JP2515253Y2 - Joining device for structural members with stress limiting element - Google Patents

Joining device for structural members with stress limiting element

Info

Publication number
JP2515253Y2
JP2515253Y2 JP8234891U JP8234891U JP2515253Y2 JP 2515253 Y2 JP2515253 Y2 JP 2515253Y2 JP 8234891 U JP8234891 U JP 8234891U JP 8234891 U JP8234891 U JP 8234891U JP 2515253 Y2 JP2515253 Y2 JP 2515253Y2
Authority
JP
Japan
Prior art keywords
sleeve body
structural member
buckling
structural
joining device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8234891U
Other languages
Japanese (ja)
Other versions
JPH0524708U (en
Inventor
克彦 今井
Original Assignee
川鉄建材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川鉄建材株式会社 filed Critical 川鉄建材株式会社
Priority to JP8234891U priority Critical patent/JP2515253Y2/en
Publication of JPH0524708U publication Critical patent/JPH0524708U/en
Application granted granted Critical
Publication of JP2515253Y2 publication Critical patent/JP2515253Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】本考案は応力制限要素を備えた構
造部材用接合装置に係り、詳しくは、トラス構造やすじ
かい構造を形成するための節点部材に長尺なパイプ材な
どの構造部材を結合する接合装置の一部を構成するスリ
ーブ体の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joining device for structural members provided with a stress limiting element, and more particularly to a structural member such as a long pipe material as a node member for forming a truss structure or a stiff structure. The present invention relates to an improvement of a sleeve body that constitutes a part of a joining device that joins together.

【0002】[0002]

【従来の技術】長尺な鋼管からなる構造部材を多数使用
して大きい立体構造物を構築する場合には、各構造部材
の先端を節点部材に接合するトラス構造やすじかい構造
を採用することが多い。例えば、実公昭42−2299
2号公報などには、そのような構造物に適用される構造
部材やそれに採用される接合装置が提案されている。と
ころで、例えば、地震などの動的な外力に起因する軸方
向の圧縮力に耐えることができるトラス構造を設計する
場合、構造部材は、座屈する前に耐力を保持して十分変
形できることが望ましい。というのは、鋼管が座屈する
と、その鋼管の耐力が一般的には急激に低下するからで
ある。したがって、構造部材は、その座屈耐力以下の荷
重に基づいて設計されることになる。しかし、動的な外
力に対して構造部材は弾性的に挙動してしまうことにな
り、そのような構造部材は、塑性変形を利用する構造部
材に比べて、大きい応力を想定した設計をしておかなけ
ればならなくなる。また、トラス構造に類似するすじか
い構造においても、圧縮すじかいを弾性状態に保持しよ
うとすると、地震があった場合などには、すじかいに大
きな応力が発生する。この場合に、隣接する柱や梁にも
非常に大きな力が作用することになる。その力に耐える
ことができるように設計された柱や梁は、大きくかつ重
くなりすぎて実用に供しえなくなる場合がしばしばあ
る。なお、圧縮すじかいの座屈後の耐力を評価してデザ
インする方法もあるが、座屈後の急激な耐力低下を適切
に評価し、トラス構造物に所望する耐震性能を付与する
ことは、現在の技術レベルでは容易でない。
2. Description of the Related Art When a large three-dimensional structure is constructed by using a large number of structural members made of long steel pipe, a truss structure or a fine structure in which the tip of each structural member is joined to a node member is adopted. There are many. For example, Jikkou 42-2299
No. 2, for example, proposes a structural member applied to such a structure and a joining device adopted for the structural member. By the way, when designing a truss structure that can withstand an axial compressive force caused by a dynamic external force such as an earthquake, for example, it is desirable that the structural member be capable of retaining the proof stress before being buckled and sufficiently deformed. This is because when the steel pipe buckles, the yield strength of the steel pipe generally decreases rapidly. Therefore, the structural member is designed based on a load equal to or lower than its buckling resistance. However, structural members will behave elastically with respect to dynamic external force, and such structural members should be designed with a larger stress compared to structural members that utilize plastic deformation. I have to stay. In addition, even in a ridge structure similar to a truss structure, if an attempt is made to hold the compression ridge in an elastic state, a large stress is generated in the ridge when an earthquake occurs. In this case, a very large force also acts on the adjacent columns and beams. Pillars and beams designed to withstand that force are often too large and heavy to be practical. Although there is also a method of designing by evaluating the proof stress after buckling of compression strands, it is necessary to properly evaluate the rapid decrease in proof stress after buckling and to give the truss structure the desired seismic resistance. It is not easy at the current technical level.

【0003】[0003]

【考案が解決しようとする課題】ところで、図6および
図7には、外力を受けた場合に座屈を生じない場合と、
生じる場合の鋼構造物の変形が模式的なグラフに表され
ている。これらの場合、耐震性の優劣は変形によって生
じる消費エネルギー(図中の斜線部面積AおよびB)の
大小によって論じられる。消費エネルギーは塑性変形す
る図7の方が大きいので、図6の場合よりも耐震性が高
い。一方、図6の場合は、弾性耐力が大きいため、地震
による応答応力が大きくなるという悪循環が生じる。従
来、トラス構造あるいはすじかい構造では、座屈が不可
避であるため図7のような特性を得ることが不可能と考
えられていた。この図7のような特性を与える構造形式
としては、すじかいなしのラーメン構造がある。しか
し、横方向の変形が、すじかいあるいはトラス構造に比
べて非常に大きいので、大量の鋼材を投入しなければな
らないという問題がある。本出願人は、特願昭61−2
04000号において、上記した欠点を解消するように
した構造部材を提案した。図8に示すように、構造部材
1は、節点部材2に結合するための接合ボルト4が取り
付けられるエンド部材1Bを構造主材1Aの端部に備え
る。さらに、そのエンド部材1Bには円錐殼部1aと円
筒部1bとがあり、円錐殼部1aの殼厚みTは、構造主
材1Aの座屈耐力より小さい外力により、エンド部材1
Bが、その下半図に示す朝顔の花のように開く塑性変形
を呈するように選定される。したがって、そのエンド部
材1Bを塑性変形させることによって、構造部材1の座
屈を避けることができるようになっている。なお、節点
部材2とエンド部材1Bとの間には、接合ボルト4の全
体を覆うようにして被せられたスリーブ体5があり、そ
のスリーブ体5を回転させて接合ボルト4を進退させ、
構造部材1を節点部材2に結合することができるよう
に、その接合装置が構成されている。また、特願平1−
340441号においては、図9に示すように、構造主
材1Aの端部に、構造主材1Aの主胴部1pの座屈耐力
より小さい外力で塑性変形する薄い肉厚t1 とされた脆
弱部20を設けたものを提案した。エンド部材1Bは構
造主材1Aに接続され、エンド部材1Bは脆弱部20と
同程度の耐力で共に塑性変形するように形成されてい
る。そして、構造主材1Aの脆弱部20とエンド部材1
Bとをともに塑性変形させることによって、主胴部1p
の座屈を避けるようにしている。そして、節点部材2と
エンド部材1Bとの間には、接合ボルト4を内蔵したス
リーブ体5を有する接合装置が採用されている。これに
よれば、構造部材に所定値以上の軸方向の圧縮力が作用
すると、左右端部を意図的に大きく塑性変形させること
ができる。一般的に図7のP2 で示すごとくの座屈荷重
を越えると、耐力が破線のように急激に減少し、その圧
縮材の変形量は極めて小さくなる。一方、上記した脆弱
部を設けた構造部材では、実線で示すように、鋼管の軸
方向変形量が大きくなる。しかし、鋼管端部に、複雑で
コストの高くつく脆弱部もしくは円錐殼部を設けておか
なければならない難点がある。本考案は上述の問題に鑑
みなされたもので、その目的は、構造部材に外力が作用
したとき、構造部材を変形させることなく、他の要素で
もって座屈変形を助長させ、長尺な構造部材に手間の要
する加工を施す必要がなく、また、新たな部品の追加を
伴うこともなく、節点部材間における大きな座屈変形を
許容できるようにする応力制限要素を備えた構造部材用
接合装置を提供することである。
By the way, FIG. 6 and FIG. 7 show that buckling does not occur when an external force is applied,
The deformation of the steel structure as it occurs is represented in a schematic graph. In these cases, the superiority or inferiority of the seismic resistance is discussed by the magnitude of the energy consumption (hatched area A and B in the figure) generated by deformation. Since the energy consumption is larger in FIG. 7 in which plastic deformation occurs, the earthquake resistance is higher than in the case of FIG. On the other hand, in the case of FIG. 6, since the elastic proof strength is large, a vicious cycle occurs in which the response stress due to the earthquake increases. Conventionally, it has been considered that it is impossible to obtain the characteristics shown in FIG. 7 in a truss structure or a thin structure because buckling is inevitable. As a structural form that gives the characteristics shown in FIG. 7, there is a ramen structure with no seams. However, there is a problem that a large amount of steel material must be input because the lateral deformation is much larger than that of the streak or truss structure. The applicant is the Japanese Patent Application No. 61-2.
In 04000, a structural member was proposed in which the above-mentioned drawbacks were eliminated. As shown in FIG. 8, the structural member 1 includes an end member 1B to which a joining bolt 4 for connecting to the nodal member 2 is attached at an end portion of the structural main material 1A. Further, the end member 1B has a conical shell 1a and a cylindrical portion 1b, and the shell thickness T of the conical shell 1a is an external force smaller than the buckling resistance of the structural main member 1A.
B is selected so that it exhibits plastic deformation that opens like the morning glory flower shown in the lower half of the figure. Therefore, it is possible to avoid the buckling of the structural member 1 by plastically deforming the end member 1B. In addition, between the node member 2 and the end member 1B, there is a sleeve body 5 covered so as to cover the entire joining bolt 4, and the joining body 4 is advanced and retracted by rotating the sleeve body 5.
The joining device is configured such that the structural member 1 can be joined to the nodal member 2. Also, Japanese Patent Application 1-
In No. 340441, as shown in FIG. 9, at the end of the structural main material 1A, a thin wall thickness t 1 that is plastically deformed by an external force smaller than the buckling resistance of the main body portion 1p of the structural main material 1A is fragile. The one provided with the section 20 was proposed. The end member 1B is connected to the structural main material 1A, and the end member 1B is formed so as to be plastically deformed together with a proof strength of the weak portion 20. Then, the fragile portion 20 of the structural main material 1A and the end member 1
By plastically deforming B together, the main body 1p
I try to avoid buckling. A joining device having a sleeve body 5 having a joining bolt 4 therein is used between the node member 2 and the end member 1B. According to this, when a compressive force in the axial direction of a predetermined value or more is applied to the structural member, the left and right end portions can be intentionally largely plastically deformed. Generally, when the buckling load as shown by P 2 in FIG. 7 is exceeded, the proof stress rapidly decreases as shown by the broken line, and the amount of deformation of the compressed material becomes extremely small. On the other hand, in the structural member provided with the fragile portion, the amount of axial deformation of the steel pipe increases, as shown by the solid line. However, there is a drawback in that a fragile portion or a conical shell portion, which is complicated and expensive, must be provided at the end of the steel pipe. The present invention has been made in view of the above problems, and an object thereof is to promote buckling deformation by other elements without deforming a structural member when an external force is applied to the structural member, and to provide a long structure. A joining device for structural members, which is provided with a stress limiting element that allows a large buckling deformation between nodal members without requiring time-consuming machining of members and addition of new parts. Is to provide.

【0004】[0004]

【課題を解決するための手段】本考案は、節点部材に構
造部材を結合するための接合ボルトが備えられ、その接
合ボルトを節点部材と構造部材との間で覆うと共に、そ
の接合ボルトを回転させるスリーブ体が設けられている
構造部材用接合装置に適用される。その特徴とするとこ
ろは、図1を参照して、構造部材1に軸圧縮力が作用す
るとき、スリーブ体5が略軸対称塑性座屈14を呈する
ように、スリーブ体5が、構造部材1の座屈耐力より小
さい外力で塑性変形することができる状態とされている
ことである。そのスリーブ体5は、略軸対称塑性座屈1
4をするに十分なように、降伏耐力の低い材料が採用さ
れる。なお、そのスリーブ体5は、略軸対称塑性座屈1
4をするに十分なように、その肉厚が薄く形成されてい
てもよい。
SUMMARY OF THE INVENTION According to the present invention, a joint bolt for connecting a structural member to a node member is provided, the joint bolt is covered between the node member and the structural member, and the joint bolt is rotated. It is applied to a joining device for structural members provided with a sleeve body. The feature is that, with reference to FIG. 1, when the axial compressive force acts on the structural member 1, the sleeve body 5 exhibits a substantially axially symmetric plastic buckling 14, so that That is, it is in a state in which it can be plastically deformed by an external force smaller than the buckling proof strength. The sleeve body 5 has a substantially axially symmetric plastic buckling 1
A material having a low yield strength is adopted so as to be sufficient for No. 4. The sleeve body 5 has a substantially axially symmetric plastic buckling 1
The thickness may be formed thin enough to carry out No. 4.

【0005】[0005]

【作用】構造部材1に軸圧縮力が作用すると、構造部材
1と接合ボルト4を回転させるためのスリーブ体5とに
座屈応力が作用する。スリーブ体5は構造部材1の座屈
耐力より小さい外力で塑性変形するように製作されてい
るので、構造部材1が座屈する前にスリーブ体5が降伏
する。すなわち、スリーブ体5に外力が作用すると、構
造部材1が座屈する前に、接合ボルト4を回転させるス
リーブ体5が降伏し、その軸芯外方へ膨らませるような
略軸対称塑性座屈14を起こさせる。図7に示した外力
1 のような中規模地震に対しては、構造部材1を座屈
させないで、スリーブ体5を弾性範囲内で変形させ、外
力がP2 のような大規模地震時には構造部材1を座屈さ
せないで、スリーブ体5を降伏させるように設計するこ
とができる。その結果、地震による構造部材1の消費エ
ネルギーは、塑性変形するスリーブ体5で吸収されると
共に、残余のエネルギーは熱として外部に発散され、構
造部材1で形成された鋼構造物の急激な倒壊が防止され
る。したがって、ラーメン構造のような塑性変形による
大きな耐震性能をトラス構造物に付与することができ、
すじかい構造あるいは従前のトラス構造に必要とされる
程度の鋼材使用量に留めることができる。
When the axial compressive force acts on the structural member 1, buckling stress acts on the structural member 1 and the sleeve body 5 for rotating the joining bolt 4. Since the sleeve body 5 is manufactured so as to be plastically deformed by an external force smaller than the buckling resistance of the structural member 1, the sleeve body 5 yields before the structural member 1 buckles. That is, when an external force is applied to the sleeve body 5, before the structural member 1 buckles, the sleeve body 5 that rotates the joining bolt 4 yields, and the substantially axially symmetric plastic buckling 14 that causes the sleeve body 5 to expand outwardly of its axial center is performed. Wake up. For a medium-scale earthquake such as the external force P 1 shown in FIG. 7, the sleeve member 5 is deformed within the elastic range without buckling the structural member 1 and a large-scale earthquake such as the external force P 2 occurs. The sleeve body 5 can be designed to yield without buckling the structural member 1. As a result, the energy consumed by the structural member 1 due to the earthquake is absorbed by the sleeve body 5 that is plastically deformed, and the remaining energy is radiated to the outside as heat, causing the steel structure formed by the structural member 1 to collapse suddenly. Is prevented. Therefore, it is possible to give the truss structure a large seismic performance due to plastic deformation, such as a rigid frame structure.
The amount of steel used can be kept to the level required for the bare structure or the conventional truss structure.

【0006】[0006]

【考案の効果】本考案によれば、スリーブ体の軸芯に対
して直角をなす横方向への変形が抑制された状態で、ス
リーブ体に大きな軸方向変形を起こさせることができ
る。その軸方向の変形が進んだ時点で、局部的に大きく
塑性化した略軸対称塑性座屈となる。したがって、節点
部材間では耐力低下の少ない安定した大きな塑性変形を
持続させ、トラス構造物が大きい外力を受けても、それ
によって直ちに倒壊するというようなことが防止され
る。このような機能を発揮させる接合装置を採用する
と、長尺な構造部材に手間の要する加工を施す必要がな
く、また、新たな部品を追加することもない。その結
果、簡単な構成でありながら低廉化も図られるコンパク
トな応力制限要素を実現することができる。
According to the present invention, it is possible to cause a large axial deformation of the sleeve body in a state in which the lateral deformation perpendicular to the axis of the sleeve body is suppressed. When the axial deformation progresses, locally substantially plasticized substantially axisymmetric plastic buckling occurs. Therefore, stable large plastic deformation with a small decrease in yield strength is maintained between the node members, and even if the truss structure receives a large external force, it is prevented that the truss structure immediately collapses. If a joining device that exerts such a function is adopted, it is not necessary to perform a labor-intensive process on a long structural member, and a new component is not added. As a result, it is possible to realize a compact stress limiting element which has a simple structure and is inexpensive.

【0007】[0007]

【実施例】以下に、本考案の応力制限要素を備えた構造
部材用接合装置を、図面を参照しながら詳細に説明す
る。図1は、構造部材1とそれを節点部材2に取り付け
る接合装置3の断面図であり、長尺な鋼管構造部材1の
先端が、節点部材2に放射状(本例では十字状)に接合
することができるようになっている。なお、図2は、二
つの節点部材2,2間に、一本の構造部材1を接合した
場合の全体図を示している。この接合装置3は、節点部
材2に構造部材1を結合するための接合ボルト4を備
え、その接合ボルト4を節点部材2と構造部材1との間
で覆うと共に、その接合ボルト4を回転させるスリーブ
体5をも有している。詳しく述べると、構造部材1はパ
イプなどの構造主材1Aとその端部に溶接などで一体化
されたエンド部材1Bとからなる。本例においては、そ
のエンド部材1Bは、構造主材1Aに連なる中空の円錐
殻部1aとスリーブ体5が当接される円筒部1bとを備
えている。このエンド部材1Bを介して、構造主材1を
ねじ孔2aの形成された節点部材2に接合するための接
合ボルト4が設けられる。この接合ボルト4にはボス部
6が形成されるとともに、その両端部のねじ部4a,4
bは逆ねじに形成されている。ボス部6を境にして節点
部材2側に形成されるねじ部4aは例えば右ねじであ
り、構造部材1を節点部材2に取り付ける場合、接合ボ
ルト4の回転に伴って基部側に取り付けられたアンカー
ナット7が構造部材1内で外れないように、ねじ部4b
は左ねじとなっている。上記エンド部材1Bの円筒部1
bの内部には、接合ボルト4の基部側に螺合されるアン
カーナット7の径より大きい雌ねじ8が形成されてい
る。このエンド部材1Bの雌ねじ8には、雄ねじ9の形
成された支持部材10が螺合され、これらのねじ部にね
じロック剤などが塗布されて緩み止めが図られる。この
支持部材10の中心部には、接合ボルト4の軸部4mを
挿通して支持する摺動孔11が設けられている。上記し
た支持部材10の摺動孔11には、予め接合ボルト4の
軸部4mが挿通され、かつ、アンカーナット7をねじ部
4bに螺合させた後、その一体物が支持部材10を介し
てエンド部材1Bに取り付けられるようになっている。
一方、接合ボルト4の外部には、そのボス部6の外面に
係合して回転を伝達するスリーブ体5が設けられてい
る。これは、例えば六角状に形成されたボス部6を外嵌
する六角筒状体で、その内部は、ボス部6が軸芯5n方
向へ摺動できるような形状に成形されている。そして、
そのスリーブ体5の外面には、ボス部6を回転させるた
めの回転力作用部12が形成されている。ちなみに、ボ
ス部6は六角形に限ることはなく、スリーブ体5と比較
的緊密に嵌合して、スリーブ体5を回転させた場合に接
合ボルト4を回転させることができるようになっていれ
ばよい。そして、そのスリーブ体5の外面も、スパナー
などでもって回転させることができるような形状であれ
ばよい。スリーブ体5を上記のように六角とした場合、
構造部材1が座屈する前に、本考案の思想にしたがう応
力制限要素としてのスリーブ体5を降伏させ、それを塑
性変形させるために、図3に示す外幅W1 と内幅W2
寸法から決まる肉厚tを全体的に薄くするように機械加
工しておき、スリーブ体5の全体的な脆弱化を図ってお
けばよい。もちろん、肉厚tの大小によらず、スリーブ
体5に焼鈍などの熱処理を施して、脆弱化させてもよ
い。このような脆弱化は、構造部材1が座屈する外力よ
りも小さい外力で、スリーブ体5が塑性変形の座屈を起
こす程度に施されることになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A structural member joining apparatus having a stress limiting element of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a cross-sectional view of a structural member 1 and a joining device 3 that attaches the structural member 1 to a nodal member 2. The tip of a long steel pipe structural member 1 is joined to the nodal member 2 in a radial (cross-shaped in this example) manner. Is able to. Note that FIG. 2 shows an overall view when one structural member 1 is joined between the two node members 2 and 2. The joining device 3 includes a joining bolt 4 for joining the structural member 1 to the node member 2, covers the joining bolt 4 between the node member 2 and the structural member 1, and rotates the joining bolt 4. It also has a sleeve body 5. More specifically, the structural member 1 is composed of a structural main material 1A such as a pipe and an end member 1B integrated with the end portion by welding or the like. In this example, the end member 1B is provided with a hollow conical shell portion 1a connected to the structural main material 1A and a cylindrical portion 1b with which the sleeve body 5 abuts. A joining bolt 4 for joining the structural main material 1 to the node member 2 in which the screw hole 2a is formed is provided via the end member 1B. A boss portion 6 is formed on the joining bolt 4, and screw portions 4a, 4 at both ends thereof are formed.
b is formed in a reverse thread. The screw portion 4a formed on the nodal member 2 side with the boss portion 6 as a boundary is, for example, a right-hand screw, and when the structural member 1 is attached to the nodal member 2, the screw portion 4a is attached to the base side as the joining bolt 4 rotates. To prevent the anchor nut 7 from coming off in the structural member 1, the screw portion 4b
Has a left-hand thread. Cylindrical portion 1 of the end member 1B
A female screw 8 having a diameter larger than that of the anchor nut 7 screwed to the base side of the joining bolt 4 is formed inside b. A support member 10 having a male screw 9 is screwed onto the female screw 8 of the end member 1B, and a screw locking agent or the like is applied to these screw portions to prevent loosening. A sliding hole 11 is provided at the center of the support member 10 for inserting and supporting the shaft portion 4m of the joining bolt 4. The shaft portion 4m of the joining bolt 4 is previously inserted into the sliding hole 11 of the support member 10 described above, and the anchor nut 7 is screwed into the screw portion 4b. Is attached to the end member 1B.
On the other hand, a sleeve body 5 that engages with the outer surface of the boss portion 6 and transmits rotation is provided outside the joining bolt 4. This is, for example, a hexagonal tubular body to which the boss portion 6 formed in a hexagonal shape is fitted, and the inside thereof is formed in a shape such that the boss portion 6 can slide in the axial core 5n direction. And
A rotating force acting portion 12 for rotating the boss portion 6 is formed on the outer surface of the sleeve body 5. By the way, the boss portion 6 is not limited to the hexagonal shape, but can be fitted in the sleeve body 5 relatively tightly so that the joint bolt 4 can be rotated when the sleeve body 5 is rotated. Good. The outer surface of the sleeve body 5 may have any shape so that it can be rotated by a spanner or the like. When the sleeve body 5 is hexagonal as described above,
Before the structural member 1 buckles, the sleeve body 5 as a stress limiting element according to the idea of the present invention is yielded, and the dimensions of the outer width W 1 and the inner width W 2 shown in FIG. The thickness t determined by the above is machined so that the overall thickness t is thinned, and the overall weakening of the sleeve body 5 may be achieved. Of course, regardless of the thickness t, the sleeve body 5 may be subjected to heat treatment such as annealing to be weakened. Such weakening is applied to the extent that the sleeve body 5 is buckled by plastic deformation with an external force smaller than the external force with which the structural member 1 buckles.

【0008】このような構成の接合装置3によれば、以
下に述べるように、構造部材1に塑性変形を起こさせる
ことなく、スリーブ体5でもって、構造部材1に作用す
る軸方向圧縮に対する大きな塑性変形を起こさせること
ができる。上記のように肉厚tが薄いか焼鈍により軟化
されて脆弱状態にあるスリーブ体5には、局部的な略軸
対称座屈が生じる。これは、スリーブ体5の内部に接合
ボルト4が挿通されており、かつ、そのボス部6がスリ
ーブ体5に内接状態にあることから、例えば、図1の二
点鎖線のような膨らみとなって現れる。その場合、構造
部材1の耐力は急激に減じるようなことはない。例え
ば、外幅W1 を54mm,内幅W2 を36mm,長さを
81mmとし、材質をS45C材としたスリーブ体5に
焼鈍などの熱処理を施して脆弱化したものを、外径が1
65.2mm,肉厚が7.1mmのパイプ状の構造部材
1に適用した場合の軸変形量の変化例が図4に示されて
いる。この試験体において、スリーブ体5の耐力を他の
部分より弱くしているので、変形のほとんど全てがスリ
ーブ体5の座屈変形によるものとなっている。それゆえ
に、スリーブ体5の降伏後も安定した変形が続き、本考
案の所期の目的とする性能が十分発揮されていることが
分かる。
According to the joining device 3 having such a structure, as will be described below, it is possible to prevent the structural member 1 from being plastically deformed, and to prevent the structural member 1 from being axially compressed by the sleeve body 5. It can cause plastic deformation. As described above, the sleeve body 5 in which the wall thickness t is thin or which is softened by annealing and is in a fragile state is locally locally buckled. This is because the joint bolt 4 is inserted inside the sleeve body 5 and the boss portion 6 is inscribed in the sleeve body 5, so that, for example, a bulge such as the chain double-dashed line in FIG. Appears. In that case, the proof stress of the structural member 1 does not suddenly decrease. For example, the outer width W 1 is 54 mm, the inner width W 2 is 36 mm, the length is 81 mm, and the sleeve body 5 made of S45C material is weakened by heat treatment such as annealing.
FIG. 4 shows an example of changes in the axial deformation amount when applied to the pipe-shaped structural member 1 having a thickness of 65.2 mm and a thickness of 7.1 mm. In this test body, since the proof stress of the sleeve body 5 is weaker than other portions, almost all the deformation is due to the buckling deformation of the sleeve body 5. Therefore, it can be seen that the sleeve body 5 continues to be stably deformed even after yielding, and the intended performance of the present invention is sufficiently exhibited.

【0009】図5は、異なる構成の接合装置3Aに、本
考案を適用したものであり、本質的に、上記した例と異
なるところはない。この例においても、スリーブ体5が
採用され、構造部材1に圧縮力が作用すると、スリーブ
体5が最初に降伏して塑性変形し、構造部材1の座屈が
回避される。この接合装置3Aは、接合ボルト4のボス
部6と支持部材10との間にスプリング13を介装させ
ている。そのスプリング13の弾発力でもって、ボス部
6が常時節点部材2側に押圧された状態にある。そし
て、初期状態においてスリーブ体5からねじ部4aの先
端が突出した状態の構造部材1を、正寸状態となってい
る二つの節点部材2,2に運び込んだとき、接合ボルト
4のねじ部4aの先端をスプリング13の弾発力に抗し
てスリーブ体5側へ退避させることができるようになっ
ている。構造部材1と接合装置3Aとの二つの節点部材
2,2に対するアライメントが出た時点で、ねじ部4a
の先端がスプリング13の復元力で節点部材2のねじ孔
2aに少し嵌め込まれた状態となる。その後に、スリー
ブ体5を回転させれば、ねじ部4aとねじ孔2aとの噛
み合いを達成させることができる。なお、本構造は、本
考案に直接関係しないのでその説明を省くが、その詳細
については、特願昭61−193059号明細書を参照
されたい。このような構造部材用接合装置3Aの場合、
図5の下半部に表したように、スリーブ体5の座屈変形
量はスプリング13の縮み代に等しい量となり、前述し
た例の場合よりも短くなる。しかし、その座屈量を大き
くする場合には、スプリング13を介在させている部分
を長くするか、図示しないが、スプリング13を円錐蔓
巻形にしておき、座屈が大きくなったときには各螺旋が
重合するようにしておけばよい。
FIG. 5 shows the present invention applied to a joining device 3A having a different structure, and is essentially the same as the above-mentioned example. Also in this example, when the sleeve body 5 is adopted and the compressive force acts on the structural member 1, the sleeve body 5 first yields and plastically deforms, and the buckling of the structural member 1 is avoided. In this joining device 3A, a spring 13 is interposed between the boss portion 6 of the joining bolt 4 and the support member 10. The elastic force of the spring 13 keeps the boss portion 6 constantly pressed toward the node member 2. Then, when the structural member 1 in which the tip of the threaded portion 4a is projected from the sleeve body 5 in the initial state is carried into the two node members 2 and 2 in the normal size state, the threaded portion 4a of the joining bolt 4 It is possible to retract the tip of the sleeve to the sleeve body 5 side against the elastic force of the spring 13. When the alignment of the structural member 1 and the joining device 3A with respect to the two node members 2 and 2 is completed, the screw portion 4a
The tip end of the is slightly fitted into the screw hole 2a of the node member 2 by the restoring force of the spring 13. After that, by rotating the sleeve body 5, the engagement between the screw portion 4a and the screw hole 2a can be achieved. Since this structure is not directly related to the present invention, its explanation is omitted. For details, refer to Japanese Patent Application No. 61-193059. In the case of such a structural member joining device 3A,
As shown in the lower half of FIG. 5, the amount of buckling deformation of the sleeve body 5 is equal to the contraction allowance of the spring 13, which is shorter than that in the above-described example. However, in order to increase the amount of buckling, the portion in which the spring 13 is interposed is lengthened, or although not shown, the spring 13 is made into a conical spiral shape, and when the buckling becomes large, each spiral Should be allowed to polymerize.

【0010】なお、接合装置の構造が上記したもの以外
のものであっても、接合ボルトに一体的に形成されたボ
ス部を、その接合ボルトを覆うようにして配置されたス
リーブ体でもって回転させるようになっているものであ
れば、本考案を適用することができる。すなわち、接合
ボルト4のようなネジ接続機構と協働するエンド部材1
Bを備えた構造部材1を採用したトラス構造物4が地震
に遭遇して、構造部材1に軸方向の圧縮力が作用する
と、第1図の二点鎖線のように、スリーブ体5が座屈を
はじめ、そのスリーブ体5が軸芯5nに対して直角方向
へ撓もうとする。しかし、接合ボルト4に対して自由な
状態にあるので、接合ボルト4は横方向の抵抗力を発揮
し、スリーブ体5の横方向への撓みが抑制される。スリ
ーブ体5の内部に何もなければ、そのスリーブ体5が圧
縮力を受けて座屈を始める時点では、スリーブ体5は降
伏するかしないかの遷移状態にある。したがって、その
ときの横方向の変形と軸方向の変形とをスリーブ体5に
全部負担させると、そのスリーブ体5は簡単に変形して
しまう。しかし、上記したように、軸方向変形をスリー
ブ体5に負担させる一方、撓み変形を接合ボルト4に負
担させて、それぞれの変形の負担を分離させることがで
きる。その結果、スリーブ体5の横方向の変形すなわち
撓みが抑制されると共に、その軸方向の変形を大きくす
ることができる。スリーブ体5は、その断面降伏後に図
1に示すような全体的もしくは局部的な軸対称変形座屈
14を起こして最大耐力に至る。その降伏直後から軸対
称変形座屈14を呈するまでの間に、スリーブ体5は大
きく変形する。この縮みの間に、接合ボルト4はスリー
ブ体5の座屈を軸対称形に維持して、外側方向への変形
を誘導する。その結果、座屈の変形は極めて安定したも
のとなる。それ故に、スリーブ体5は折れ曲がることが
なく、スリーブ体5の耐力が急激に低下することもな
い。そのような安定した変形によってトラス構成物も大
きく変形するが、建造物が直ちに倒壊することはなく、
その建物内にいる人々は、その大きな変形に気づいて、
屋外へ避難するための時間的な余裕が確保される。接合
ボルト4によるスリーブ体5の横方向撓みを抑制してい
る状態で、スリーブ体5が断面降伏すると、スリーブ体
5は接合ボルト4によって誘導されることにより、軸対
称形した座屈14を起こしながら、その最大耐力に至
る。その最大耐力を越えて、スリーブ体5が軸方向変形
可能長まで変形すれば、その後の圧縮力は構造部材1に
も及び、その圧縮力が、構造部材1の耐力で対抗され
る。その結果、構造部材全体の実質的な耐力上昇効果が
発揮され、トラス構造物の安全性がより高く確保され
る。なお、上述した例においては、エンド部材1Bは、
円錐殻部1aと円筒部1bとを備えているが、エンド部
材1Bは円錐殻部1aを備えるものである必要はなく、
単なる当て板的なものを溶接して構造主材1Aに取り付
けた構成の構造部材にも、本考案の応力制限要素として
のスリーブ体を備えた接合装置を適用することができ
る。
Even if the joining device has a structure other than that described above, the boss portion formed integrally with the joining bolt is rotated by the sleeve body arranged so as to cover the joining bolt. The present invention can be applied to anything that is adapted to do so. That is, the end member 1 that cooperates with a screw connection mechanism such as the joining bolt 4.
When the truss structure 4 which adopts the structural member 1 equipped with B encounters an earthquake and a compressive force in the axial direction acts on the structural member 1, the sleeve body 5 is seated as shown by the chain double-dashed line in FIG. Starting from bending, the sleeve body 5 tries to bend in a direction perpendicular to the axis 5n. However, since the joining bolt 4 is in a free state, the joining bolt 4 exerts a lateral resistance force, and the lateral bending of the sleeve body 5 is suppressed. If nothing is inside the sleeve body 5, the sleeve body 5 is in a transition state of yielding or not yielding at the time when the sleeve body 5 receives a compressive force and starts to buckle. Therefore, if the sleeve body 5 bears the lateral deformation and the axial deformation at that time, the sleeve body 5 is easily deformed. However, as described above, while the axial deformation is applied to the sleeve body 5, the flexing deformation is applied to the joining bolt 4, so that the load of each deformation can be separated. As a result, lateral deformation, that is, bending of the sleeve body 5 can be suppressed, and the axial deformation thereof can be increased. After the cross-section yielding, the sleeve body 5 undergoes a general or local axisymmetric deformation buckling 14 as shown in FIG. 1 to reach the maximum proof stress. Immediately after the yield and before the axially symmetrical deformation buckling 14 is exhibited, the sleeve body 5 is largely deformed. During this contraction, the joining bolt 4 maintains the buckling of the sleeve body 5 in an axially symmetrical manner and induces outward deformation. As a result, the buckling deformation becomes extremely stable. Therefore, the sleeve body 5 does not bend and the proof stress of the sleeve body 5 does not suddenly decrease. Due to such stable deformation, the truss structure also greatly deforms, but the building does not immediately collapse,
The people inside the building noticed the big transformation,
A time allowance is secured to evacuate outdoors. When the sleeve body 5 yields in a cross-section while suppressing the lateral bending of the sleeve body 5 by the joining bolt 4, the sleeve body 5 is guided by the joining bolt 4 to cause an axially symmetric buckling 14. While reaching its maximum yield strength. When the sleeve body 5 is deformed to the axially deformable length beyond its maximum proof stress, the subsequent compressive force also extends to the structural member 1, and the compressive force is opposed by the proof stress of the structural member 1. As a result, the substantial strength increase effect of the entire structural member is exerted, and the safety of the truss structure is further ensured. In the above example, the end member 1B is
Although the conical shell portion 1a and the cylindrical portion 1b are provided, the end member 1B does not need to have the conical shell portion 1a,
The joining device provided with the sleeve body as the stress limiting element of the present invention can also be applied to a structural member having a structure in which a mere plate-like member is welded and attached to the structural main material 1A.

【0011】上述の説明から分かるように、構造部材が
座屈する前に接合ボルトを回転させるためのスリーブ体
が降伏し、軸芯方向長さに対して大きな比率で塑性変形
させることができる。例えば、図7に示したような外力
1 の場合となる中規模地震に対しては、構造部材を座
屈させないで、スリーブ体を弾性範囲内で変形させ、外
力がP2 の場合の大規模地震時には、構造部材を座屈さ
せることなく、スリーブ体を降伏させるように設計する
ことができる。したがって、構造部材にラーメン構造の
ような塑性変形による大きな耐震性を付与することがで
き、加えて、通常のすじかい構造あるいはトラス構造で
必要とされる程度の鋼材使用量に留めることができる。
しかも、長尺な構造部材に手間の要する加工を施す必要
がなく、また、新たな部品の追加を伴うこともない。単
体での製作が極めて容易な接合装置側での対策であり、
また、スリーブ体という単純な形状の部品に略軸対称塑
性座屈を起こさせるような配慮を払うだけで済むという
利点がある。
As can be seen from the above description, the sleeve body for rotating the joining bolt yields before the structural member buckles, and can be plastically deformed at a large ratio with respect to the axial length. For example, for a medium-scale earthquake with an external force P 1 as shown in FIG. 7, the structural member is not buckled, the sleeve body is deformed within the elastic range, and the external force P 2 is large. In the event of a large-scale earthquake, the sleeve body can be designed to yield without buckling the structural members. Therefore, it is possible to impart a large amount of seismic resistance due to plastic deformation, such as a rigid frame structure, to the structural member, and in addition, it is possible to limit the amount of steel used to the extent required in a normal streak structure or truss structure.
Moreover, it is not necessary to subject the long structural member to labor-intensive processing, and no new parts are added. It is a measure on the side of the joining device that is extremely easy to manufacture as a single unit.
Further, there is an advantage that it is only necessary to give consideration to causing a substantially axially symmetric plastic buckling to the sleeve body having a simple shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】 構造部材と節点部材ならびにその間に設けら
れた本考案が適用された接合装置、および、そのスリー
ブ体が座屈した様子を示す断面図。
FIG. 1 is a cross-sectional view showing a structure member, a node member, a joining device to which the present invention is applied provided between them, and a state in which a sleeve body thereof is buckled.

【図2】 構造部材が接合装置を介して節点部材間に取
り付けられた場合の全体概略図。
FIG. 2 is an overall schematic diagram of a case where a structural member is attached between node members via a joining device.

【図3】 図1のA−A線矢視断面図。FIG. 3 is a sectional view taken along the line AA of FIG.

【図4】 構造部材と節点部材との間で圧縮力を受ける
接合装置におけるスリーブ体が塑性変形する際の圧縮荷
重と軸方向変形量との定性的関係を示すグラフ。
FIG. 4 is a graph showing a qualitative relationship between a compressive load and an axial deformation amount when a sleeve body in a joining device that receives a compressive force between a structural member and a node member is plastically deformed.

【図5】 異なる例の接合装置に本考案を適用したもの
で、上半部は初期状態、下半部はスリーブ体が座屈した
状態の断面図。
FIG. 5 is a cross-sectional view in which the present invention is applied to a joining device of another example, in which an upper half part is in an initial state and a lower half part is a state in which a sleeve body is buckled.

【図6】 外力を受けた場合に座屈を伴わない鋼構造物
の変形模式図。
FIG. 6 is a schematic diagram of deformation of a steel structure that does not buckle when subjected to an external force.

【図7】 外力を受けた場合に座屈を伴う鋼構造物の変
形模式図。
FIG. 7 is a schematic diagram of deformation of a steel structure that causes buckling when subjected to an external force.

【図8】 エンド部材の円錐殻部における塑性変形を起
こさせるようにした場合の従来技術における断面図。
FIG. 8 is a cross-sectional view of a conventional technique when plastic deformation is caused in a conical shell portion of an end member.

【図9】 構造部材の端部位とエンド部材の円錐殻部に
おける塑性変形を起こさせるようにした場合の他の従来
技術における断面図。
FIG. 9 is a cross-sectional view in another conventional technique in the case where plastic deformation is caused in the end portion of the structural member and the conical shell portion of the end member.

【符号の説明】[Explanation of symbols]

1…構造部材、2…節点部材、3,3A…接合装置、4
…接合ボルト、5…スリーブ体、14…略軸対称塑性座
屈。
1 ... Structural member, 2 ... Nodal member, 3, 3A ... Joining device, 4
... Joining bolts, 5 ... Sleeve body, 14 ... Almost axisymmetric plastic buckling.

Claims (3)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】 節点部材と構造部材とを結合するための
接合ボルトが備えられ、その接合ボルトを節点部材と構
造部材との間で覆うと共に、その接合ボルトを回転させ
るスリーブ体が設けられている構造部材用接合装置にお
いて、 上記構造部材に軸圧縮力が作用するとき、上記スリーブ
体が略軸対称塑性座屈を呈するように、該スリーブ体
が、上記構造部材の座屈耐力より小さい外力で塑性変形
することができる状態とされていることを特徴とする応
力制限要素を備えた構造部材用接合装置。
1. A joint bolt for connecting the nodal member and the structural member is provided, and a sleeve body is provided for covering the joint bolt between the nodal member and the structural member and rotating the joint bolt. In the joining device for a structural member, when the axial compressive force acts on the structural member, the sleeve body has an external force smaller than the buckling resistance of the structural member so that the sleeve body exhibits substantially axisymmetric plastic buckling. A structural member joining apparatus having a stress limiting element, which is characterized in that it can be plastically deformed.
【請求項2】 前記スリーブ体は、略軸対称塑性座屈を
するに十分な低い降伏耐力を有する材料が採用されてい
ることを特徴とする請求項1に記載された応力制限要素
を備えた構造部材用接合装置。
2. The stress limiting element according to claim 1, wherein the sleeve body is made of a material having a low yield strength sufficient to cause substantially axisymmetric plastic buckling. Joining device for structural members.
【請求項3】 前記スリーブ体は、略軸対称塑性座屈を
するに十分な薄さの肉厚が形成されていることを特徴と
する請求項1に記載された応力制限要素を備えた構造部
材用接合装置。
3. The structure with a stress limiting element according to claim 1, wherein the sleeve body is formed with a thickness that is thin enough to cause substantially axially symmetric plastic buckling. Joining device for parts.
JP8234891U 1991-09-13 1991-09-13 Joining device for structural members with stress limiting element Expired - Lifetime JP2515253Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8234891U JP2515253Y2 (en) 1991-09-13 1991-09-13 Joining device for structural members with stress limiting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8234891U JP2515253Y2 (en) 1991-09-13 1991-09-13 Joining device for structural members with stress limiting element

Publications (2)

Publication Number Publication Date
JPH0524708U JPH0524708U (en) 1993-03-30
JP2515253Y2 true JP2515253Y2 (en) 1996-10-30

Family

ID=13772066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8234891U Expired - Lifetime JP2515253Y2 (en) 1991-09-13 1991-09-13 Joining device for structural members with stress limiting element

Country Status (1)

Country Link
JP (1) JP2515253Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101567676B1 (en) 2014-02-17 2015-11-10 경북대학교 산학협력단 System for inducing yield and unit for inducing yield

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7707788B2 (en) * 2007-03-19 2010-05-04 Kazak Composites, Incorporated Buckling restrained brace for structural reinforcement and seismic energy dissipation and method of producing same
JP5597614B2 (en) * 2011-09-30 2014-10-01 日立機材株式会社 Brace structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101567676B1 (en) 2014-02-17 2015-11-10 경북대학교 산학협력단 System for inducing yield and unit for inducing yield

Also Published As

Publication number Publication date
JPH0524708U (en) 1993-03-30

Similar Documents

Publication Publication Date Title
US4752168A (en) Expansion dowel assembly
US5256017A (en) Composite blind rivet assembly
JP2652506B2 (en) Double steel pipe type structural member for truss structure
US5919016A (en) Blind threaded nut
JP2515253Y2 (en) Joining device for structural members with stress limiting element
US5252013A (en) Self-plugging blind rivet
WO1994019125A1 (en) Device for connecting concentric tubes
CN111155819A (en) Self-resetting buckling-restrained brace based on SMA material and assembling method thereof
JPH04149345A (en) Double steel pipe type structure member for truss
JP3246656B2 (en) Double steel pipe type structural material
JP3702818B2 (en) Double steel pipe type earthquake-resistant structural material
JP2002088910A (en) Buckling-restrained brace material
JP3404504B2 (en) Connected single tube type structural member
JP3702363B2 (en) Articulated earthquake-resistant structural material
JPH0742758B2 (en) Structural member
JPH0814135B2 (en) Structural member for space truss
JP3656346B2 (en) Seismic isolation column
JPH0473497B2 (en)
JPH0619845Y2 (en) Pin driven expansion anchor
JPH08312024A (en) Earthquake resistant device capable of controlling equivalent yield point and its manufacture
JP2022057242A (en) Wooden shaft member and building frame structure
JPH09317739A (en) One-sided bolt
JP3411487B2 (en) Structure for fixing sleeve-like support to drain body
JPH04238974A (en) Elasto-plastic behavior damper
JPH0242888Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R323533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term