JPH0329937B2 - - Google Patents

Info

Publication number
JPH0329937B2
JPH0329937B2 JP3749684A JP3749684A JPH0329937B2 JP H0329937 B2 JPH0329937 B2 JP H0329937B2 JP 3749684 A JP3749684 A JP 3749684A JP 3749684 A JP3749684 A JP 3749684A JP H0329937 B2 JPH0329937 B2 JP H0329937B2
Authority
JP
Japan
Prior art keywords
column
tendon
tension
construction
tendons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3749684A
Other languages
Japanese (ja)
Other versions
JPS60181457A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3749684A priority Critical patent/JPS60181457A/en
Publication of JPS60181457A publication Critical patent/JPS60181457A/en
Publication of JPH0329937B2 publication Critical patent/JPH0329937B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Description

【発明の詳細な説明】 本発明は、鉄筋コンクリート造柱の耐力と靭性
を簡単な方法で効果的に向上させるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention effectively improves the strength and toughness of reinforced concrete columns in a simple manner.

そもそも鉄筋コンクリート造(以下“RC造”
と略称)の柱は一般に鉄骨造などの柱に比べて、
圧縮荷重に対しては強いが、引張り、曲げ、せん
断荷重に弱く、かつ硬くて脆いので、一旦亀裂が
発生すると急激に耐力が低下するという欠点があ
る。これに対して鉄骨造の柱は逆に引張り、曲げ
には強いが、圧縮座屈に弱く、かつ耐火被覆と防
錆塗装に手間と費用がかかるという短所がある。
この両者の長所を生かし短所を補うものとして一
般には高層建築などに鉄骨鉄筋コンクリート造柱
が多用されているが、これはRC造柱に比べて手
間がかかる上に相当コスト高となる。その他にプ
レストレストコンクリート造(以下“PC造”と
略称)の柱も考えられるが、これには大がかりな
設備と段取り並びに厳密な品質および施工管理と
それ等を駆使する特殊技術が必要であつて、それ
だけ工費と工期もかかるので、特に長大スパンで
応力の巨大な特殊な場合を除いて一般建築には殆
ど使用されていないのが現状である。
In the first place, reinforced concrete construction (hereinafter referred to as “RC construction”)
(abbreviated as ) columns are generally compared to steel-framed columns, etc.
Although it is strong against compressive loads, it is weak against tensile, bending, and shear loads, and is hard and brittle, so it has the disadvantage that once a crack occurs, its yield strength decreases rapidly. On the other hand, steel-framed columns have the disadvantage that although they are strong in tension and bending, they are susceptible to compression buckling, and that fire-resistant coatings and anti-corrosion coatings are time-consuming and costly.
Generally speaking, steel reinforced concrete columns are often used in high-rise buildings to take advantage of the advantages of both and compensate for their disadvantages, but this is more labor-intensive and considerably more expensive than RC columns. Another option is to use prestressed concrete columns (hereinafter referred to as "PC construction"), but this requires large-scale equipment and setup, strict quality and construction management, and special technology that makes full use of them. Because of the high construction cost and construction time, it is currently rarely used in general construction, except in special cases with particularly long spans and enormous stress.

この障壁を除去するために、大きなプレストレ
スを導入する従来の本格的なPC造、即ちフルプ
レストレツシング(FPC)およびパーシヤルプ
レストレツシング(PPC)構造以外に、RC造と
PC造の中間的な構造としてプレストレスト鉄筋
コンクリート(PRC)造が考えられ、最近建設
省告示その他でその設計規準や施工指針などが制
定された。これは軽度のプレストレスを導入する
だけであつて、それ程大がかりな設備や段取りを
必要とせず、品質および施工管理も比較的容易で
あるにも拘らず、これをうまく活用すれば鉄筋コ
クリート造の耐力・靭性の向上、ひび割れや撓み
の防止、はり成・スラブ厚の減小と軽量化、長ス
パン空間の確保、建物の品質向上などに顕著な効
果を発揮でき、しかもコストは余りかからないの
で、手軽に利用できる有効な構造方式として今後
の発展が期待されているものである。
In order to remove this barrier, in addition to the conventional full-scale PC structures that introduce large prestresses, namely full pre-stressing (FPC) and partial pre-stressing (PPC) structures, RC structures and
Prestressed reinforced concrete (PRC) construction has been considered as an intermediate structure to PC construction, and its design standards and construction guidelines have recently been established in Ministry of Construction notifications and other publications. Although this method only introduces a mild prestress and does not require large-scale equipment or setup, and quality and construction management are relatively easy, if it is used well, reinforced cocrete construction can be improved. It has remarkable effects on improving strength and toughness, preventing cracks and deflection, reducing beam/slab thickness and weight, securing long span spaces, and improving the quality of buildings.Moreover, it does not cost much. Future development is expected as an easy-to-use and effective structural method.

本発明はPC鋼より線またはPC鋼棒(以下総称
して“PCテンドン”という)の配置とその緊張
方法などを工夫することによつて、さらに設計の
合理化と施工の簡便化などを進め、上記のメリツ
トの倍増を図つたものであつて、以下実施例に基
づいて詳細に説明する。
The present invention further streamlines the design and simplifies construction by devising the arrangement of PC steel strands or PC steel bars (hereinafter collectively referred to as "PC tendons") and the method of tensioning them. This is intended to double the above merits, and will be described in detail below based on embodiments.

先づ鉄筋コンクリート造の基礎または基礎ばり
2の中に、それから立上る柱1の四隅位置にPC
テンドンの下端定着部4aを、その下端に定着金
具4bを、上端に継手金具4jをつけて埋設す
る。基礎および基礎ばりのコンクリート打設後、
最下階の柱1の主筋1aとフープ1bの内側に、
柱断面の対角線方向に各階をX形に、複数階を連
続して曲げ、PCテンドン4を内蔵した鋼管シー
ス5を建て、PCテンドン4の下端を継手金具4
jに接続して鋼管シース5を正規の位置に保持
し、最下階のコンクリートを打設する。この場合
最下階柱の上端の大ばり3との接合部に於ては、
一般には第1図および第2図のように鋼管シース
5は、柱1の四隅の主筋のすぐ内側で、交差する
大ばり主筋3aの外側を鉛直に立上り、続いて上
階でも同様に柱断面の対角線方向に折り曲げてX
形に配置する。
First, install PCs in the reinforced concrete foundation or foundation beam 2, and then at the four corners of the pillar 1 that will rise.
The lower end fixing portion 4a of the tendon is buried with a fixing fitting 4b attached to its lower end and a joint fitting 4j attached to its upper end. After pouring concrete for the foundation and foundation beams,
Inside the main reinforcement 1a and hoop 1b of the pillar 1 on the lowest floor,
Bending each floor into an X-shape in the diagonal direction of the column cross section, multiple floors are successively bent, a steel pipe sheath 5 with a built-in PC tendon 4 is built, and the lower end of the PC tendon 4 is connected to a fitting 4.
j to hold the steel pipe sheath 5 in its proper position, and concrete for the lowest floor is poured. In this case, at the junction with the large burr 3 at the top of the lowest floor column,
Generally, as shown in Figs. 1 and 2, the steel pipe sheath 5 rises vertically on the outside of the intersecting large beam main reinforcements 3a just inside the main reinforcements at the four corners of the column 1, and then similarly on the upper floor. Fold in the diagonal direction of
Place it in a shape.

第1図の矢印(−−→)はこのX形の、水平投
影面における方向を示したものである。上階に於
てもPCテンドン4を内蔵した鋼管シース5を正
規の位置に保持して所要の配筋とコンクリート打
設を行い、以下同様作業の繰り返しによつて所望
の複数階を築造する。而してコンクリートの所要
強度発現後にこの複数階の最上部に於て、鋼管シ
ース内のPCテンドンの上端をジヤツキ等で緊張
して定着金具で定着し、最下階の柱脚部より鋼管
シース5内へグラウト材を上端から溢れ出るまで
ポンプで圧入することによつて、PCテンドン4
と鋼管シース5の内面との空隙が全長に亘つて完
全にグラウト材で充填されることになる。これに
よつてこの複数階の柱のコンクリートには鉛直方
向にプレストレスが導入される。
The arrows (--→) in FIG. 1 indicate the direction of this X shape in the horizontal projection plane. On the upper floor as well, the steel pipe sheath 5 containing the PC tendons 4 is held in its proper position, and the required reinforcement and concrete pouring are carried out, and the same operations are repeated to construct a desired plurality of floors. After the required strength of the concrete has been achieved, the upper end of the PC tendon inside the steel pipe sheath is tightened with a jack or the like at the top of the multiple floors and fixed with a fixing fitting, and the steel pipe sheath is attached from the base of the column on the lowest floor. By press-fitting the grout into the PC tendon 4 with a pump until it overflows from the upper end,
The gap between the inner surface of the steel pipe sheath 5 and the inner surface of the steel pipe sheath 5 is completely filled with the grout material over the entire length. This introduces vertical prestress into the concrete of this multi-story column.

なおPCテンドンの種類と直径およびその緊張
力の大きさを選択することによつて、導入するプ
レストレス量を自由に調節できる。高層建築で階
数の多いときは、2〜3階ないしは数階づつ区切
つて緊張し、その上はPCテンドンを継手金具で
接続して躯体を築造しながらさらに第2段以降の
複数階を緊張して行くようにすればよい。この場
合各段の複数階のPCテンドンと緊張力は同一で
なくてもよく、例えば上に行く程PCテンドンを
順次細くして緊張力を小さくし、各階の導入プレ
ストレス量を夫々所望の値に調制できる。プレス
トレスの導入によつて鉄筋コンクリート造柱の引
張り、曲げ、せん断耐力が向上し、ひび割れが生
じなくなることは公知であるので説明を省略す
る。ただ圧縮力に対してはPCテンドンの緊張に
よるプレストレス量だけコンクリートの圧縮応力
度を上げる必要があるが、この値は一般に10〜50
Kgf/cm2程度であるので単位セメント量を若干増
すなど使用コンクリートの調合を加減することに
よつて簡単にでき、或は柱の断面を僅かに太くし
てもよい。
Note that by selecting the type and diameter of the PC tendon and the magnitude of its tension, the amount of prestress introduced can be freely adjusted. When building a high-rise building with many floors, tension is created by dividing the 2nd or 3rd floor or several floors at a time, and then connecting PC tendons with fittings to build the frame and tensioning the second and subsequent floors. All you have to do is go. In this case, the tension force of the PC tendons on multiple floors of each stage does not have to be the same; for example, the PC tendons are made thinner as they go up to reduce the tension force, and the amount of prestress introduced on each floor is set to a desired value. It can be adjusted to It is well known that the introduction of prestress improves the tensile, bending, and shear strength of reinforced concrete columns and prevents cracks from occurring, so the explanation will be omitted. However, for compressive force, it is necessary to increase the compressive stress level of the concrete by the amount of prestress caused by the tension of the PC tendons, but this value is generally 10 to 50.
Since it is approximately Kgf/cm 2 , it can be easily achieved by adjusting the mixture of concrete used, such as by slightly increasing the amount of cement per unit, or by making the cross section of the column slightly thicker.

次にPCテンドンを各階柱断面の対角線方向に
X形に配置することが本発明の特徴の一つであつ
て、その意義と利点について列記し、さらにX形
配置とプレストレスの相乗効果などについて取り
まとめると、 (1) 第一に各階X形に配置することによつて、
PCテンドンが同時にブレースないしはトラス
として効き、柱のせん断および曲げ耐力がそれ
だけ増大する。
Next, one of the features of the present invention is that the PC tendons are arranged in an X-shape in the diagonal direction of the cross section of each floor column, and the significance and advantages thereof will be listed, and the synergistic effect of the X-shape arrangement and prestressing will be explained. To summarize, (1) First, by arranging each floor in an X-shape,
The PC tendons simultaneously act as braces or trusses, increasing the column's shear and bending strength accordingly.

(2) しかもそれを柱断面の対角線方向に入れるこ
とによつて、各テンドンが何れもX−X方向と
y−y方向の双方の水平荷重に対するブレース
ないしはトラスとして有効に働くので、最少数
の4本のPCテンドンによつて、あらゆる方向
からの地震荷重に対処できる。
(2) Furthermore, by placing them in the diagonal direction of the column cross section, each tendon effectively acts as a brace or truss against horizontal loads in both the X-X direction and the y-y direction, so the minimum number of tendons can be Four PC tendons can handle earthquake loads from all directions.

(3) 一般にはPCストランドや鋼棒のような細い
ブレースは、圧縮荷重に対してはすぐ座屈して
しまつて効かなくなるので、片方の引張側ブレ
ースだけしか有効でないが、この場合は緊張に
よつて初期張力を与えるので、水平外力に対し
て伸張側ブレースだけでなく収縮側ブレースも
引張領域だけで使われることとなつて圧縮応力
は生じない。そして収縮側ブレースの張力減少
分もあたかも圧縮ブレースが突張つて効くよう
な形で水平耐力に寄与するので、緊張しない一
般のブレースに比べて2倍の効果がある。
(3) In general, thin braces such as PC strands or steel rods buckle easily under compressive loads and become ineffective, so only one tension-side brace is effective, but in this case, due to tension, Since the initial tension is applied to the horizontal external force, not only the extension side brace but also the contraction side brace are used only in the tension region, and no compressive stress is generated. The reduction in tension on the contraction side brace also contributes to the horizontal proof stress in the same way as if a compression brace were being stretched, so it is twice as effective as a general brace that does not have tension.

(4) PCテンドンは鉄筋や一般鋼材に比べて降伏
荷重と引張り強さが数倍高いので、ブレースと
しての効果も僅かの鋼材量で足り、通常寸法の
柱断面の中に無理なく納まり、かつ経済的であ
る。
(4) Since the yield load and tensile strength of PC tendons are several times higher than that of reinforcing bars or general steel materials, the effect as a brace requires only a small amount of steel material, and it can fit comfortably within the cross section of a column with normal dimensions. Economical.

(5) 鉄筋コンクリート造は硬くて脆く靭性に欠け
る欠点があるが、この緊張ブレースを効かせる
ことによつて柱のひび割れを制御し、ひび割れ
発生後もその成長を抑制し、また外力が消えれ
ばそのひび割れ幅が閉じて復元するという働き
をするので、当該柱の靭性が飛躍的に向上す
る。
(5) Reinforced concrete structures have the disadvantage of being hard, brittle, and lacking in toughness, but by applying this tension brace, it is possible to control cracks in the columns, suppress the growth of cracks even after they occur, and prevent the cracks from occurring once the external force is removed. Since the crack width closes and restores its shape, the toughness of the column is dramatically improved.

(6) 従つてこの全方向ブレース兼用PCテンドン
によるプレストレストコンクリート造柱を活用
してうまく設計すれば、一般には鉄骨鉄筋コン
クリート造又は鉄骨造としなければ設計困難な
高層ないしは超高層建築も、鉄骨を用いずに経
済的に短工期で建設できる。
(6) Therefore, if prestressed concrete columns with omnidirectional braces and PC tendons are properly designed, high-rise or ultra-high-rise buildings that are generally difficult to design without steel reinforced concrete or steel structures can also be constructed using steel frames. It can be constructed economically and in a short construction period.

(7) 施工上から見ても、鋼管シースに内蔵した4
本のPCテンドンを入れて、複数階を一度に緊
張しグラウトするだけであるので、その大きな
効果に比べて僅かの手間で済む。
(7) Even from the perspective of construction, the 4 parts built into the steel pipe sheath
Just insert the PC tendons in the book and tension and grout multiple floors at once, so it takes only a small amount of effort compared to its great effect.

等、少量の鋼材と簡単容易な施工によつて経済的
に、建物その他の構築物における鉄筋コンクリー
ト造柱の耐力と靭性を高めることができる構法で
ある。
This is a construction method that can economically increase the strength and toughness of reinforced concrete columns in buildings and other structures using a small amount of steel and simple construction.

なお以上は最も代表的な実施例について記述し
たが、PCテンドンの方向は必ずしも柱断面の対
角線方向に限定するものではなく、その方向と数
量に関してはあらゆるバリエーシヨンを含むもの
とする。即ち例えば建物の一方向だけを補強した
い場合には、第3図aのようにPCテンドンを柱
断面に対して一方向だけ、各階を単数または複数
のX形に配設して緊張すればよく、またx−x
−.y−y両方向を補強する場合にも第3図bの
ように、x−x.y−y軸に平行にX形に、それぞ
れ必要量だけのPCテンドンを入れることもある。
Although the most typical embodiment has been described above, the direction of the PC tendon is not necessarily limited to the diagonal direction of the cross section of the column, and all variations are included in the direction and quantity. In other words, if you want to reinforce only one direction of a building, for example, you can tension it by arranging the PC tendons in one direction relative to the cross-section of the columns, on each floor in a single or multiple X-shape, as shown in Figure 3a. , also x-x
−. When reinforcing both the y and y directions, PC tendons may be inserted in the required amount in an X shape parallel to the x, x, and y axes, as shown in Figure 3b.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるPCテンドンをX形に内
蔵緊張したプレストレストコンクリート造柱の横
断面図、第2図はその縦断面図、第3図は異つた
実施例の横断面図である。 1……柱、1a……柱主筋、1b……フープ、
2……基礎ばり、3……大ばり、3a……大ばり
主筋、4……PCテンドン、4a……PCテンドン
の下端定着部、4b……定着金具、4j……継手
金具、5……鋼管シース。
FIG. 1 is a cross-sectional view of a tensile prestressed concrete column incorporating PC tendons in an X shape according to the present invention, FIG. 2 is a vertical cross-sectional view thereof, and FIG. 3 is a cross-sectional view of a different embodiment. 1...Column, 1a...Column main reinforcement, 1b...Hoop,
2...Foundation burr, 3...Large burr, 3a...Large burr main reinforcement, 4...PC tendon, 4a...Lower end anchoring part of PC tendon, 4b...Fixer fitting, 4j...Joint metal fitting, 5...... Steel pipe sheath.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄筋コンクリート造の柱に対し、その最下階
柱脚直下の基礎または基礎ばり中にPCテンドン
の下端の定着部を埋設定着し、それより柱断面の
対角線方向またはその他の方向に、各階をX形に
複数階を連続して、PCテンドンを内蔵した鋼管
シースを柱の主筋とフープの内側に配設し、コン
クリートを打設して所要強度発現後に上記複数階
の最上部に於てPCテンドンの上端を緊張定着し、
鋼管シース内にグラウト材を圧入充填することを
特徴とするPCテンドンをX形に内蔵緊張したプ
レストレストコンクリート造柱。
1. For a reinforced concrete column, bury the anchoring part of the lower end of the PC tendon in the foundation or foundation beam directly under the column foot of the lowest floor, and then extend each floor in the diagonal direction of the column cross section or in other directions. A steel pipe sheath with a built-in PC tendon is placed inside the main reinforcement of the column and the hoop, and after concrete is poured and the required strength is achieved, the PC tendon is installed at the top of the multiple floors. Tension the upper edge of the
A prestressed concrete column with an X-shaped built-in PC tendon, which is characterized by press-fitting grout into the steel pipe sheath.
JP3749684A 1984-02-28 1984-02-28 Prestressed concrete pillar having pc strand mounted in x-shape therein under tension Granted JPS60181457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3749684A JPS60181457A (en) 1984-02-28 1984-02-28 Prestressed concrete pillar having pc strand mounted in x-shape therein under tension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3749684A JPS60181457A (en) 1984-02-28 1984-02-28 Prestressed concrete pillar having pc strand mounted in x-shape therein under tension

Publications (2)

Publication Number Publication Date
JPS60181457A JPS60181457A (en) 1985-09-17
JPH0329937B2 true JPH0329937B2 (en) 1991-04-25

Family

ID=12499131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3749684A Granted JPS60181457A (en) 1984-02-28 1984-02-28 Prestressed concrete pillar having pc strand mounted in x-shape therein under tension

Country Status (1)

Country Link
JP (1) JPS60181457A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335932A (en) * 1986-07-28 1988-02-16 株式会社竹中工務店 Shearing reinforcing method reinforced concrete structural member
JPH0728269Y2 (en) * 1986-12-10 1995-06-28 清水建設株式会社 Precast beams
CN108972871B (en) * 2017-01-03 2019-12-10 广东省怡合建设有限公司 Construction method of concrete beam for improving torsion-resistant bearing capacity
CN108894430B (en) * 2017-01-03 2020-06-16 河北中郸建设有限公司 Construction method for reinforcing steel structure beam or column

Also Published As

Publication number Publication date
JPS60181457A (en) 1985-09-17

Similar Documents

Publication Publication Date Title
US11111664B2 (en) Method of introducing prestress to beam-column joint in triaxial compression
US11352790B2 (en) Method of introducing prestress to beam-column joint of PC structure in triaxial compression
JPH09105173A (en) Connecting section structure of precast prestressed reinforced-concrete frame
JP3226492B2 (en) Seismic isolation structure of high-rise building
Teran et al. Reinforced concrete jacketing of existing structures
JP2001214563A (en) Gravity deflection correcting method in construction structure material
JPH0329937B2 (en)
JPH0520817Y2 (en)
JPH0475322B2 (en)
Kakadiya et al. A research on comparison of RCC and post tensioned flat slab with or without drop using software
JP3306226B2 (en) Attached column base structure of multi-story shear wall
JPH0674620B2 (en) Reinforced concrete columns covered with steel pipes
JPH01137034A (en) Framework of composite building construction
Agrawal et al. Seismic retrofitting of rc building with soft storey and floating columns
JP2762906B2 (en) RC frame
JPH09264050A (en) Building structure
JPH06167074A (en) Steel framed reinforced concrete column base and steel column base
JPH1018639A (en) Reinforcing construction of building
Hamada et al. Innovative Seismic Retrofit Technique for Existing RC Buildings Using External Corrugated Steel Plate Walls
JP2003161041A (en) Aseismatic reinforcing structure of existing building and execution method therefor
JPH0478771B2 (en)
JP2002021095A (en) Building structure and design method therefor
JPH0742805B2 (en) Steel bar truss built-in rebar concrete column
JP2004124623A (en) Reinforcing structure of reinforced concrete structure member
JPH059944A (en) Fixing structure of pedestal