JP3663561B2 - Steel beam - Google Patents

Steel beam Download PDF

Info

Publication number
JP3663561B2
JP3663561B2 JP33426596A JP33426596A JP3663561B2 JP 3663561 B2 JP3663561 B2 JP 3663561B2 JP 33426596 A JP33426596 A JP 33426596A JP 33426596 A JP33426596 A JP 33426596A JP 3663561 B2 JP3663561 B2 JP 3663561B2
Authority
JP
Japan
Prior art keywords
deformation
steel beam
steel
restraining member
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33426596A
Other languages
Japanese (ja)
Other versions
JPH10169089A (en
Inventor
竜巳 堀江
孝典 佐藤
岳彦 寺田
知巳 兼光
徹也 半澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP33426596A priority Critical patent/JP3663561B2/en
Publication of JPH10169089A publication Critical patent/JPH10169089A/en
Application granted granted Critical
Publication of JP3663561B2 publication Critical patent/JP3663561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reinforcement Elements For Buildings (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばビル等、各種構造物の躯体を構成する梁として用いて好適な鉄骨梁に関するものである。
【0002】
【従来の技術】
周知のように、超高層ビル等の各種構造物の躯体において、梁を鉄骨梁とする場合、地震や強風等に起因する過大な外力が鉄骨梁に作用すると、外力によるエネルギーは柱との接合部である梁端部に集中し、この梁端部から降伏点に達して塑性化する。そして、この塑性化領域は、梁端部から梁中央部に順次拡がっていく。
このとき、梁の塑性化による変形が進行すると、その途中で鉄骨梁がその端部の柱との接合部において破断してしまうことがある。
このような現象の発生を回避するためには、鉄骨梁の強度を高めるという手法が基本的にとられている。
【0003】
【発明が解決しようとする課題】
しかしながら、上述したような従来の技術においては、以下のような問題が存在する。
すなわち、鉄骨梁の強度を高めるためには、鉄骨梁の断面積が大きくなり、これによって室内空間が狭められるだけでなく、材料コストの上昇、部材の重量増による躯体全体のコスト上昇等、種々の問題が伴う。しかも、地震や強風等に起因する外力によるエネルギーは梁の端部に集中するので、この部分を基準として鉄骨梁全体の強度を高めると、梁の中央部においては必要以上の強度を有していることとなる。
本発明は、以上のような点を考慮してなされたもので、地震や強風等に起因する外力によるエネルギーを効率吸収することによって、梁の破断等を防止するとともに構造物の耐震性向上に寄与することのできる鉄骨梁を提供することを課題とする。
【0004】
【課題を解決するための手段】
本発明は、構造物の躯体を構成する梁が、その上下にフランジを有したH型鋼材からなる鉄骨梁とされ、前記躯体を構成する柱と接合される該鉄骨梁の端部には、その上下のフランジ間に該鉄骨梁の変形を拘束する変形拘束部材が配設された構成とされ、該変形拘束部材は、プレストレスが付与された鋼棒によって柱に対して緊結されているとともに、その上下面が、前記鉄骨梁の端部においては前記フランジに当接しかつ前記鉄骨梁の中央部に向けて漸次離間する湾曲面で形成されていることを特徴としている。
【0005】
【発明の実施の形態】
以下、本発明に係る鉄骨梁の実施の形態の一例を、図1を参照して説明する。図1において、符号1はビル等の構造物の躯体、2は例えば鋼管造からなる柱、3はH型鋼からなる梁(鉄骨梁)、をそれぞれ示している。
【0006】
この図において、躯体1を構成する柱2と梁3とが接合される部分には、梁3の変形を拘束する変形拘束部材5が配設されている。
【0007】
変形拘束部材5は、梁3の上下のフランジ3a,3aとウェブ3bとで囲まれる空間に位置するよう設けられている。この変形拘束部材5は、例えばコンクリート製で、その一面が柱2の側面に当接する固定面5aとされ、その両側の二面が梁3のフランジ3a,3aに対向する拘束面5b,5bとなっている。
各拘束面5bは、固定面5a側すなわち梁3の端部側においてはフランジ3aに当接し、梁3の中央部側に向けてフランジ3aから漸次離間する湾曲面Aによって形成されている。
【0008】
各拘束面5bを形成する湾曲面Aは、その曲率が、例えば、梁3に降伏歪が生じるときの梁3のフランジ3aの曲率に基づいて設定されている。
これについて詳述すると、この躯体1において梁3に降伏歪が発生した時のフランジ3aの曲率φは、梁3の「せい(梁せい)」をHとすると、一般に、
φ=(|εc|+|εt|)/H
(ただし、εcは梁3の曲げ圧縮歪、εtは曲げ引張歪)
で表される。
梁3での降伏発生箇所は柱2側の端部であり、したがって、この部分に最大モーメントが生じたときの降伏点における梁3のフランジ3aの曲率φfは、
φf=(|cεy|+|tεy|)/H
(ただし、cεyは降伏点での曲げ圧縮歪、tεyは降伏点での曲げ引張歪)で表される。
すなわち、拘束面5bを形成する湾曲面Aの曲率φf’は、梁3に最大モーメントが生じるときの降伏点における前記曲率φfに例えば一致するよう設定されている(φf’=φf)。
【0009】
このような変形拘束部材5は、柱2を挟んでその両側に位置する梁3,3にそれぞれ配設されており、柱2を挟んで設けられたこれら変形拘束部材5,5は、プレストレスが付与された鋼棒7と、これに螺着されたナット8とによって柱2に緊結されている。
【0010】
上記したように、変形拘束部材5の拘束面5bの曲率を、梁3に降伏歪が生じたときのフランジ3aの曲率φfに一致させると、梁3は地震や風力等の外力によって以下のような挙動を示す。
地震や風力等に起因する外力が過大に作用した場合、まず初めに最大モーメントが生じる梁3のフランジ3aの柱2側の端部において、この端部の微少断面での歪が上記曲率φfに達した場合に、このフランジ3aの微少断面は変形拘束部材5の拘束面5bに接触してその変形が強制的に拘束される。すると、梁3のフランジ3aと変形拘束部材5の拘束面5bとの接触点は、梁3の長さ方向中央部寄りに移行する。これに伴って、最大モーメントが生じる位置が前記微少断面に隣接する他の微少断面に移行し、その部分の梁3のフランジ3aについても、変形拘束部材5の拘束面5bに接触することになって、その変形が強制的に拘束されることとなる。
【0011】
このようにして、梁3が端部から降伏点に達して塑性化した段階で、変形拘束部材5によってそれ以上の変形が拘束され、降伏点に達する位置が梁3の中央部寄りに順次移行して塑性化領域が拡がっていくようになっている。
【0012】
上述した梁3では、H型鋼材からなる梁3の端部の上下のフランジ3a,3a間に梁3の変形を拘束する変形拘束部材5が配設され、その上下の拘束面5b,5bが、梁3の端部においてはフランジ3aに当接し、その中央部に向けて漸次離間する湾曲面Aで形成された構成となっている。
これにより、地震や風により強大な外力が作用した場合に、梁3が降伏点に達し塑性化したところでそれ以上の変形を変形拘束部材5で拘束することができ、塑性化する位置を梁3の中央部寄りに順次移行させることができる。このようにして、梁3の塑性化領域を梁3の中央部寄りに拡げつつ、変形拘束部材5で梁3の端部におけるそれ以上の変形を拘束することにより、梁3の端部に一定以上のエネルギーを集中させず、梁3が端部から破断するのを防止すると共に、エネルギーを梁3の中央部側に分散させることができ、梁3全体で無駄なく効率よくエネルギーを吸収することができる。したがって、このような梁3では、変形拘束部材5を備えない単なる梁に比較して、遥かに高いエネルギーを吸収することが可能となり、躯体1の耐震性を大幅に向上させることができる。
しかも、変形拘束部材5は、梁3の上下のフランジ3a,3a間に収められる構成となっているので、梁3の断面積を拡大する必要がなく、室内空間を狭めたり、大幅な部材の重量増によるコスト上昇等といった問題を招くこともなく、高い経済メリットを得ることもできる。
【0013】
なお、上記実施の形態において、本発明に係る鉄骨梁を、躯体1の全体に適用してもよいし、例えば強大な地震等の発生時に変形が予測される特定の層等、躯体1の一部のみに適用してもよい。
また、変形拘束部材5については、コンクリート製に限定するものではなく、所定の耐力と剛性を有しているのであれば、例えば全体を金属のみで形成したり、表面のみを金属で被覆したりしてもよい。
さらに変形拘束部材5の拘束面5bを形成する湾曲面Aの曲率は、上記した梁3の降伏歪発生時における曲率φfに限定するものではなく、例えば前記曲率φfより小さな値として、梁3が降伏点に達する以前(弾性域範囲内)でその変形を拘束するよう設定してもよいし、また、梁3の端部からの破断を生じない範囲内であれば、降伏点を越えた後の塑性域内で梁3の塑性変形をある一定以上とならないように拘束するようにしてもよい。
加えて、これ以外にも上記実施の形態における各構成については、本発明の主旨を逸脱しない範囲内であればいかなるものとしてもよい。
【0014】
【発明の効果】
以上説明したように、本発明の鉄骨梁によれば、H型鋼材からなる鉄骨梁の端部の上下フランジ間に変形拘束部材を配設して、その変形拘束部材をプレストレスを付与した鋼棒によって柱に対して緊結するとともに、この変形拘束部材は、その上下面を、梁の端部においてフランジに当接し、その中央部に向けて漸次離間する湾曲面で形成した構成となっている。これにより、地震や風により強大な外力が作用した場合に、鉄骨梁が端部から降伏点に達するような変形を変形拘束部材で拘束することができ、鉄骨梁の端部にエネルギーを集中させずに鉄骨梁の中央部側に分散させ、鉄骨梁が端部から破断するのを防止することができる。したがって、変形拘束部材を備えない単なる梁に比較して、遥かに高いエネルギーを吸収することが可能となり、このような鉄骨梁を具備した構造物の耐震性を大幅に向上させることができる。
しかも、変形拘束部材は、梁の上下のフランジ間に収められる構成となっているので、梁の断面積を拡大する必要がなく、室内空間を狭めたり、大幅な部材の重量増によるコスト上昇等といった問題を招くこともなく、高い経済メリットを得ることもできる。
【図面の簡単な説明】
【図1】 本発明に係る鉄骨梁を適用した構造物の躯体の一部を示す立断面図である。
【符号の説明】
1 躯体
2 柱
3 梁(鉄骨梁)
5 変形拘束部材
7 鋼棒
A 湾曲面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel beam suitable for use as a beam constituting a frame of various structures such as a building.
[0002]
[Prior art]
As is well known, in the case of various structural structures such as high-rise buildings, when the beam is a steel beam, if excessive external force due to an earthquake or strong wind acts on the steel beam, the energy from the external force is joined to the column. It concentrates on the beam end which is a part, reaches the yield point from this beam end and plasticizes. And this plasticization area | region expands sequentially from a beam edge part to a beam center part.
At this time, when the deformation due to plasticization of the beam proceeds, the steel beam may break at the junction with the column at the end partway along the way.
In order to avoid the occurrence of such a phenomenon, a technique of increasing the strength of the steel beam is basically taken.
[0003]
[Problems to be solved by the invention]
However, the conventional techniques as described above have the following problems.
That is, in order to increase the strength of the steel beam, the cross-sectional area of the steel beam is increased, which not only narrows the interior space, but also increases the material cost, increases the overall cost of the housing due to the increased weight of the member, etc. With the problem. In addition, energy from external forces due to earthquakes, strong winds, etc. concentrates on the end of the beam, so if the strength of the steel beam as a whole is increased based on this part, the center of the beam will have more strength than necessary. Will be.
The present invention has been made in consideration of the above points, and by efficiently absorbing energy due to external forces caused by earthquakes, strong winds, etc., it can prevent breakage of the beam and improve the earthquake resistance of the structure. It is an object to provide a steel beam that can contribute.
[0004]
[Means for Solving the Problems]
In the present invention, the beam constituting the frame of the structure is a steel beam made of an H-shaped steel material having flanges above and below, and at the end of the steel beam to be joined to the column constituting the frame, A deformation restraining member for restraining deformation of the steel beam is disposed between the upper and lower flanges, and the deformation restraining member is fastened to the column by a prestressed steel rod. , the upper and lower surfaces thereof, at the end of the steel beam is characterized by being formed by a curved surface that gradually spaced toward the center portion of the contact and the steel beam to said flange.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment of a steel beam according to the present invention will be described with reference to FIG. In FIG. 1, reference numeral 1 denotes a frame of a structure such as a building, 2 denotes a column made of, for example, a steel pipe structure, and 3 denotes a beam (steel beam) made of H-shaped steel.
[0006]
In this figure, a deformation restraining member 5 for restraining deformation of the beam 3 is disposed at a portion where the column 2 and the beam 3 constituting the housing 1 are joined.
[0007]
The deformation restraining member 5 is provided so as to be positioned in a space surrounded by the upper and lower flanges 3a and 3a of the beam 3 and the web 3b. The deformation restraining member 5 is made of, for example, concrete, one surface of which is a fixed surface 5 a that contacts the side surface of the column 2, and two surfaces on both sides of the deformation restraining member 5 are constraining surfaces 5 b and 5 b facing the flanges 3 a and 3 a of the beam 3. It has become.
Each constraining surface 5 b is formed by a curved surface A that abuts on the flange 3 a on the fixed surface 5 a side, that is, on the end portion side of the beam 3 and gradually separates from the flange 3 a toward the center portion side of the beam 3.
[0008]
The curved surface A forming each constraining surface 5b has a curvature set based on, for example, the curvature of the flange 3a of the beam 3 when a yield strain occurs in the beam 3.
This will be described in detail. The curvature φ of the flange 3a when the yield strain is generated in the beam 3 in this case 1 is generally expressed as follows.
φ = (| ε c | + | ε t |) / H
(Where ε c is the bending compressive strain of beam 3 and ε t is the bending tensile strain)
It is represented by
The yield occurrence location in the beam 3 is an end portion on the column 2 side. Therefore, the curvature φf of the flange 3a of the beam 3 at the yield point when the maximum moment is generated in this portion is
φf = (| c ε y | + | t ε y |) / H
(Where c ε y is the bending compressive strain at the yield point, and t ε y is the bending tensile strain at the yield point).
That is, the curvature φf ′ of the curved surface A forming the constraining surface 5b is set to coincide with, for example, the curvature φf at the yield point when the maximum moment is generated in the beam 3 (φf ′ = φf).
[0009]
Such deformation restraining members 5 are respectively disposed on the beams 3 and 3 located on both sides of the column 2, and these deformation restraining members 5 and 5 provided on both sides of the column 2 are prestressed. Is fastened to the column 2 by a steel rod 7 to which is attached and a nut 8 screwed to the steel rod 7.
[0010]
As described above, when the curvature of the restraining surface 5b of the deformation restraining member 5 is matched with the curvature φf of the flange 3a when the yield strain is generated in the beam 3, the beam 3 is subjected to the following forces due to an external force such as earthquake or wind power. Show good behavior.
When an external force caused by an earthquake or wind power is excessively applied, first, at the end of the flange 3a of the beam 3 where the maximum moment is generated, the end of the flange 3a on the column 2 side is strained at a small cross section at the end to the curvature φf. When it reaches, the minute cross section of the flange 3a comes into contact with the restraining surface 5b of the deformation restraining member 5, and the deformation is forcibly restrained. Then, the contact point between the flange 3 a of the beam 3 and the constraining surface 5 b of the deformation constraining member 5 shifts closer to the center in the length direction of the beam 3. Along with this, the position where the maximum moment occurs shifts to another fine cross section adjacent to the fine cross section, and the flange 3a of the beam 3 in that portion also comes into contact with the restraining surface 5b of the deformation restraining member 5. Therefore, the deformation is forcibly restrained.
[0011]
In this way, when the beam 3 reaches the yield point from the end and plasticizes, further deformation is constrained by the deformation restraining member 5, and the position reaching the yield point sequentially shifts closer to the center of the beam 3 As a result, the plasticization region is expanding.
[0012]
In the beam 3 described above, the deformation restraining member 5 for restraining the deformation of the beam 3 is disposed between the upper and lower flanges 3a, 3a of the end portion of the beam 3 made of H-shaped steel, and the upper and lower restraining surfaces 5b, 5b thereof are arranged. The end portion of the beam 3 is in contact with the flange 3a and is formed with a curved surface A that gradually separates toward the center portion.
Thus, when a strong external force is applied due to an earthquake or wind, when the beam 3 reaches the yield point and plasticizes, further deformation can be constrained by the deformation restraining member 5, and the plasticizing position is determined by the beam 3. It is possible to make a transition to the center part of each. In this way, the deformation restriction member 5 restrains further deformation at the end of the beam 3 while expanding the plasticizing region of the beam 3 closer to the center of the beam 3, so that the end of the beam 3 is constant. Without concentrating the above energy, it is possible to prevent the beam 3 from breaking from the end portion, and to disperse the energy to the central portion side of the beam 3, so that the entire beam 3 can efficiently absorb energy without waste. Can do. Therefore, in such a beam 3, it becomes possible to absorb much higher energy compared to a simple beam not provided with the deformation restraining member 5, and the seismic resistance of the housing 1 can be greatly improved.
Moreover, since the deformation restraining member 5 is configured to be accommodated between the upper and lower flanges 3a, 3a of the beam 3, it is not necessary to enlarge the cross-sectional area of the beam 3, narrowing the indoor space, High economic merit can be obtained without incurring problems such as cost increase due to weight increase.
[0013]
In the above-described embodiment, the steel beam according to the present invention may be applied to the entire case 1, or one of the cases 1 such as a specific layer that is predicted to be deformed when a strong earthquake occurs. You may apply only to a part.
In addition, the deformation restraining member 5 is not limited to concrete, and if it has a predetermined proof stress and rigidity, for example, the whole is formed only of metal, or only the surface is covered with metal. May be.
Further, the curvature of the curved surface A forming the restraining surface 5b of the deformation restraining member 5 is not limited to the curvature φf when the yield strain of the beam 3 is generated. For example, the beam 3 has a value smaller than the curvature φf. It may be set to constrain the deformation before reaching the yield point (within the elastic range), or after exceeding the yield point if within the range that does not cause fracture from the end of the beam 3 The plastic deformation of the beam 3 may be constrained so as not to exceed a certain level within the plastic region.
In addition, any configuration other than the above may be used in the above embodiments as long as it does not depart from the gist of the present invention.
[0014]
【The invention's effect】
As described above, according to the steel beam of the present invention, the deformation restraining member is disposed between the upper and lower flanges at the end of the steel beam made of H-shaped steel material , and the deformation restraining member is prestressed. The deformation restraining member is tightly coupled to the column by a rod , and the upper and lower surfaces thereof are configured to be curved surfaces that abut against the flange at the end of the beam and gradually move away toward the center. . As a result, when a strong external force is applied due to an earthquake or wind, the deformation that the steel beam reaches the yield point from the end can be constrained by the deformation restraining member, and the energy is concentrated on the end of the steel beam. It is possible to prevent the steel beam from being broken from the end portion by dispersing the steel beam at the center side of the steel beam. Therefore, it is possible to absorb much higher energy than a simple beam without a deformation restraining member, and the earthquake resistance of the structure including such a steel beam can be greatly improved.
Moreover, since the deformation restraining member is configured to be accommodated between the upper and lower flanges of the beam, there is no need to increase the cross-sectional area of the beam, the indoor space is narrowed, the cost increases due to a significant increase in the weight of the member, etc. It is possible to obtain high economic benefits without incurring such problems.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view showing a part of a structure of a structure to which a steel beam according to the present invention is applied.
[Explanation of symbols]
1 frame 2 pillar 3 beam (steel beam)
5 Deformation restraint member
7 Steel bar A Curved surface

Claims (1)

構造物の躯体を構成する梁が、その上下にフランジを有したH型鋼材からなる鉄骨梁とされ、前記躯体を構成する柱と接合される該鉄骨梁の端部には、その上下のフランジ間に該鉄骨梁の変形を拘束する変形拘束部材が配設された構成とされ、
該変形拘束部材は、プレストレスが付与された鋼棒によって柱に対して緊結されているとともに、その上下面が、前記鉄骨梁の端部においては前記フランジに当接しかつ前記鉄骨梁の中央部に向けて漸次離間する湾曲面で形成されていることを特徴とする鉄骨梁。
The beam constituting the structural frame is a steel beam made of H-shaped steel having flanges on the upper and lower sides thereof, and the upper and lower flanges are provided at the ends of the steel beam to be joined to the columns constituting the frame. It is a configuration in which a deformation restraining member for restraining deformation of the steel beam is disposed therebetween,
The deformation restraining member is fastened to the column by a prestressed steel rod, and the upper and lower surfaces thereof are in contact with the flange at the end of the steel beam and the central portion of the steel beam A steel beam characterized in that the steel beam is formed with a curved surface that gradually separates toward the surface.
JP33426596A 1996-12-13 1996-12-13 Steel beam Expired - Fee Related JP3663561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33426596A JP3663561B2 (en) 1996-12-13 1996-12-13 Steel beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33426596A JP3663561B2 (en) 1996-12-13 1996-12-13 Steel beam

Publications (2)

Publication Number Publication Date
JPH10169089A JPH10169089A (en) 1998-06-23
JP3663561B2 true JP3663561B2 (en) 2005-06-22

Family

ID=18275416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33426596A Expired - Fee Related JP3663561B2 (en) 1996-12-13 1996-12-13 Steel beam

Country Status (1)

Country Link
JP (1) JP3663561B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100978B2 (en) * 1991-08-13 1995-11-01 菊川汽罐工業株式会社 Reinforcement method of structure and its structure
JPH05331963A (en) * 1992-05-29 1993-12-14 Toshiro Suzuki Lateral buckling-reinforcing structure for structural part
JPH0849349A (en) * 1994-08-08 1996-02-20 Toshiro Suzuki Structure for reinforcing steel structural member

Also Published As

Publication number Publication date
JPH10169089A (en) 1998-06-23

Similar Documents

Publication Publication Date Title
JP2004340301A (en) Seismic isolator
KR100944363B1 (en) Iron frame brace having bucking protection part
JP3366862B2 (en) Damping structure
JP3663561B2 (en) Steel beam
JP3533110B2 (en) Seismic isolation device
JPH11350778A (en) Vibration damper and vibration-damping structure
JP2000120299A (en) Vibration control device for structure
JP3656346B2 (en) Seismic isolation column
JP3690460B2 (en) Damping damper and damping structure
JPH08246547A (en) Pole-beam junction structure
JPH02304106A (en) Energy dispersing mechanism for earthquake resisting structure
JPH10227061A (en) Eccentric type tensile brace structure
JP7172488B2 (en) Energy-absorbing devices and load-bearing walls with energy-absorbing devices
JPS6317990B2 (en)
JP2671694B2 (en) Composite beam
JP4649611B2 (en) Energy absorbing member provided with metal thin plate and manufacturing method thereof
JPH03180675A (en) Earthquake insulating wall
JP2000017781A (en) Earthquake energy absorbing beam member
JP7222825B2 (en) Wooden building structural frame and joint members
JP3543004B2 (en) Seismic isolation device
JPH0544344A (en) Reinforcing method for structure and structure
JPS6221942A (en) Brace structure using high tensile steel strip
JPH0732005U (en) Joint structure of precast prestressed concrete frame
JPH0518140A (en) Reinforced concrete structure
JPS647193B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees