JPS647193B2 - - Google Patents

Info

Publication number
JPS647193B2
JPS647193B2 JP817584A JP817584A JPS647193B2 JP S647193 B2 JPS647193 B2 JP S647193B2 JP 817584 A JP817584 A JP 817584A JP 817584 A JP817584 A JP 817584A JP S647193 B2 JPS647193 B2 JP S647193B2
Authority
JP
Japan
Prior art keywords
concrete
brace
wall
strength
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP817584A
Other languages
Japanese (ja)
Other versions
JPS60152782A (en
Inventor
Kyotada Myai
Hiroaki Yokoyama
Mutsumi Fujii
Teruo Matsutani
Kenichi Kashihara
Yasuo Kuroki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoike Construction Co Ltd
Original Assignee
Konoike Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoike Construction Co Ltd filed Critical Konoike Construction Co Ltd
Priority to JP817584A priority Critical patent/JPS60152782A/en
Publication of JPS60152782A publication Critical patent/JPS60152782A/en
Publication of JPS647193B2 publication Critical patent/JPS647193B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【発明の詳細な説明】 本発明は、耐力が高く靭性に富み、しかもひび
割れの生じにくい、超高層建築などの柔構造に適
した耐震架構を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an earthquake-resistant frame suitable for flexible structures such as high-rise buildings, which has high yield strength, is rich in toughness, and is less prone to cracking.

地震や台風による水平荷重にもたせるには、建
物の要所に耐震壁やブレースを設けるのが最も有
効であり経済的でもあるが、通常の鉄筋コンクリ
ート造耐震壁は、柱・梁によつて構成されるラー
メンに比べて剛性が高く靭性が低いので、換言す
れば硬くて脆いので、地震時に建物に生ずる入力
が大きくなつて破損又は建物の転倒を起し易く不
利であると共に、第4図aに示す如く耐震壁部分
に応力が過度に集中してその部分が変形に追随で
きずに先づ破壊し、それによつて全体の耐力が低
下して建物が崩壊に至ることとなる。
In order to withstand horizontal loads caused by earthquakes and typhoons, it is most effective and economical to install shear walls and braces at key points in a building, but ordinary reinforced concrete shear walls are constructed of columns and beams. Compared to a rigid frame, it has high rigidity and low toughness, in other words, it is hard and brittle, which is disadvantageous because the input that occurs to the building during an earthquake increases, making it more likely to break or fall. As shown, stress is excessively concentrated in the shear wall, and that part cannot follow the deformation and breaks first, which reduces the overall strength and causes the building to collapse.

一方鉄骨ブレースは、大きな断面の形鋼や鋼管
を使用する場合以外は、圧縮側ブレースはすぐ座
屈して効かなくなり、又鉄筋コンクリート造の
柱・梁などに比べて剛性が低いので、鉄筋コンク
リート構造部が最大耐力を超えた時点でもブレー
スの張力はまだ低く、その強度を十分発揮するま
でに至らないうちにコンクリートの方が割れて全
体の耐力が失われてしまう。
On the other hand, with steel braces, unless large cross-sectional steel sections or steel pipes are used, the compression side braces will quickly buckle and become ineffective, and their rigidity is lower than that of reinforced concrete columns and beams, so reinforced concrete structures are Even when the maximum strength is exceeded, the tension in the braces is still low, and the concrete will crack and lose its overall strength before it reaches its full strength.

本発明はこのような諸欠点をすべて克服するよ
うに改善したもので、以下実施例により説明す
る。
The present invention has been improved to overcome all of these drawbacks, and will be explained below with reference to Examples.

第1図は本耐震壁を用いた耐震架構の姿図の一
例で、1は一本又は複数本の高強度鋼のブレース
2を内蔵したプレキヤスト鉄筋コンクリート造の
壁版(以下“PCa版”と略称する)である。ブレ
ース2は引張強さと降伏点が高く弾性変形域が広
く張力の導入が容易なPC鋼棒またはPC鋼より線
などで、薄肉鋼管シース2aの中に入れるか或い
はアンボンド被覆2aを施したアンポンドテンド
ンを使用することにより緊張可能にしておく。又
PCa版の周辺、即ち左右の柱との境界の側面1a
と梁との境界の上下面1bとは、一般のプレキヤ
スト耐震壁に見られるように剪断力を伝えるため
のシヤ−コツターや剪断補強筋又はジベル等は一
切用いずに平滑ないしは適度の粗面なコンクリー
ト面のままとし、それによつて地震水平力がかか
つて架構や変形するときに、柱・梁(以下“フレ
ーム”と略称する)との間で適当な摩擦抵抗力を
保持しながら剪断破壊を起すことなしにスリツプ
するようにする。
Figure 1 is an example of an earthquake-resistant frame using this shear wall. 1 is a precast reinforced concrete wall plate (hereinafter abbreviated as "PCa plate") that incorporates one or more high-strength steel braces 2. ). The brace 2 is a prestressed steel rod or prestressed steel wire that has a high tensile strength and yield point, a wide elastic deformation range, and easy introduction of tension, and is inserted into a thin-walled steel pipe sheath 2a or unbonded with an unbonded coating 2a. Keep tension possible by using tendons. or
The periphery of the PCa version, that is, the side surface 1a of the boundary with the left and right pillars
The upper and lower surfaces 1b of the boundaries between the walls and the beams are smooth or moderately rough surfaces, without using any shear bolts, shear reinforcing bars, dowels, etc. to transmit shear force, as seen in general precast shear walls. By leaving the concrete surface as it is, when the horizontal earthquake force causes the structure to deform, it will prevent shear failure while maintaining an appropriate frictional resistance between the columns and beams (hereinafter referred to as "frames"). Allow the person to slip without waking up.

このPCa版1を所定位置に建て、その四周の鉄
筋コンクリート造又は鉄骨鉄筋コンクリート造の
フレーム、即ち両側の柱3、下方の梁又は基礎梁
4、上方の梁5のコンクリートを打設するのであ
るが、一般には下方の梁又は基礎梁4は下層の躯
体と同時に先打ちされているので、その場合は第
1図のようにブレース2の下部2′をその下端に
定着金具2bをつけて柱3と下方梁4の節点に予
め埋設しておいて、PCa版1を建ててからブレー
ス2と2′をカツプラー等の継手金具2jで継ぐ
ことになる。
This PCa version 1 is erected in a predetermined position, and concrete is poured around the four circumferences of the reinforced concrete or steel reinforced concrete frame, that is, the columns 3 on both sides, the lower beam or foundation beam 4, and the upper beam 5. Generally, the lower beam or foundation beam 4 is cast in advance at the same time as the lower frame, so in that case, as shown in Fig. 1, the lower part 2' of the brace 2 is connected to the column 3 by attaching the fixing fitting 2b to the lower end. They are buried in advance at the nodes of the lower beam 4, and after the PCa plate 1 is erected, the braces 2 and 2' are connected using a joint fitting 2j such as a coupler.

なおブレース2の上部は、柱3と下方梁4の節
点と対向する位置にある柱3と上方梁5の節点
を、薄肉鋼管シース又はアンボンド被覆2aによ
り貫通して、その上端に定着金具2cをつけ、コ
ンクリートの所要強度発現後にブレースの上端を
ジヤツキ等で引張つて緊張し定着する。そのとき
の緊張力は、セツト後のブレース張力がその降伏
点荷重の約50%前後になるように緊張し、このブ
レースの初期張力によつてPCa版とその周囲の
柱・梁のコンクリートには、面内の水平および鉛
直方向にプレストレスが導入されることになる。
なおこの初期張力の値は、最も適当と考えられる
一例を挙げたものであつて必ずしも降伏点荷重の
50%前後に限定したものではなく、例えば30〜40
%或いは60〜70%であつてもそれなりの効果を発
揮するので、本発明はそれ等の範囲すべてを含む
ものとする。
The upper part of the brace 2 is made by penetrating the node between the column 3 and the upper beam 5, which is located opposite the node between the column 3 and the lower beam 4, with a thin-walled steel pipe sheath or an unbonded coating 2a, and attaching the fixing fitting 2c to the upper end thereof. After the concrete has achieved the required strength, the upper end of the brace is pulled with a jack or the like to create tension and fix it. The tension at that time is such that the brace tension after setting is approximately 50% of its yield point load, and the initial tension of this brace causes the concrete of the PCa plate and surrounding columns and beams to , prestress will be introduced in the in-plane horizontal and vertical directions.
Note that this initial tension value is an example that is considered to be the most appropriate, and does not necessarily reflect the yield point load.
It is not limited to around 50%, but for example 30 to 40
% or even 60 to 70%, the present invention includes all such ranges.

連層耐震壁の場合は第1図のように上階にも同
様の耐震壁が積み重ねられ、又連スパン耐震壁で
は隣スパンにも連続して同様の耐震壁を設ける。
In the case of a continuous shear wall, similar shear walls are stacked on the upper floor as shown in Figure 1, and in the case of a continuous span shear wall, a similar shear wall is installed continuously on the adjacent span.

以上によつて本耐震壁の概要と標準的な施工法
について述べたが、次に各効目毎に分析してその
特徴と夫々の効果を詳細に説明する。
The outline of this shear wall and the standard construction method have been described above.Next, we will analyze each effect and explain its characteristics and effects in detail.

() 緊張ブレースについて、 一般のX型ブレース内蔵耐震壁は、第2図a
の状態から同図bのように架構に水平力Pがか
かればブレースは圧縮力を受けすぐ座屈し
て効かなくなる上に、一且部材が圧縮座屈によ
り彎曲や局部変形を起してしまうと急激に架構
耐力が低下して復元力を失う。しかも座屈した
ブレースが面外にはらんでかぶりコンクリート
を押し出し剥落させ、壁体コンクリートを破壊
する。
() Regarding tension braces, a general shear wall with built-in X-shaped braces is shown in Figure 2a.
If a horizontal force P is applied to the frame from the state shown in Figure b, the brace will receive the compressive force and immediately buckle and become ineffective. The structural strength suddenly decreases and the restoring force is lost. Moreover, the buckled braces get caught out of plane and push out the cover concrete, causing it to fall off and destroy the wall concrete.

これに対して第3図cのように、高強度鋼の
ブレースに、予め降伏点荷重Tyの約50%程度
の初期張力Toを与えた本耐震壁は、以下のよ
うな特徴と示す。
On the other hand, as shown in Figure 3c, the present shear wall, in which an initial tension To of about 50% of the yield point load Ty is applied to the high-strength steel braces, has the following characteristics.

(1) 架構に水平力Pがかかれば、第3図aの状
態から同図bのように伸張側ブレースは
引張力が増加してT1=To+△Tとなるのに
対し、収縮側ブレースは引張力が減少し
てT2=T0−T△となる。この場合伸張側ブ
レースの引張力の増加分“+△T”だけ
でなく、収縮側ブレースの張力減少分
“−△T”も、あたかも圧縮ブレースが△で
突張つて抵抗しているような形で架構の水平
耐力に寄与する。即ち両ブレースが何れも同
じだけ有利に働くので、ブレースによる架構
の剛性が初期張力をかけない第2図の場合の
2倍となり、即ち変形量δ2はδ1の1/2となる
ので、地震や台風などによる建物の揺れが半
減する。
(1) When a horizontal force P is applied to the frame, the tensile force on the extension side brace increases from the state shown in Figure 3a to the figure b, and becomes T1 = To + △T, whereas the contraction side brace The tensile force decreases and becomes T 2 =T 0 −T△. In this case, not only the increase in tensile force “+△T” on the extension side brace, but also the decrease in tension “−△T” on the contraction side brace, is as if the compression brace were being stretched and resisting at △. This contributes to the horizontal strength of the frame. In other words, since both braces work equally advantageously, the rigidity of the frame due to the braces is twice that of the case shown in Figure 2 where no initial tension is applied.In other words, the amount of deformation δ2 is 1/2 of δ1, so it is difficult to prevent earthquakes. The shaking of buildings caused by typhoons is halved.

(2) ブレースの軸力はT0を中心として0とTy
≒T1maxの間の引張領域内を上下するだけ
であつて、収縮側ブレースも圧縮力がかかる
ことがないので座屈は起らず、かぶりコンク
リートを押し出して壁体コンクリートを破壊
することがない。
(2) The axial force of the brace is 0 and Ty with T 0 as the center.
Since it only moves up and down within the tension region between ≒T1max and compressive force is not applied to the contraction side brace, buckling does not occur, and the cover concrete will not be pushed out and the wall concrete will not be destroyed.

(3) 従つて地震による繰り返し水平荷重を受け
ても耐力が低下することがなく、復元力を失
わない。
(3) Therefore, even if subjected to repeated horizontal loads due to earthquakes, the proof strength will not decrease and the restoring force will not be lost.

(4) ブレースに降伏点荷重と引張強さが普通剛
材の数倍高く、逆にヤング係数は普通鋼と同
等又はれ以下であるPC鋼棒又はPCより線を
使用するので、初期張力を与えて第3図Cに
おける0〜εy間を二分してもなお一般鋼材
に比べて弾性変形領域(ε0→0およびε0→
εy)は広く、大地震でもブレース軸力を正
の弾性域(0〜εy)内におさめられる。
(4) Since the brace uses PC steel rods or PC stranded wires whose yield point load and tensile strength are several times higher than ordinary rigid materials, and whose Young's modulus is equal to or lower than that of ordinary steel, the initial tension can be reduced. Even if the range from 0 to εy in Figure 3C is divided into two, the elastic deformation region (ε0→0 and ε0→
εy) is wide, and even in the event of a large earthquake, the brace axial force can be kept within the positive elastic range (0 to εy).

() プレストレストコンクリートよる効果 (1) ブレースの初期張力によつて柱・梁および
壁体を鉛直・水平両方向から締め付けてコン
クリートにプレストレスを導入するので、そ
れだけ柱・梁のせん断および引張り、曲げ耐
力と壁体のせん断耐力が向上する。即ち一般
の鉄筋コンクリート構造とプレストレスト鉄
筋コンクリート構造の差だけ、架構の耐震強
度も高くなることとなる。
() Effects of prestressed concrete (1) The initial tension of the braces tightens the columns, beams, and walls both vertically and horizontally, introducing prestress into the concrete, which increases the shear, tension, and bending strength of the columns and beams. and the shear strength of the wall is improved. In other words, the seismic strength of the frame increases by the difference between a general reinforced concrete structure and a prestressed reinforced concrete structure.

(2) それによつて壁体およびフレームのコンク
リートにひび割れが生じにくくなり、又たと
え一旦ひび割れが入つてもその拡大成長が抑
制され、かつ外力がなくなるとそのひび割れ
幅が閉じて消滅し殆んど目に見えない位に復
元することが実験によつて確認済みである。
(2) As a result, cracks are less likely to occur in the concrete of walls and frames, and even if cracks do occur, their expansion and growth is suppressed, and once the external force is removed, the crack width closes and almost disappears. It has been confirmed through experiments that it can be restored to the point where it is invisible to the naked eye.

(3) 第4図a,bは夫々一般の鉄筋コンクリー
ト造((以下“RC”と略称する)と本耐震壁
架構における荷重Pと変形δとの関係を表
し、その中で点線Rはラーメン・一点鎖線W
は耐震壁・実験Σはその合計を示したもので
あつて、この両者を比較すると次のようにな
る。
(3) Figures 4a and 4b represent the relationship between load P and deformation δ in a general reinforced concrete structure (hereinafter abbreviated as "RC") and this shear wall structure, respectively, in which the dotted line R indicates a rigid frame Dot-dashed line W
is the shear wall and experiment Σ is the total, and comparing the two is as follows.

即ち一般のRC耐震壁は第4図aにおける
Wのように、初期剛性とせん断強度は大きい
が硬くて脆く最大耐力以降は急激に耐力を失
つてしまうので、ラーメンRとの組み合せで
は両者の最大耐力到達時点が喰い違い、両者
の最大耐力を加算できない。
In other words, a general RC shear wall, like W in Figure 4a, has high initial stiffness and shear strength, but is hard and brittle and rapidly loses its strength after the maximum strength. There is a discrepancy at the time when the strength is reached, and the maximum strength of both cannot be added.

それに比べて本耐震壁は第4図bにおける
Wのように、ブレース緊張によるプレストレ
スによつてコンクリートのひび割れ発生を遅
延・減少させ、層間変形の進捗過程に於いて
コンクリート耐震壁が最大耐力を発揮する時
期を遅らせ、鋼製ブレースが降伏荷重に達す
る時点に近づけることができるので、両者の
最大耐力をうまく相乗させることになる。そ
してこの拘束によつて最大耐力以降もクラツ
クの拡大による耐力低下を防止するので第4
図bのようになり、ラーメンRとの組み合せ
では両者の最大耐力を加算できる。
In comparison, this shear wall delays and reduces the occurrence of cracks in the concrete by prestressing due to brace tension, as shown by W in Figure 4b, and the concrete shear wall reaches its maximum bearing capacity in the process of interstory deformation. By delaying the onset of the load and bringing it closer to the point at which the steel brace reaches its yield load, the maximum yield strength of both can be effectively synergized. This restraint prevents the strength from decreasing due to the expansion of the crack even after the maximum strength.
As shown in Figure b, when combined with Ramen R, the maximum yield strength of both can be added.

() スリツプ効果 従来はPCa壁版と現場打ちフレームとを一体
化することが必要不可欠と考えて、両者の打ち
継ぎ境界面には相対変位を起さずにせん断応力
を完全に伝達できるだけのシヤーコツターや相
当多量のせん断補強筋またはジベル等を手間と
費用をかけ苦心して施工しているのが現状であ
るが、本耐震壁はこの常識を破つてこれ等のせ
ん断補強を一切廃し、地震水力がかかつた場合
にその境界面で逆に自然にスリツプさせるよう
にしたものである。即ち発想の転換によつて従
来の耐震壁では求められなかつた次のような
数々の新しい利点を積極的に生み出すことがで
きる。
() Slip effect Conventionally, it was considered essential to integrate the PCa wall slab and cast-in-place frame, and a shear slipper was used at the interface between the two to completely transmit shear stress without causing relative displacement. At present, a considerable amount of shear reinforcing bars, dowels, etc. are painstakingly constructed, taking much time and expense, but this shear wall breaks from this common sense and completely eliminates such shear reinforcement, making it possible to prevent earthquake hydraulic power. In the event of a slippage, it is designed to naturally slip at the boundary surface. In other words, by changing our way of thinking, we can proactively create a number of new advantages that were not possible with conventional earthquake-resistant walls, such as the following.

(1) 一体構造のRC壁に比べて初期剛性が低い
ので、それだけ建物の固有周期が長くなつて
地震時における建物への入力が小さくなる。
即ち従来の超高層建築によく使われているス
リツト入り耐震壁と同様の柔構造耐震壁であ
り、しかもスリツト入り耐震壁のように壁中
央部に面倒で目障りなスリツトなどがなく、
壁周辺の目立たない個所でスリツプさせるだ
けであるので、何につけ好都合である。
(1) Since the initial stiffness is lower than that of a monolithic RC wall, the natural period of the building becomes longer and the input to the building during an earthquake becomes smaller.
In other words, it is a flexible shear wall similar to the shear walls with slits that are often used in conventional high-rise buildings, but unlike the shear walls with slits, it does not have the troublesome and unsightly slit in the center of the wall.
This is very convenient as you only need to slip it in an inconspicuous spot around the wall.

(2) 実験結果によると最大耐力到達以降も耐力
低下が殆どなく、大きな層間変形に至るまで
その耐力を持続し、塑性率の大きい耐震壁が
得られたので、それに伴つて建物の靭性を増
すことができる。
(2) According to the experimental results, there was almost no decrease in the strength even after the maximum strength was reached, and the strength was maintained until large inter-story deformation occurred, and a shear wall with a high plasticity ratio was obtained, thereby increasing the toughness of the building. be able to.

(3) またPCa壁周辺とフレーム内内法との境界
面に於て、緊張ブレースの締め付け力により
内外のコンクリートが相互に押圧された状態
で摩擦力に低抗しながら擦動するので、その
ときに大きなエネルギーが消費される。即ち
地震によつて建物に入つたエネルギーを有効
に吸収できて被害を防止できるが、このエネ
ルギー吸収は従来の耐震壁やブレースのよう
に、コンクリートの亀裂破損またはブレース
鋼材の塑性変形や座屈などの後遺症を残すも
のでなく、単なる境界面でのスリツプ現象だ
けに留まるので、地震後の補修が不要でその
面でも有利である。
(3) Also, at the interface between the PCa wall area and the inner wall of the frame, the internal and external concrete is pressed against each other by the tightening force of the tension brace and rubs against each other while resisting the frictional force. Sometimes a large amount of energy is consumed. In other words, the energy that enters the building due to an earthquake can be effectively absorbed and damage can be prevented, but unlike conventional earthquake-resistant walls and braces, this energy absorption can be caused by cracks in the concrete, plastic deformation or buckling of the brace steel, etc. Since it does not leave behind any aftereffects and only causes slippage at the interface, it is advantageous in that it does not require repairs after an earthquake.

(4) しかしこのスリツプによつて架構変形も吸
収してしまうので、PCa壁版中央部には大き
な層間変形角までクラツクが生じず、実験結
果でも一般構造の壁が多数のクラツクが発生
して大きく破壊するのに比べ、このスリツプ
耐震壁は最終載荷段階に於ても壁中央部に斜
めクラツクが一本発生しただけでその他には
殆どクラツクが生ぜず、壁の破損が格段に軽
微であるという顕著な特色を示した。
(4) However, since this slip also absorbs the structural deformation, no cracks occur in the central part of the PCa wall slab up to a large interlayer deformation angle, and experimental results show that many cracks occur in walls of general structures. Compared to a slip shear wall that would cause major damage, even at the final loading stage, only one diagonal crack occurred in the center of the wall, and there were almost no other cracks, and the damage to the wall was much smaller. It showed a remarkable feature.

即ち相当規摸の地震を受けても本耐震壁は
壁の中に生じるクラツクの代りに、よく見な
いと識別できない程度の壁周辺のスリツプと
壁コーナー部の局部的な小規模圧潰のみで済
むことになる。
In other words, even in the event of a fairly large earthquake, this shear wall will only suffer from slips around the wall that cannot be discerned unless you look closely, and small-scale local collapses at the wall corners, instead of cracks that occur within the wall. It turns out.

(5) なおたとえ同地震時に若干のクラツクが発
生しても、地震外力がなくなると前述のよう
に緊張ブレースの締め付け力によつてそのク
ラツク幅が閉じてしまうので、以上を総合し
てメンテナンスフリーの耐震壁と云うことが
できる。
(5) Even if a slight crack occurs during the same earthquake, the width of the crack will be closed by the tightening force of the tension brace as mentioned above once the external earthquake force is removed, so all in all, it will be maintenance-free. It can be said to be a seismic wall.

(6) また施工上から見ても、PCa壁版とフレー
ムの間に手間と費用のかかるシヤ−コツター
やせん断補強筋またはジベル等が一切なく、
面倒なことは何もしなくてよいので、極めて
簡単容易で経済的であり工期的にも有利であ
る。
(6) Also, from a construction perspective, there is no need for labor-intensive and costly shear bolts, shear reinforcing bars, or dowels between the PCa wall slab and the frame.
Since there is no need to do anything troublesome, it is extremely simple, easy, economical, and advantageous in terms of construction period.

() まとめ 以上各項目に分割して夫々の特徴と効果につ
いて記述したが、これ等を総合して工夫すれば
更に相乗効果を発揮して種々な新しいメリツト
を生み出すものと考えられる。その主なものに
ついて述べれば次の如くである。
() Summary We have described the characteristics and effects of each item above, but it is believed that if these items are combined and devised, they will have a synergistic effect and produce various new benefits. The main points are as follows.

(1) 高強度、高品質の鋼材とコンクリートを使
用した建物等の構造躯体に本耐震壁を組み込
めば、丈夫で粘り強く、高精度で信頼性のあ
る架構を築造することができる。
(1) By incorporating this shear wall into the structural framework of a building or other building using high-strength, high-quality steel and concrete, it is possible to construct a strong, tenacious, highly accurate, and reliable frame.

(2) 耐震壁のコンクリート厚とその中に内蔵す
るPC鋼ブレースの量や、コンクリートと使
用鋼材の強度などを適切に選択することによ
つて、ブレースの初期張力と、それによるフ
レームおよびPCa壁版コンクリートのプレス
トレス量、並びに耐震壁コンクリートと鋼製
ブレースの地震水平力分担率などを自由に変
えることができて、建物全体としての耐力・
剛性および靭性を所望通りに調整することが
可能である。換言すれば剛性の高い強度指向
型の建物から、粘い強い靭性指向型の建物ま
で設計することができ、極端な例としては耐
震壁コンクリート又は耐震壁とフレームのコ
ンクリートをゼロとした「RC造柱・梁」+
「PC鋼緊張ブレース」又は「鉄骨造柱・梁」
+「PC鋼緊張ブレース」のような柔構造建築
も成立する。
(2) By appropriately selecting the concrete thickness of the shear wall, the amount of PC steel braces built into it, and the strength of the concrete and steel used, the initial tension of the braces and the resulting frame and PCa wall can be adjusted. It is possible to freely change the prestress amount of concrete slabs and the seismic horizontal force sharing ratio of shear wall concrete and steel braces, thereby increasing the strength and strength of the building as a whole.
It is possible to adjust the stiffness and toughness as desired. In other words, it is possible to design anything from a highly rigid, strength-oriented building to a tenacious, toughness-oriented building.As an extreme example, we can design an RC building with no concrete for shear walls or concrete for shear walls and frames. Columns/beams”+
"PC steel tension brace" or "steel frame column/beam"
+Flexible structures such as "PC steel tension braces" are also possible.

(3) 以上の通りこの緊張ブレース内蔵プレキヤ
スト・スリツプ耐震壁を有効に組み入れて適
切な設計をすれば、 (i) 通常考えられる程度の地震や台風に対し
ては建物の揺れが小さくて快適な居住性が
保たれ、 (ii) 万一未曽有の大地震に遭遇したとして
も、ブレースに圧縮座屈が起らず、耐震壁
のコンクリートにも殆どクラツクが生ぜ
ず、たとえ幾許かのクラツクが出てもすぐ
閉じてしまい復元力があつて建物に有害な
損傷を残すことがないようにできるので、
安全性が確保されると共に補修費もかから
ないこととなる。
(3) As mentioned above, if this precast slip shear wall with built-in tension braces is effectively incorporated and properly designed, (i) the building will not sway easily and will be comfortable in the event of an earthquake or typhoon of the magnitude normally considered; (ii) Even if an unprecedented earthquake were to occur, compression buckling would not occur in the braces, and there would be almost no cracks in the concrete of the shear walls; Even if a leak occurs, it closes immediately and has a resilient force that prevents harmful damage to the building.
Safety is ensured and there are no repair costs.

(iii) かつ緊張ブレースは架構に高い水平耐力
と靭性並びに適当な剛性を付与し、一方周
辺をスリツプさせるようにしたプレキヤス
トコンクリートの耐震壁は、一般のRC造
又はPCa造耐震壁の欠点である硬さ脆さが
なくなつて程よい剛性と高い靭性を発揮す
るので、両者の組み合せによつて丈夫で粘
り強い建物が経済的に得られる。
(iii) Tension braces give the frame high horizontal strength, toughness, and appropriate rigidity, while precast concrete shear walls with slips around the periphery overcome the drawbacks of ordinary RC or PCa shear walls. It eliminates certain hardness and brittleness and exhibits moderate rigidity and high toughness, so by combining the two, a strong and durable building can be economically obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本耐震壁を用いた耐震架構の姿図の一
例を示し、第2図a,bは夫々、一般のX型ブレ
ース内蔵耐震壁の形、および水平荷重を受けたと
きの変形とブレース張力との関係を、第3図a,
b,cは夫々、内蔵ブレースに初期張力を与えた
本耐震壁の初期の状態および水平荷重を受けたと
きの変形とブレース張力との関係、並びにブレー
ス材の張力と歪の関係を示す図であり、第4図
a,bは夫々、一般の鉄筋コンクリート造と本耐
震壁架構におけるラーメンと耐震壁の荷重と変形
との関係を表して比較したものである。 1……プレキヤスト鉄筋コンクリート造壁版、
1a……壁版側面、1b……壁版上下面、2……
ブレース、2′……ブレースの下部、2a……薄
肉鋼管シース又はアンボンド被覆、2b,2c…
…定着金具、2j……継手金具、3……柱、4…
…下方梁又は基礎梁、5……上方梁。
Figure 1 shows an example of an earthquake-resistant frame using this shear wall, and Figures 2 a and b show the shape of a general shear wall with built-in X-shaped braces and its deformation when subjected to horizontal loads, respectively. The relationship with the brace tension is shown in Figure 3a,
b and c are diagrams showing the initial state of this shear wall with initial tension applied to the built-in braces, the relationship between deformation and brace tension when subjected to horizontal loads, and the relationship between tension and strain of the brace material, respectively. Figures 4a and 4b show and compare the relationship between the load and deformation of the rigid frame and shear wall in a general reinforced concrete structure and this shear wall frame, respectively. 1... Precast reinforced concrete wall plate,
1a... Wall plate side surface, 1b... Wall plate top and bottom surface, 2...
Brace, 2'... Lower part of brace, 2a... Thin-walled steel pipe sheath or unbonded coating, 2b, 2c...
...Fixer fitting, 2j...Joint fitting, 3...Column, 4...
...Lower beam or foundation beam, 5...Upper beam.

Claims (1)

【特許請求の範囲】[Claims] 1 地震水平力がかかつたときにスリツプするよ
うに周辺を平滑ないしは適度の粗面なコンクリー
ト面のままとし、高強度鋼のブレースを内蔵した
プレキヤスト鉄筋コンクリート造壁版を所定位置
に建て、その周囲に鉄筋コンクリート造又は鉄骨
鉄筋コンクリート造の柱・梁のコンクリートを打
設してブレースの一端を柱・梁の節点に定着し、
コンクリートの所要強度発現後に対向する柱・梁
の節点を貫通したブレースの他端を緊張定着して
ブレースに降伏点荷重の約50%前後乃至はそれ以
上又はそれ以下の初期張力を与え、それによつて
壁版とその周囲の柱.梁のコンクリートにプレス
トレスを導入するようにした、緊張ブレース内蔵
プレキヤスト.スリツプ耐震壁。
1. The surrounding area will be left with a smooth or moderately rough concrete surface so that it will slip when earthquake horizontal force is applied, and precast reinforced concrete wall slabs with built-in high-strength steel braces will be erected at designated locations, and the surrounding area will be Place concrete for reinforced concrete or steel-framed reinforced concrete columns and beams, and fix one end of the brace to the node of the column and beam.
After the required strength of the concrete has been achieved, the other end of the brace that has passed through the nodes of the opposing columns and beams is fixed under tension to give the brace an initial tension of approximately 50% of the yield point load, or more or less than that. The wall slab and the pillars around it. Precast with built-in tension braces that introduce prestress into the concrete of the beam. Slip shear wall.
JP817584A 1984-01-19 1984-01-19 Tension brace build-in precast slip earthquake-proof wall Granted JPS60152782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP817584A JPS60152782A (en) 1984-01-19 1984-01-19 Tension brace build-in precast slip earthquake-proof wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP817584A JPS60152782A (en) 1984-01-19 1984-01-19 Tension brace build-in precast slip earthquake-proof wall

Publications (2)

Publication Number Publication Date
JPS60152782A JPS60152782A (en) 1985-08-12
JPS647193B2 true JPS647193B2 (en) 1989-02-07

Family

ID=11685981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP817584A Granted JPS60152782A (en) 1984-01-19 1984-01-19 Tension brace build-in precast slip earthquake-proof wall

Country Status (1)

Country Link
JP (1) JPS60152782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315894U (en) * 1989-06-26 1991-02-18

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146370A (en) * 1985-12-20 1987-06-30 三井建設株式会社 Flexible earthquake resistant wall
JP7217454B2 (en) * 2018-12-28 2023-02-03 株式会社森林経済工学研究所 Structural reinforcement device and structure reinforcement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315894U (en) * 1989-06-26 1991-02-18

Also Published As

Publication number Publication date
JPS60152782A (en) 1985-08-12

Similar Documents

Publication Publication Date Title
US5561956A (en) Concrete elements and connectors therefor
KR101547109B1 (en) Seismic reinforcement method of building using out-frame and high ductile link member
Aristizabal-Ocfaoa Seismic behavior of slender coupled wall systems
JP3226492B2 (en) Seismic isolation structure of high-rise building
JPS647193B2 (en)
JP3306226B2 (en) Attached column base structure of multi-story shear wall
JPH10280725A (en) Damping skeleton construction
JP2710737B2 (en) Steel reinforced concrete column base and steel column base
JPH01271565A (en) Ferro-concrete composite column covered with steel pipe
JP2961220B2 (en) Extension method for existing structures
JP3656346B2 (en) Seismic isolation column
JPH05272198A (en) Core column
JPH079923Y2 (en) Frame structure of steel braces
JPH02510B2 (en)
JP2514839B2 (en) Seismic structure of high-rise buildings
JPH0329937B2 (en)
McMullin Concrete Lateral Design
JP3023709B2 (en) Frame structure
JPS647192B2 (en)
Bush et al. Seismic Analysis of RCC Building with Different Shape of Shear Wall and Without Shear Wall
JP2955960B2 (en) Steel wall structure for damping structure
JPH01271554A (en) Constructing method for steel pipe coating-reinforced concrete compound pillar and reinforcement-arranged preassembled structure
JPS6229588B2 (en)
JPH0742805B2 (en) Steel bar truss built-in rebar concrete column
JP2000204567A (en) Foundatton structure