the safety of the truss structure is further ensured.

【図面の簡単な説明】[Brief description of drawings]

第1図は鋼管構造部材に曲げ抵抗鋼管を内挿した二重鋼
管型構造部材の水平配置状態における縦断面図、第2図
は第1図における横断面図、第3図は弾性座屈状態にあ
る二重鋼管型構造部材の断面図、第4図は異なる形状の
鋼管構造部材が採用された二重鋼管型構造部材の横断面
図、第5図は二重鋼管型構造部材が部分的に採用された
トラス構造物の全体模式図、第6図は第5図の要部拡大
図、第7図はエンド部材を有する鋼管構造部材に曲げ抵
抗鋼管を内挿した二重鋼管型構造部材の断面図、第8図
は座屈状態における横方向の撓みに対抗する横力を計算
するための鋼管構造部材の模式図、第9図は提灯座屈を
模式的に示した二重鋼管型構造部材の部分断面図、第10
図は曲げ変形した構造部材の模式図、第11図は単管の座
屈荷重に対する軸方向変形量を表すグラフである。 1…二重鋼管型構造部材、2…鋼管構造部材、3…曲げ
抵抗鋼管、P…軸方向の圧縮力、α…隙間、β…軸方向
設定変形長、l2…鋼管構造部材の全長、l3…曲げ抵抗鋼
管の全長。
FIG. 1 is a vertical sectional view of a horizontal arrangement state of a double steel pipe type structural member in which a bending resistance steel pipe is inserted in a steel pipe structural member, FIG. 2 is a transverse sectional view of FIG. 1, and FIG. 3 is an elastic buckling state. 4 is a cross-sectional view of a double steel pipe type structural member, FIG. 4 is a cross-sectional view of a double steel pipe type structural member in which steel pipe structural members of different shapes are adopted, and FIG. Fig. 6 is an overall schematic view of the truss structure adopted in Fig. 6, Fig. 6 is an enlarged view of a main part of Fig. 5, and Fig. 7 is a double steel pipe type structural member in which a bending resistance steel pipe is inserted into a steel pipe structural member having an end member. Fig. 8 is a schematic view of a steel pipe structural member for calculating lateral force against lateral bending in a buckling state, and Fig. 9 is a double steel pipe type that schematically shows lantern buckling. Partial sectional view of structural member, 10th
FIG. 11 is a schematic diagram of a structural member that is bent and deformed, and FIG. 11 is a graph showing the amount of axial deformation of a single pipe with respect to a buckling load. 1 ... Double Tube type structural member, 2 ... steel structural member, 3 ... bending resistance steel tube, P ... axial compressive force, alpha ... clearance, beta ... axial setting deformation length, total length of l 2 ... steel structural members, l 3 … The total length of the bending resistant steel pipe.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鋼構造物を形成するトラスに用いられる鋼
管構造部材において、 上記鋼管構造部材に作用する軸方向の圧縮力が伝わらな
いように、その鋼管構造部材に対して自由状態にある曲
げ抵抗鋼管が上記鋼管構造部材に内挿され、 前記曲げ抵抗鋼管は、上記鋼管構造部材と対面する隙間
が可及的に小さくなるように、鋼管構造部材に近接して
配置されていることを特徴とするトラス用二重鋼管型構
造部材。
1. A steel pipe structural member used for a truss forming a steel structure, wherein bending is in a free state with respect to the steel pipe structural member so that axial compressive force acting on the steel pipe structural member is not transmitted. A resistance steel pipe is inserted into the steel pipe structural member, and the bending resistance steel pipe is arranged close to the steel pipe structural member so that a gap facing the steel pipe structural member is as small as possible. Double steel pipe type structural member for truss.
【請求項2】前記曲げ抵抗鋼管の全長は、前記鋼管構造
部材が軸方向に塑性変形するとき許容される予め決めら
れた軸方向設定変形長だけ、鋼管構造部材の全長より短
くされていることを特徴とする請求項1に記載のトラス
用二重鋼管型構造部材。
2. The total length of the bending resistant steel pipe is shorter than the total length of the steel pipe structural member by a predetermined axially set deformation length which is allowed when the steel pipe structural member is plastically deformed in the axial direction. The double steel pipe type structural member for a truss according to claim 1.
JP2274452A 1990-10-12 1990-10-12 Double steel pipe type structural member for truss Expired - Fee Related JPH0742759B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2274452A JPH0742759B2 (en) 1990-10-12 1990-10-12 Double steel pipe type structural member for truss
DE19914133203 DE4133203C2 (en) 1990-10-12 1991-10-07 Truss girder for steel construction trusses with a tubular steel construction part
GB9121600A GB2248862A (en) 1990-10-12 1991-10-11 Structural member resistant to buckling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2274452A JPH0742759B2 (en) 1990-10-12 1990-10-12 Double steel pipe type structural member for truss

Publications (2)

Publication Number Publication Date
JPH04149345A JPH04149345A (en) 1992-05-22
JPH0742759B2 true JPH0742759B2 (en) 1995-05-10

Family

ID=17541890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2274452A Expired - Fee Related JPH0742759B2 (en) 1990-10-12 1990-10-12 Double steel pipe type structural member for truss

Country Status (3)

Country Link
JP (1) JPH0742759B2 (en)
DE (1) DE4133203C2 (en)
GB (1) GB2248862A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2652506B2 (en) * 1993-06-04 1997-09-10 川鉄建材株式会社 Double steel pipe type structural member for truss structure
DE9416928U1 (en) * 1994-10-20 1995-01-12 Bima Industrie-Service GmbH, 68199 Mannheim Telescopic sliding grille with saw protection
GB2299103B (en) * 1995-03-24 1998-11-11 Euro Stress Ltd Strut
DE19713195A1 (en) 1997-03-27 1998-10-01 Voith Sulzer Papiermasch Gmbh Papermaking machine carrier beam
DE19741262A1 (en) * 1997-09-19 1999-03-25 Bayerische Motoren Werke Ag Hollow holder with interior reinforcement
JP4590810B2 (en) * 2001-09-19 2010-12-01 パナソニック電工株式会社 Pole with collapse prevention function
JP4629114B2 (en) * 2008-01-04 2011-02-09 Jfeテクノリサーチ株式会社 Steel pipe column base structure
JP5483666B2 (en) * 2008-03-17 2014-05-07 株式会社竹中工務店 building
TWI547628B (en) 2012-07-30 2016-09-01 杰富意土木股份有限公司 Pin joint type structural member made of double steel pipe for restraining buckling thereof
JP6912330B2 (en) * 2017-09-12 2021-08-04 大和ハウス工業株式会社 Steel columns

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB594186A (en) * 1945-06-27 1947-11-05 Reginald Hugh Faro Tubes for structural purposes
US3981114A (en) * 1975-06-13 1976-09-21 General Motors Corporation Energy absorbing permanently deformable collapsible column
FR2481343A1 (en) * 1980-04-24 1981-10-30 Brochard Francois Xavier PROCESS FOR THE MANUFACTURE OF A BEAM, FROM HOLLOW ASSEMBLIES FITTED INTO ONE ANOTHER, AND "ISO-BEAM" THUS OBTAINED
AU7378981A (en) * 1981-06-19 1983-01-04 Koller, K.S. Energy absorbing load carrying strut and method of providing such a strut capable of withstanding cyclical loads exceedingits yield strength
JPS5976379A (en) * 1982-10-21 1984-05-01 三菱重工業株式会社 Earthquake-proof brace structure

Also Published As

Publication number Publication date
GB9121600D0 (en) 1991-11-27
JPH04149345A (en) 1992-05-22
DE4133203C2 (en) 1996-10-17
DE4133203A1 (en) 1992-04-16
GB2248862A (en) 1992-04-22

Similar Documents

Publication Publication Date Title
JPH0742759B2 (en) Double steel pipe type structural member for truss
JP2652506B2 (en) Double steel pipe type structural member for truss structure
JPH09221830A (en) Brace material and structure for fitting brace material to building
JP2007224575A (en) Triple pipe seismic control brace
WO2014021297A1 (en) Pin-joint-shaped double steel pipe buckling restraining structural member
JP4746023B2 (en) Seismic retrofit method for steel structures and seismic steel structures
JP2001336304A (en) Vibration control device and vibration control structure
JP2711994B2 (en) Double tube type structural member for space truss
JP2002088910A (en) Buckling-restrained brace material
JPH03199542A (en) Diagonal bracing member for steel structure
JPH11350778A (en) Vibration damper and vibration-damping structure
JP3702818B2 (en) Double steel pipe type earthquake-resistant structural material
JPH1136444A (en) Unbonded brace
JP3215633U (en) Brace mounting structure
JP2024083696A (en) Buckling-restrained bracing members, frame structure
JP2008019632A (en) Buckling stiffening brace
JP7492625B1 (en) Strength design method for buckling-restrained braces and filling materials
JP2000045395A (en) Connection type single pipe type structural member
JPH08165744A (en) Reinforcing structure of structural member
JPH076567B2 (en) Elasto-plastic damper for structures
JP6544546B1 (en) Brace
JP2593313B2 (en) Building structure
JP2006299577A (en) Gap adjusted triple pipe damping brace
JPH0524708U (en) Joining device for structural members with stress limiting element
JP2006028737A (en) Triple pipe vibration control brace having length adjusting mechanism

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees