JP4649611B2 - Energy absorbing member provided with metal thin plate and manufacturing method thereof - Google Patents
Energy absorbing member provided with metal thin plate and manufacturing method thereof Download PDFInfo
- Publication number
- JP4649611B2 JP4649611B2 JP2005236654A JP2005236654A JP4649611B2 JP 4649611 B2 JP4649611 B2 JP 4649611B2 JP 2005236654 A JP2005236654 A JP 2005236654A JP 2005236654 A JP2005236654 A JP 2005236654A JP 4649611 B2 JP4649611 B2 JP 4649611B2
- Authority
- JP
- Japan
- Prior art keywords
- energy absorbing
- absorbing member
- deformation
- thin plate
- metal thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 69
- 239000002184 metal Substances 0.000 title claims description 69
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000010521 absorption reaction Methods 0.000 claims description 35
- 229910000831 Steel Inorganic materials 0.000 claims description 20
- 239000010959 steel Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 description 37
- 239000000463 material Substances 0.000 description 13
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000009434 installation Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000003252 repetitive effect Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Landscapes
- Vibration Prevention Devices (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Description
本発明は、台風または地震などによる繰返しせん断力作用下において、座屈に伴う不安定挙動を示すことなく繰返し特性を安定化した建設構造物に敷設する金属薄板を備えたエネルギー吸収部材、及びエネルギー吸収部材に備える金属薄板の座屈発生後繰返し挙動を安定化した金属薄板を備えたエネルギー吸収部材の製造方法に関する。 The present invention relates to an energy absorbing member provided with a thin metal plate laid on a construction structure in which repeated characteristics are stabilized without exhibiting unstable behavior due to buckling under the action of repeated shearing force due to typhoons or earthquakes, and energy The present invention relates to a method of manufacturing an energy absorbing member provided with a thin metal plate that stabilizes repeated behavior after occurrence of buckling of the thin metal plate included in the absorbing member.
従来の構造物などに設置されるせん断型エネルギー吸収部材は、このエネルギー吸収部材である板厚を厚くするか、或いはエネルギー吸収部材をリブ等で補強することで、エネルギー吸収部材の幅厚比を小さくして、基本的にはせん断型エネルギー吸収部材に局部座屈が発生しないようにしている。 The shear type energy absorbing member installed in a conventional structure or the like increases the thickness-thickness ratio of the energy absorbing member by increasing the thickness of the energy absorbing member or by reinforcing the energy absorbing member with a rib or the like. Basically, local buckling is prevented from occurring in the shear type energy absorbing member.
上述するようなせん断型エネルギー吸収部材は、金属薄板として用いられる材料自体のエネルギー吸収能力に依存する部材であり、エネルギー吸収部材に要求させるエネルギー吸収能力が金属薄板の材料特性に大きく依存する部材である。したがって従来の方法では、この安定的な面内の変形を、変形能力を有する材料を使用することに頼っており、通常はその材料として低降伏点鋼を用いるので、局部座屈を発生させなくても大変形を可能にしている。 The shear type energy absorbing member as described above is a member that depends on the energy absorbing ability of the material itself used as the metal thin plate, and the energy absorbing capability required of the energy absorbing member depends greatly on the material characteristics of the metal thin plate. is there. Therefore, in the conventional method, this stable in-plane deformation relies on the use of a material having a deformability, and usually a low yield point steel is used as the material, so that local buckling does not occur. Even large deformations are possible.
上述するように、エネルギー吸収を可能にするエネルギー吸収部材(せん断パネル)に使用する従来の材料は低降伏点鋼であって、このような低降伏点鋼をエネルギー吸収部材として使用した建築物も多く建設されている。最近では、これらのエネルギー吸収部材に対しては、エネルギー吸収に係わる性能の向上、及び構造物などの設置に係わる施行性の向上のために、様々な工夫が試みられている。 As described above, the conventional material used for the energy absorbing member (shear panel) that enables energy absorption is a low yield point steel, and a building using such a low yield point steel as an energy absorbing member is also available. Many have been built. Recently, various devices have been tried for these energy absorbing members in order to improve the performance related to energy absorption and to improve the operability related to the installation of structures and the like.
例えば、エネルギー吸収性能の向上、及び設置施行性の向上に関する従来技術としては、特開平2004−150188号、及び特開平2002−013227号などがある。しかしながら、これらの先行技術は、全てが低降伏点鋼を使用した技術である。したがって、エネルギー吸収部材(せん断パネル)の繰返し特性の基本的な性状は、低降伏点鋼の材料性質そのものに依存している技術であって、エネルギー吸収部材を構成する金属薄板の荷重変位関係を改質するためエネルギー吸収部材の形状、応力状態により決まる構造特性を利用した技術ではない。 For example, JP-A No. 2004-150188 and JP-A No. 2002-013227 are examples of conventional techniques relating to improvement of energy absorption performance and improvement of installation efficiency. However, all of these prior arts use low yield point steel. Therefore, the basic characteristics of the repetition characteristics of the energy absorbing member (shear panel) are technologies that depend on the material properties of the low-yield point steel. It is not a technology that utilizes structural characteristics determined by the shape and stress state of the energy absorbing member for modification.
一方、金属薄板の荷重変位関係を安定化させることを意図したものとしては、特開平2004−042423号がある。この先行技術では、金属薄板を帯板で補強することで単調載荷時の荷重変位関係を安定化させ、塑性変形能力を向上させているが、この方法は繰返し荷重下においても有効であるかは不明である。 On the other hand, Japanese Patent Application Laid-Open No. 2004-042423 is intended to stabilize the load displacement relationship of the thin metal plate. In this prior art, by reinforcing a thin metal plate with a strip, the load-displacement relationship during monotonic loading is stabilized and the plastic deformation capacity is improved, but is this method effective even under repeated loads? It is unknown.
本発明は、構造物などに設置されるせん断型エネルギー吸収部材が、せん断力作用の繰返し履歴の下で座屈を伴いながらも安定的にエネルギーを吸収することを目的とする。 An object of the present invention is to allow a shear-type energy absorbing member installed in a structure or the like to stably absorb energy while being buckled under a repeated history of shearing force action.
従来技術では、エネルギー吸収部材に座屈を発生させないことを前提として、エネルギー吸収部材の板厚を厚くしたり、またはエネルギー吸収部材をリブで補強したりして幅厚比を小さくする。このような手段を介しては、エネルギー吸収部材に面外の変形(座屈変形)が発生しないことになり、面内変形をエネルギー吸収部材の金属薄板のせん断変形、換言すれば伸び縮みで吸収するようにしている。したがって従来のエネルギー吸収部材は、金属薄板の塑性変形能力は小さくて早期破断に至ることになる。 In the prior art, on the premise that buckling does not occur in the energy absorbing member, the width-thickness ratio is reduced by increasing the plate thickness of the energy absorbing member or reinforcing the energy absorbing member with ribs. Through such means, out-of-plane deformation (buckling deformation) does not occur in the energy absorbing member, and in-plane deformation is absorbed by shear deformation of the thin metal plate of the energy absorbing member, in other words, expansion and contraction. Like to do. Therefore, the conventional energy absorbing member has a small plastic deformation ability of the metal thin plate and leads to early breakage.
一方、本発明のエネルギー吸収部材は、座屈による面外変形を許容し且つ面内変形を小さいままで、全体としての面内変形を大きくしたものである。すなわち、本発明のエネルギー吸収部材は、不安定な座屈が発生しないようにしながら同時に面外変形を許容し、本発明のエネルギー吸収部材の全体としての面内変形を大変形まで安定させることを目的とする。 On the other hand, the energy absorbing member of the present invention allows out-of-plane deformation due to buckling and increases in-plane deformation as a whole while keeping in-plane deformation small. That is, the energy absorbing member of the present invention allows for out-of-plane deformation at the same time while preventing unstable buckling, and stabilizes the in-plane deformation of the energy absorbing member of the present invention as a whole until large deformation. Objective.
さらに、本発明においては、従来のせん断パネルなどのエネルギー吸収部材としては使用していなかった例えば、普通鋼、アルミニウム、銅及びそれらの合金などをエネルギー吸収部材(せん断パネル)に使用して、エネルギー吸収を可能にすることを目的とする。すなわち、本発明は、従来の金属薄板に比較して強度が高い普通鋼を使用するのに伴いウエブパネルあるは壁を薄板化して軽量化すること、及び廉価な普通鋼を使用して製品コストを低下すること、を目的とする。 Further, in the present invention, for example, ordinary steel, aluminum, copper, and alloys thereof, which have not been used as energy absorbing members such as conventional shear panels, are used as energy absorbing members (shear panels). The purpose is to allow absorption. That is, the present invention reduces the weight of the web panel or wall by reducing the weight by using ordinary steel having higher strength than conventional metal thin plates, and the product cost by using inexpensive ordinary steel. It aims at reducing.
また、本発明のせん断型エネルギー吸収部材を軽量化することにより、本発明のせん断型エネルギー吸収部材の設置に伴う施行手間の簡素化を可能にすることを目的とする。 Moreover, it aims at enabling simplification of the enforcement effort accompanying installation of the shear type energy absorption member of this invention by reducing the weight of the shear type energy absorption member of this invention.
本発明のエネルギー吸収部材のエネルギー吸収特性は、エネルギー吸収部材を形成する金属薄板自体の材料物性値に頼るものではなくて、エネルギー吸収部材を形成する金属薄板の構造特性(幅厚比、枠形状、リブ形状、境界条件及び応力状態)により、エネルギー吸収特性を把握してできるものである。 The energy absorption characteristics of the energy absorbing member of the present invention do not depend on the material property values of the metal thin plate itself forming the energy absorbing member, but the structural characteristics (width-thickness ratio, frame shape of the metal thin plate forming the energy absorbing member) , Rib shape, boundary conditions, and stress state), the energy absorption characteristics can be grasped.
このエネルギー吸収部材の荷重−変位関係において座屈は、図6に示す応力がほぼ一定であって変形が進行する状態、すなわち擬似的な降伏点を規定する。したがって、このエネルギー吸収部材の荷重−変位関係に現れる擬似的な降伏点を明らかにすることが、図5に示すようにこのエネルギー吸収部材の履歴特性を明確に評価することになる。座屈応力度は次式1で与えられる。
In the load-displacement relationship of the energy absorbing member, buckling defines a state where the stress shown in FIG. 6 is substantially constant and deformation proceeds, that is, a pseudo yield point. Therefore, clarifying the pseudo yield point appearing in the load-displacement relationship of the energy absorbing member clearly evaluates the hysteresis characteristics of the energy absorbing member as shown in FIG. The buckling stress degree is given by the following
τcr=(kπ2E/12(1−ν2))(t/b)2 1
ここでτcr:せん断座屈応力度、k:座屈係数、t:板厚、b:板幅、E:ヤング係数、ν:ポアソン比、π:円周率である。
τ cr = (kπ 2 E / 12 (1-ν 2 )) (t / b) 2 1
Here, τ cr : shear buckling stress, k: buckling coefficient, t: plate thickness, b: plate width, E: Young's modulus, ν: Poisson's ratio, π: circularity.
さらに、エネルギー吸収部材を形成する金属薄板に発生する座屈は、初期的な弾性座屈挙動として考えられるために、上式により金属薄板の座屈時の応力を耐力として数量化することが可能である。 Furthermore, the buckling that occurs in the thin metal plate that forms the energy absorbing member can be considered as the initial elastic buckling behavior, so the stress during buckling of the thin metal plate can be quantified as the proof stress using the above formula. It is.
1式を薄板に作用するせん断耐力に直すと、
Qcr=τcrA 2
ここで、Qcr:せん断耐力、A:薄板の横断面積である。
If the
Q cr = τ cr
Here, Q cr : shear strength, A: cross-sectional area of the thin plate.
座屈係数kは、薄板の形状(例えば、図1及び図2の辺長比a/b)と、薄板の周辺境界条件および応力状態により変わるものである。本発明に用いられる薄板の場合では、薄板に作用する応力はほぼ純せん断応力状態に近いことを考慮し、座屈係数kは、次の近似式3〜6で与えられる。これを図示すると、図21のようになる。図21中の丸印で示す点は、辺長比1、2、3の場合の4周辺単純支持、4周辺固定支持のときの値を示している。
The buckling coefficient k varies depending on the shape of the thin plate (for example, the side length ratio a / b in FIGS. 1 and 2), the peripheral boundary condition of the thin plate, and the stress state. In the case of the thin plate used in the present invention, the buckling coefficient k is given by the following
1)4周辺が単純支持されている場合
k=4.00+(5.34/(a/b)2) a/b≦1 3
k=5.34+(4.00/(a/b)2) a/b≧1 4
2)4周辺が固定支持されている場合
k=5.60+(8.98/(a/b)2) a/b≦1 5
k=8.98+(5.60/(a/b)2) a/b≧1 6
1) When 4 surroundings are simply supported k = 4.00 + (5.34 / (a / b) 2 ) a / b ≦ 1 3
k = 5.34 + (4.00 / (a / b) 2 ) a / b ≧ 1 4
2) When the periphery of 4 is fixedly supported k = 5.60 + (8.98 / (a / b) 2 ) a / b ≦ 1 5
k = 8.98 + (5.60 / (a / b) 2 ) a / b ≧ 16
座屈係数kの値は、薄板の周辺境界条件(枠の剛性、取り付け方法)により変化するが、本発明におけるkの値は、4周辺単純支持のkの値から4周辺固定支持のkの値の間に位置すると考える。図21よりもとめた座屈係数kを次に示す。
a/b=1で、k=9.3〜14.6
a/b=2で、k=6.3〜10.4
a/b=3で、k=7.9〜9.6
The value of the buckling coefficient k varies depending on the peripheral boundary conditions (frame rigidity, mounting method) of the thin plate. In the present invention, the value of k varies from the value of k of the four peripheral simple supports to the value of k of the four peripheral fixed supports. Think of it between the values. The buckling coefficient k obtained from FIG. 21 is shown below.
a / b = 1, k = 9.3 to 14.6
a / b = 2, k = 6.3 to 10.4
a / b = 3, k = 7.9 to 9.6
辺長比a/bは、エネルギー吸収部材の設置場所などにより制約される。エネルギー吸収部材が一般的な建築物の壁に設置される場合、辺長比a/bは0.8〜2の範囲にあるので、座屈係数kの値は8〜14の範囲にある。 The side length ratio a / b is restricted by the installation location of the energy absorbing member. When the energy absorbing member is installed on a wall of a general building, the side length ratio a / b is in the range of 0.8 to 2, and thus the value of the buckling coefficient k is in the range of 8 to 14.
従来の低降伏点鋼を用いたエネルギー吸収部材では、エネルギー吸収部材の繰返し変形時の荷重−変位関係は、使用される材料の応力度−ひずみ度関係に大きく依存せざるをえない状態にあったが、本発明の方法に従えば、エネルギー吸収部材の金属薄板の材料特性に大きく依存することはなく、エネルギー吸収部材の繰返し変形時の荷重−変位関係は、エネルギー吸収部材の形状によって把握することが可能である。 In an energy absorbing member using a conventional low yield point steel, the load-displacement relationship during repeated deformation of the energy absorbing member must be largely dependent on the stress-strain relationship of the material used. However, according to the method of the present invention, the load-displacement relationship at the time of repeated deformation of the energy absorbing member is grasped by the shape of the energy absorbing member without greatly depending on the material characteristics of the thin metal plate of the energy absorbing member. It is possible.
本発明のエネルギー吸収部材の繰返し履歴安定のためには、エネルギー吸収部材を構成する金属薄板に予め大変形を与えておく。その大変形を与える際に部材の詳細なデータ(繰返し荷重−変位曲線)を収集整理することになり、エネルギー吸収部材としての性能を事前に把握することができる。このような性能データを事前に把握したエネルギー吸収部材を構造物などに設置する際には、そのデータをもとに綿密な構造設計ができ、より安全且つ安定した構造物全体の設計を可能にする。 In order to stabilize the repeated history of the energy absorbing member of the present invention, a large deformation is applied in advance to the metal thin plate constituting the energy absorbing member. When the large deformation is given, detailed data (repetitive load-displacement curve) of the member is collected and arranged, and the performance as the energy absorbing member can be grasped in advance. When installing an energy absorbing member that grasps such performance data in advance in a structure, etc., it is possible to design a detailed structure based on that data, making it possible to design a safer and more stable overall structure. To do.
本発明の構造物に敷設する金属薄板を備えたエネルギー吸収部材は、金属薄板と金属薄板の周囲に備わる枠とを備え、エネルギー吸収部材を構造物に設置する前に前記エネルギー吸収部材に予め設定した変形を加えて、エネルギー吸収部材を構造物に設置した後の繰返し変形を受けたときに前記エネルギー吸収部材が安定した繰返し変形をする、ことを特徴とする。また、対向する2辺の前記枠が、端部板を形成することを特徴とする。 An energy absorbing member provided with a metal thin plate to be laid on the structure of the present invention includes a metal thin plate and a frame provided around the metal thin plate, and is preset in the energy absorbing member before the energy absorbing member is installed in the structure. When the energy absorbing member is subjected to repeated deformation after the energy absorbing member is installed on the structure, the energy absorbing member is stably and repeatedly deformed. Further, the two opposite frames form an end plate.
また、本発明のエネルギー吸収部材は、前記構造物の梁、柱及び間柱のそれぞれの間、または前記構造物の梁、柱及び間柱の一部として敷設することを特徴とする。 Moreover, the energy absorbing member of the present invention is laid between each of the beams, columns, and studs of the structure, or as a part of the beams, columns, and studs of the structure.
また、本発明のエネルギー吸収部材は、前記金属薄板が、鋼、銅、アルミニウム及びそれらの合金で形成されることを特徴とする。 Moreover, the energy absorbing member of the present invention is characterized in that the metal thin plate is formed of steel, copper, aluminum and alloys thereof.
さらに、本発明の構造物に敷設する金属薄板を備えたエネルギー吸収部材の製造方法は、金属薄板と金属薄板の周囲に備わる枠とを備えるエネルギー吸収部材が、構造物に設置された後に繰返し変形を受けたときに、前記エネルギー吸収部材が安定した繰返し変形をするために、前記エネルギー吸収部材を構造物に設置される前、前記エネルギー吸収部材に予め設定した変形を加える、ことを特徴とする。 Furthermore, the manufacturing method of the energy absorbing member provided with the metal thin plate laid on the structure of the present invention is repeatedly deformed after the energy absorbing member including the metal thin plate and the frame provided around the metal thin plate is installed in the structure. The energy absorbing member is subjected to a predetermined deformation before the energy absorbing member is installed in a structure so that the energy absorbing member is stably and repeatedly deformed. .
また、本発明のエネルギー吸収部材の製造方法は、前記予め設定した変形が、地震及び台風時の荷重変位関係の剛性に不連続な箇所が発生しないよう最大変形より大きくして、且つエネルギー吸収部材が破壊することがないように前記最大変形の3倍以内の範囲にあることを特徴とする。好ましくは、安定した紡錘型の荷重変位関係になるように最大変形の2倍より大きくして、且つ前記最大変形の3倍以内の範囲にあることを特徴とする。 Further, the energy absorbing member manufacturing method of the present invention is configured such that the preset deformation is larger than the maximum deformation so that a discontinuous portion does not occur in the rigidity of the load displacement relation during an earthquake and a typhoon, and the energy absorbing member Is within the range of three times the maximum deformation so as not to break. Preferably, it is larger than twice the maximum deformation and within a range within three times the maximum deformation so as to have a stable spindle-type load displacement relationship.
また、本発明のエネルギー吸収部材の製造方法は、前記予め設定した変形が、引っ張り、圧縮またはせん断の少なくとも一つにより加えられることを特徴とする。 Moreover, the manufacturing method of the energy absorbing member of the present invention is characterized in that the preset deformation is applied by at least one of tension, compression or shear.
本発明のエネルギー吸収部材の効果を、現在一般的である低降伏点鋼を用いたエネルギー吸収部材と比較して述べる。図2に示すようなせん断パネル型のエネルギー吸収部材の効果を、数値解析モデルを用いた数値解析の結果で比較する。エネルギー吸収部材の構成材として使用した金属薄板は、例えば、図8に示すような2種類の鋼材である。本発明のエネルギー吸収部材に使用する金属薄板はJISのSS400を用いた。その結果を図5に示す。本発明のエネルギー吸収部材は、地震または台風などにより振動する際に図5に示すように、変形量γの増加に伴って応力Q(kN)も増加する傾向を示し、また、変形量γの減少に伴って応力Q(kN)も減少する傾向を示すので、本発明のエネルギー吸収部材を敷設した構造物が安定な振動とともに振動が減衰することができる。 The effect of the energy absorbing member of the present invention will be described in comparison with an energy absorbing member using low yield point steel, which is currently common. The effect of a shear panel type energy absorbing member as shown in FIG. 2 is compared with the result of numerical analysis using a numerical analysis model. The metal thin plate used as a constituent material of the energy absorbing member is, for example, two types of steel materials as shown in FIG. The metal thin plate used for the energy absorbing member of the present invention was JIS SS400. The result is shown in FIG. When the energy absorbing member of the present invention vibrates due to an earthquake or a typhoon, as shown in FIG. 5, the stress Q (kN) tends to increase as the deformation amount γ increases. Since the stress Q (kN) tends to decrease with the decrease, the structure in which the energy absorbing member of the present invention is laid can attenuate the vibration together with the stable vibration.
図6に示す予め大変形を加えていないエネルギー吸収部材は、荷重−変位関係において変形量γの増加に伴って、応力Q(kN)が急激に低下したり、または一定応力で変形量が増加したり、急激な剛性変化をする傾向を示す。このような傾向を示す金属薄板に、図4の概念にもとづいて図3に示すように予め大変形を加えておくことで、その繰返し荷重−変位関係は、図5のように変化する。この荷重−変位関係は大変安定したものであり、構造物に敷設するエネルギー吸収部材として十分有効なものである。さらにこの荷重−変位関係は、図7に示す従来技術である低降伏点鋼を用いたエネルギー吸収部材の繰返し荷重−変位関係と同じ、あるいはそれ以上に安定した履歴曲線となっている。 In the energy absorbing member that has not been subjected to large deformation in advance as shown in FIG. 6, the stress Q (kN) rapidly decreases or the deformation increases with a constant stress as the deformation γ increases in the load-displacement relationship. Or a sudden change in stiffness. By applying a large deformation in advance to the thin metal plate having such a tendency as shown in FIG. 3 based on the concept of FIG. 4, the repeated load-displacement relationship changes as shown in FIG. This load-displacement relationship is very stable and is sufficiently effective as an energy absorbing member laid on the structure. Furthermore, this load-displacement relationship is a hysteresis curve that is the same as or more stable than the repeated load-displacement relationship of the energy absorbing member using the low yield point steel, which is the prior art shown in FIG.
本発明と従来技術のエネルギー吸収部材に用いたフランジ形状は等しいが、しかしエネルギー吸収部材に用いたウエブ形状は互いに相違した。本発明の図5に示すウエブ形状は、板厚2mmで500mm角の正方形板であり、且つ従来技術の図7に示すウエブ形状は、板厚6mmで350mm角の正方形板である。したがって、本発明によるウエブ形状の方が、重量で約6割程度まで軽減できた。 The flange shapes used for the energy absorbing members of the present invention and the prior art are the same, but the web shapes used for the energy absorbing members are different from each other. The web shape shown in FIG. 5 of the present invention is a square plate having a thickness of 2 mm and a square of 500 mm, and the web shape shown in FIG. 7 of the prior art is a square plate having a thickness of 6 mm and a square of 350 mm. Therefore, the web shape according to the present invention can be reduced to about 60% by weight.
また、本発明で使用する普通鋼(実施例ではSS400)は、従来技術で使用する低降伏点鋼に比較して大変安価であり、溶接などによる組み立ての手間及び運搬にかかる費用も安価であった。また、本発明のように使用する普通鋼に予め大変形を付与しておくことは、大変形を付与する際に部材の詳細なデータを収集整理することが可能となり、エネルギー吸収部材を構造物などに設置する際には,そのデータをもとに綿密な構造設計ができ、より安全で安定した構造物の設計を可能にした。 Further, the ordinary steel (SS400 in the embodiment) used in the present invention is very cheap compared to the low yield point steel used in the prior art, and the assembly labor and transportation costs due to welding and the like are also low. It was. Moreover, giving large deformation to the ordinary steel used as in the present invention in advance makes it possible to collect and organize detailed data of the member when applying large deformation, so that the energy absorbing member can be structured. When installing in a location, etc., detailed structural design was possible based on the data, enabling safer and more stable structural design.
本発明の建設構造物に敷設する金属薄板を備えたエネルギー吸収部材を、繰返し履歴が安定化したエネルギー吸収部材にするためには、繰返し履歴の途中で耐力或いは剛性の低下を伴うような座屈変形の発生を消失させることである。このためには、荷重低下及び一定変形につながる荷重と変位との釣合いの状態(座屈が生じる状態)を解消することが必要である。その座屈変形の発生を消失させるために、大きな面外変形を誘発する張力場をあらかじめエネルギー吸収部材を構成する金属薄板に発生させ、金属薄板に面外変形を生じさせておき、その面外変形の範囲内で急激な釣合い分岐が起きない程度に、繰返し変位を抑えることができれば、そのエネルギー吸収部材は、繰返し履歴が安定化する。 In order to make the energy absorbing member provided with the thin metal plate laid on the construction structure of the present invention an energy absorbing member having a stable repeated history, buckling is accompanied by a decrease in yield strength or rigidity during the repeated history. It is to eliminate the occurrence of deformation. For this purpose, it is necessary to eliminate the balance between the load and displacement that leads to load reduction and constant deformation (the state in which buckling occurs). In order to eliminate the occurrence of the buckling deformation, a tension field that induces a large out-of-plane deformation is generated in advance in the thin metal plate constituting the energy absorbing member, and the out-of-plane deformation is generated in the thin metal sheet. If repeated displacement can be suppressed to such an extent that sudden balance branching does not occur within the deformation range, the energy absorption member has a stable repeated history.
上記方法を換言すれば、本発明においては、台風または地震などで発生すると予想されるエネルギー吸収部材に加わる繰返し変位量を予め規定する。本発明は、この規定された変位量をもとに、規定された変位量以上の大きな変位量を、あらかじめエネルギー吸収部材に与えておく。それによって、台風または地震などの繰返し時に、本発明のエネルギー吸収部材は、不安定な変形挙動を示さなくなる。 In other words, in the present invention, the amount of repeated displacement applied to the energy absorbing member that is expected to occur due to a typhoon or an earthquake is defined in advance. In the present invention, based on the defined displacement amount, a large displacement amount that is equal to or greater than the defined displacement amount is given to the energy absorbing member in advance. As a result, the energy absorbing member of the present invention does not exhibit unstable deformation behavior during repeated typhoons or earthquakes.
さらに、好ましくは、本発明のエネルギー吸収部材を構造物に設置する前に、構造物に設置後に予測あるいは想定される外乱による最大変位量から最大変位量の約3倍程度、好ましくは最大変位量の約2倍から最大変位量の約3倍程度の変形をあらかじめエネルギー吸収部材に与えておくことで、エネルギー吸収部材を構造物に設置後に、外乱に対して安定したエネルギー吸収能力を発揮するようになる。本発明のエネルギー吸収部材がこのような効果を得るためには、図3に示すように大変形を伴う繰返し変形の際に荷重−変位関係に棚状を呈するように、図1及び図2に示すエネルギー吸収部材にせん断荷重を負荷しなければならない。このエネルギー吸収部材の薄板の板厚の範囲は、せん断荷重を受けた際の弾性座屈限界幅厚比(b/t)e程度から、その3倍程度までである。 Further, preferably, before installing the energy absorbing member of the present invention in the structure, it is about three times the maximum displacement amount from the maximum displacement amount due to the disturbance predicted or assumed after installation in the structure, preferably the maximum displacement amount. By giving the energy absorbing member a deformation of about twice the maximum displacement to about three times the maximum displacement in advance, after the energy absorbing member is installed in the structure, it will exhibit stable energy absorbing ability against disturbance become. In order for the energy absorbing member of the present invention to obtain such an effect, as shown in FIG. 3, as shown in FIG. 1 and FIG. 2, a load-displacement relationship is exhibited in the case of repeated deformation accompanied by large deformation. A shear load must be applied to the energy absorbing member shown. The range of the thickness of the thin plate of the energy absorbing member ranges from about the elastic buckling limit width-thickness ratio (b / t) e when subjected to a shear load to about three times that.
弾性座屈限界幅厚比(b/t)eは、薄板のせん断降伏応力をτyとして式1のτcrと置換し且つポアソン比を0.3として、幅厚比b/tについてとくことによって求めることができる。すなわち、弾性座屈限界幅厚比(b/t)eは、次式7で表される。
(b/t)e=(kE/τy)1/2 7
本発明のエネルギー吸収部材において、エネルギー吸収部材として効果的に作用する幅厚比b/tの範囲は、式7で求められる弾性座屈限界幅厚比(b/t)eを用いて次式8で表せる。
(b/t)=(b/t)e〜3(b/t)e 8
Elastic buckling limit width / thickness ratio (b / t) e is obtained by substituting τcr in
(B / t) e = (kE / τy) 1/2 7
In the energy absorbing member of the present invention, the range of the width-thickness ratio b / t that effectively acts as the energy absorbing member is expressed by the following equation using the elastic buckling limit width-thickness ratio (b / t) e obtained by
(B / t) = (b / t) e -3 (b / t) e 8
本発明のエネルギー吸収部材は、その一例を図1及び図2に示すように金属薄板よりなる矩形薄板平板と、この矩形薄板平板の周辺に矩形薄板平板形状を維持するように配置される枠と、より構成されるものである。本発明のエネルギー吸収部材においては、図1及び図2に示す矢印方向に荷重が作用する。このとき、本発明のエネルギー吸収部材の矩形薄板平板は、せん断変形する。図4に示すように、矩形薄板平板に予め付与するせん断変形は、本発明のエネルギー吸収部材を構造物に設置後に作用する外乱により想定される最大応答変位以上から約3倍程度の大変形を予め経験させておくことで、図5に示すように設置後のエネルギー吸収部材の履歴挙動が安定化するようになる。 An example of the energy absorbing member of the present invention is a rectangular thin plate made of a metal thin plate as shown in FIGS. 1 and 2, and a frame arranged so as to maintain a rectangular thin plate shape around the rectangular thin plate. , Is composed of. In the energy absorbing member of the present invention, a load acts in the arrow direction shown in FIGS. At this time, the rectangular thin plate of the energy absorbing member of the present invention undergoes shear deformation. As shown in FIG. 4, the shear deformation applied in advance to the rectangular thin plate is a large deformation of about three times from the maximum response displacement assumed by the disturbance acting after the energy absorbing member of the present invention is installed on the structure. By experiencing in advance, the history behavior of the energy absorbing member after installation is stabilized as shown in FIG.
実施例1
エネルギー吸収部材を形成する金属薄板(ウエブ)は、板厚が2mmで且つ4辺の長さが500mmの正方形平板である。この正方形平板の左右の側面に、板厚が12mmであり且つ幅が200mmであるフランジ板(枠)を取り付け且つこの正方形平板の上下の辺に端部板(枠)を取り付ける。上述した形状のエネルギー吸収部材(図2に示す)は、最大応答変位以上から約3倍程度の変形を与えるせん断応力が加えられる。せん断応力が加えられたエネルギー吸収部材の数値解析をした結果を図3、図5及び図6に示す。それぞれ図の縦軸は、作用するせん断力の大きさであり、且つ横軸はせん断変形角を示す。
Example 1
The metal thin plate (web) forming the energy absorbing member is a square flat plate having a plate thickness of 2 mm and a length of four sides of 500 mm. A flange plate (frame) having a thickness of 12 mm and a width of 200 mm is attached to the left and right side surfaces of the square flat plate, and end plates (frames) are attached to the upper and lower sides of the square flat plate. The energy absorbing member having the above-described shape (shown in FIG. 2) is subjected to a shear stress that gives a deformation of about 3 times from the maximum response displacement. The results of numerical analysis of the energy absorbing member to which shear stress is applied are shown in FIGS. In each figure, the vertical axis represents the magnitude of the acting shear force, and the horizontal axis represents the shear deformation angle.
この数値解析に使用した金属薄板は、SS400の普通鋼である。SS400の普通鋼の塑性域における応力度−ひずみ度関係を図8に示す。ヤング率は205000N/mm2であり且つポアソン比は0.3である。 The metal sheet used for this numerical analysis is SS400 plain steel. FIG. 8 shows the stress-strain relationship in the plastic region of SS400 plain steel. Young's modulus is 205000 N / mm 2 and Poisson's ratio is 0.3.
エネルギー吸収部材が金属薄板より構成され、且つ大変形を経験させずに外乱が作用した場合、エネルギー吸収部材は、図5に示す紡錘型の荷重−変位関係にならなくて、図6に示すように不安定な変形挙動を示す繰返し荷重−変位関係を呈するようになる。これに対して、本発明のエネルギー吸収部材のように、図3に示すような大変形を加えたあとの変形挙動は、先の図6と比較して、図5に示すよう極めて安定した紡錘型の繰返し荷重−変位関係を呈するようになる。 When the energy absorbing member is made of a thin metal plate and a disturbance is applied without experiencing large deformation, the energy absorbing member does not have the spindle-type load-displacement relationship shown in FIG. It exhibits a repeated load-displacement relationship that exhibits unstable deformation behavior. On the other hand, like the energy absorbing member of the present invention, the deformation behavior after the large deformation as shown in FIG. 3 is extremely stable as shown in FIG. The mold exhibits a repeated load-displacement relationship.
実施例2
本発明の金属薄板より構成されたエネルギー吸収部材1を、種々の構造物に取り付けた好ましい例を図9〜図14に図示する。本発明の金属薄板2より構成されたエネルギー吸収部材1の取り付け方法は、建築構造物の梁5や柱6が鉄骨及びコンクリートで形成されている場合、エネルギー吸収部材1を梁5や柱6にボルト(図示せず)で締結する。また、建築構造物の梁5や柱6が木材で形成されている場合、エネルギー吸収部材1を梁5や柱6に釘及びネジ(図示せず)で締結する。
Example 2
The preferable example which attached the
エネルギー吸収部材1を構造物に取り付ける時期は、新築時、耐震補強時、及び耐震改修時のいずれの時であっても良い。また、本発明のエネルギー吸収部材1の構造物への取り付け位置は、図9に示す構造物の間柱4の一部として取り付けることができる。図10には、エネルギー吸収部材1を、構造物の間柱4及び壁部材7の双方の中間的な部材として取り付けた例を示す。また、図11に示すように、エネルギー吸収部材1を構造物の壁部材7として取り付けることもできる。さらに、図12に示すようにエネルギー吸収部材1を構造物の梁5や柱6の接合位置に配置すること、図13に示すようにエネルギー吸収部材1を構造物の斜材8(梁リンク部材)の間であって梁5の一部として配置すること、図14に示すようにエネルギー吸収部材1を構造物の柱6と柱6の間の梁5の一部の境界梁として配置することもできる。
The time when the
実施例3
本発明においては、金属薄板の対角線方向の引っ張り変形により予め変形を付与でき、この金属薄板を直接構造物に敷設してエネルギー吸収部材を形成することができる。一方、本発明においては、エネルギー吸収部材の周辺形状を維持するために枠(フランジ板)を、図15〜図20に示すように金属薄板の上下左右に取り付けることができる。
Example 3
In the present invention, the deformation can be applied in advance by the diagonal deformation of the thin metal plate, and the energy absorbing member can be formed by laying the thin metal plate directly on the structure. On the other hand, in this invention, in order to maintain the periphery shape of an energy absorption member, a frame (flange board) can be attached to the upper and lower sides and right and left of a thin metal plate as shown in FIGS.
本発明のエネルギー吸収部材1は、図15及び図16に示すように、矩形平板の金属薄板1と、その形状を維持するために金属薄板の周囲を囲う枠3(フランジ)とから形成される。また、この枠3は、図16に示すように、対向する上下の2辺を端部板3’とし、左右の2辺を枠3とすることもできる。上記構成以外に、次に示すエネルギー吸収部材を形成することができる。
As shown in FIGS. 15 and 16, the
a)枠に取り付け孔または取り付けネジを設けたエネルギー吸収部材(図示せず)
b)金属薄板を並列に複数備えたエネルギー吸収部材(図17)
c)金属薄板を直列に複数備えたエネルギー吸収部材(図18)
d)上記a)及びb)を組み合わせたエネルギー吸収部材(図示せず)
e)金属薄板の表面を覆う付属板9を備えたエネルギー吸収部材(図19)
f)塗装膜、断熱材、耐火被膜10などの表面処理がなされた金属薄板を備えたエネルギー吸収部材(図20)
a) Energy absorbing member (not shown) provided with a mounting hole or mounting screw in the frame
b) Energy absorbing member provided with a plurality of metal thin plates in parallel (FIG. 17)
c) Energy absorbing member provided with a plurality of metal thin plates in series (FIG. 18)
d) Energy absorbing member (not shown) combining the above a) and b)
e) Energy absorbing member provided with an
f) Energy absorbing member provided with a thin metal plate subjected to surface treatment such as a coating film, a heat insulating material, and a fireproof coating 10 (FIG. 20).
本発明のエネルギー吸収部材は、地震及び台風などの繰返し履歴のもとでエネルギー吸収を安定化させた部材であって、このエネルギー吸収部材は、新設の構造物はもとより既設の構造物にも取り付けることができる。 The energy absorbing member of the present invention is a member that stabilizes energy absorption under a repetitive history such as an earthquake and a typhoon, and this energy absorbing member is attached to an existing structure as well as a new structure. be able to.
また、本発明のエネルギー吸収部材は、この金属薄板の繰返し履歴特性を安定化させるのに非常に安価な方法で安定化することができるので、構造物を地震及び台風などの繰返し履歴のもとで安定化させることに大きく寄与するものである。 In addition, the energy absorbing member of the present invention can be stabilized by a very inexpensive method for stabilizing the cyclic history characteristics of the thin metal plate, so that the structure is subjected to repeated history such as earthquakes and typhoons. This greatly contributes to stabilization.
1 エネルギー吸収部材
2 薄板、ウエブ
3 枠、フランジ
3’ 端部板
4 間柱
5 梁
6 柱
7 壁部材
8 斜材
9 付属板
10 塗料、断熱材、耐火被覆
DESCRIPTION OF
Claims (7)
エネルギー吸収部材は、金属薄板と、金属薄板の周囲に備わる枠とを備え、
エネルギー吸収部材を構造物に設置する前、前記エネルギー吸収部材に予め設定した変形を加えて、エネルギー吸収部材を構造物に設置した後の繰返し変形を受けたときに、前記エネルギー吸収部材が安定した繰返し変形をする、
ことを特徴とする金属薄板を備えたエネルギー吸収部材。 An energy absorbing member comprising a thin metal plate laid on a structure,
The energy absorbing member includes a metal thin plate and a frame provided around the metal thin plate,
Before installing the energy absorbing member on the structure, the energy absorbing member is stabilized when subjected to repeated deformation after the energy absorbing member is installed on the structure by applying a predetermined deformation to the energy absorbing member. Repeatedly deform,
An energy absorbing member provided with a thin metal plate.
金属薄板と金属薄板の周囲に備わる枠とを備えるエネルギー吸収部材が、構造物に設置された後に繰返し変形を受けたときに、前記エネルギー吸収部材が安定した繰返し変形をするために、前記エネルギー吸収部材を構造物に設置される前、前記エネルギー吸収部材に予め設定した変形を加える、
ことを特徴とする金属薄板を備えたエネルギー吸収部材の製造方法。 A method for manufacturing an energy absorbing member comprising a thin metal plate laid on a structure,
When the energy absorbing member including a metal thin plate and a frame provided around the metal thin plate is repeatedly deformed after being installed in a structure, the energy absorbing member is configured to stably deform repeatedly. Before the member is installed in the structure, a predetermined deformation is applied to the energy absorbing member.
The manufacturing method of the energy absorption member provided with the metal thin plate characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005236654A JP4649611B2 (en) | 2005-08-17 | 2005-08-17 | Energy absorbing member provided with metal thin plate and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005236654A JP4649611B2 (en) | 2005-08-17 | 2005-08-17 | Energy absorbing member provided with metal thin plate and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007051452A JP2007051452A (en) | 2007-03-01 |
JP4649611B2 true JP4649611B2 (en) | 2011-03-16 |
Family
ID=37916067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005236654A Active JP4649611B2 (en) | 2005-08-17 | 2005-08-17 | Energy absorbing member provided with metal thin plate and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4649611B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5124146B2 (en) * | 2007-01-19 | 2013-01-23 | 株式会社竹中工務店 | Seismic control building |
JP6171596B2 (en) * | 2013-06-07 | 2017-08-02 | 新日鐵住金株式会社 | Wall panels |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10121772A (en) * | 1996-10-21 | 1998-05-12 | Okumura Corp | Vibrational-energy absorption damper |
JP2001207679A (en) * | 2000-01-28 | 2001-08-03 | Tatsuji Ishimaru | Damper |
JP2004156203A (en) * | 2002-11-01 | 2004-06-03 | Shimizu Corp | Vibration control damper and vibration control structure for building |
-
2005
- 2005-08-17 JP JP2005236654A patent/JP4649611B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10121772A (en) * | 1996-10-21 | 1998-05-12 | Okumura Corp | Vibrational-energy absorption damper |
JP2001207679A (en) * | 2000-01-28 | 2001-08-03 | Tatsuji Ishimaru | Damper |
JP2004156203A (en) * | 2002-11-01 | 2004-06-03 | Shimizu Corp | Vibration control damper and vibration control structure for building |
Also Published As
Publication number | Publication date |
---|---|
JP2007051452A (en) | 2007-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bahrebar et al. | Structural performance assessment of trapezoidally-corrugated and centrally-perforated steel plate shear walls | |
US8511025B2 (en) | Metal joint and building comprising the same | |
JP3451328B2 (en) | Beam-to-column connection with energy absorption mechanism | |
JP4649611B2 (en) | Energy absorbing member provided with metal thin plate and manufacturing method thereof | |
JP2010090650A (en) | Folding plate panel structure and building structure | |
US20120027985A1 (en) | Anisotropic reinforcing metal plate | |
JP4829384B1 (en) | Four corner reinforcement structure of rectangular metal flat plate | |
JP4414833B2 (en) | Seismic walls using corrugated steel | |
JP5399060B2 (en) | Vibration control device | |
JP4688234B1 (en) | Rectangular metal plate square tube reinforcement structure | |
JP4395419B2 (en) | Vibration control pillar | |
JP3951632B2 (en) | Steel plate concrete wall structure and wall structure | |
JP2007239241A (en) | Elastic plastic damper | |
JP2006037585A (en) | Earthquake-resisting wall using corrugated steel plate with opening | |
JPH0593475A (en) | Elastioplastic damper | |
JP2014080802A (en) | Vibration control wall for wooden structure | |
JP5305756B2 (en) | Damping wall using corrugated steel | |
JP4650317B2 (en) | Load-bearing wall panel mounting method, load-bearing wall panel, building structure | |
JP2005042423A (en) | Shear reinforcement structure of metal plate | |
JP2000120299A (en) | Vibration control device for structure | |
JPH08246547A (en) | Pole-beam junction structure | |
JP3511045B2 (en) | Steel bar vibration control device for buildings | |
JP3150603U (en) | Vibration control device | |
JPH10169252A (en) | Hysteresis type vibration control damper for structure | |
JP4355936B2 (en) | Beam structure with steel flange and web |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080526 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101116 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4649611 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |