JPH0414866A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0414866A
JPH0414866A JP2118169A JP11816990A JPH0414866A JP H0414866 A JPH0414866 A JP H0414866A JP 2118169 A JP2118169 A JP 2118169A JP 11816990 A JP11816990 A JP 11816990A JP H0414866 A JPH0414866 A JP H0414866A
Authority
JP
Japan
Prior art keywords
film
electrode
capacitor
insulating film
cvd method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2118169A
Other languages
Japanese (ja)
Other versions
JP2867601B2 (en
Inventor
Shinya Iwasa
晋也 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2118169A priority Critical patent/JP2867601B2/en
Publication of JPH0414866A publication Critical patent/JPH0414866A/en
Application granted granted Critical
Publication of JP2867601B2 publication Critical patent/JP2867601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To increase the area of a capacitor electrode by forming sidewalls protruding from both sides of a transfer gate and forming a lower electrode, a capacitor insulating film and an upper electrode from a field oxide film of the drain region side of a MOS transistor to the top of the gate through an interlayer insulating film. CONSTITUTION:Sidewalls 6 of asilicon dioxide layer is formed, and ions are implanted to form n<+> type impurity regions 7, 8. Then, a silicon nitride film 5 is removed, formed in a square sidewall 6 protruding upward from the upper surface of a gate electrode 4, a silicon dioxide film 9 is grown as an interlayer insulating film by a CVD method, and a contact hole 10 connecting the region 8. Then, a polysilicon film is grown thereon by a CVD method, and a capacitor lower electrode 11 for a memory cell is formed. Thereafter, a nitride film 12 is formed as a capacitor insulating film on the electrode 11 by a CVD method, and an oxide film is formed on the film 12 by a thermal oxidizing method. Then, a polysilicon film is so grown as to cover the oxide film by a CVD method, and etched to form a capacitor upper electrode 13 for the cell.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特にスタック型ダイナミッ
クRAMに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a stacked dynamic RAM.

〔従来の技術〕[Conventional technology]

従来のスタック型ダイナミックRAMのメモリセル構造
の一例を、第3図を参照して説明する。
An example of a memory cell structure of a conventional stacked dynamic RAM will be described with reference to FIG.

第3図において、1は、例えばP型シリコン基板であり
、この基板1表面にはフィールド酸化膜2が形成されて
いる。このフィールド酸化膜2によって囲まれたP型シ
リコン基板1表面にMOSトランジスタのn型ソース領
域7とn型ドレイン領域8が形成されており、n型ドレ
イン領域8とメモリセル用キャパシタ下面電極11が層
間絶縁膜9にあけられたコンタクトホールにより接続さ
れている。下面電極11の上面には絶縁膜12を介して
、メモリセル用キャパシタ上面電極13が形成されてい
る。ドレイン領域8とソース領域7の間のP型シリコン
基板1表面には、ゲート絶縁膜3を介してトランスファ
ゲート電極4が形成されており、この上を層間絶縁膜9
が覆っており、ソース領域7とシリサイド配線16が層
間絶縁膜14にあけられたコンタクトホールにより接続
されている。
In FIG. 3, 1 is, for example, a P-type silicon substrate, and a field oxide film 2 is formed on the surface of this substrate 1. An n-type source region 7 and an n-type drain region 8 of a MOS transistor are formed on the surface of the P-type silicon substrate 1 surrounded by this field oxide film 2, and the n-type drain region 8 and the lower surface electrode 11 of a memory cell capacitor are formed. The connection is made through a contact hole formed in the interlayer insulating film 9. A memory cell capacitor upper electrode 13 is formed on the upper surface of the lower electrode 11 with an insulating film 12 interposed therebetween. A transfer gate electrode 4 is formed on the surface of the P-type silicon substrate 1 between the drain region 8 and the source region 7 with a gate insulating film 3 interposed therebetween, and an interlayer insulating film 9 is formed on this.
The source region 7 and the silicide wiring 16 are connected through a contact hole formed in the interlayer insulating film 14.

このようなスタック型ダイナミックRAMは、1トラン
ジスタ1キヤパシタ型と称されるものであり、その動作
は以下のようなものである。すなわち、書き込み時には
n型ソース領域7に情報電荷を与え、トランスファゲー
ト電極4を選択状態にすることによP)n型ドレイン領
域8を介して、キャパシタ下面電極11に伝達し、絶縁
膜12を介して上面電極13との間に電荷が蓄積される
Such a stacked dynamic RAM is called a one-transistor, one-capacitor type, and its operation is as follows. That is, at the time of writing, an information charge is applied to the n-type source region 7 and the transfer gate electrode 4 is brought into a selected state. Charge is accumulated between the upper surface electrode 13 and the upper surface electrode 13 via the upper surface electrode 13.

この状態でトランスファゲート4を非選択状態にするこ
とにより、データが保持される。読み出し時には、トラ
ンスファゲート4を選択状態にすれば蓄積された電荷が
n型ソース領域7へ伝達される。
By setting the transfer gate 4 to a non-selected state in this state, data is held. At the time of reading, the accumulated charges are transferred to the n-type source region 7 by placing the transfer gate 4 in a selected state.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のスタック型ダイナミックRAMでは、メ
モリセル用キャパシタ下面電極11及び絶縁膜12及び
メモリセル用キャパシタ上面電極13からなるセルキャ
パシタは、トランスファゲート上の中間からフィールド
酸化膜上にわたり形成され、キャパシタ電極の形状は平
面的に広がっている。したがって、このような構造ては
近年の記憶容量増加に伴う単位セル面積の縮小化に対し
、セルキャパシタの容量の増加に対応できないという問
題点があった。
In the conventional stacked dynamic RAM described above, a cell capacitor consisting of a memory cell capacitor bottom electrode 11, an insulating film 12, and a memory cell capacitor top electrode 13 is formed from the middle on the transfer gate to the field oxide film, and the capacitor The shape of the electrode is spread out in a plane. Therefore, such a structure has the problem that it cannot cope with the increase in the capacity of the cell capacitor while the unit cell area has been reduced due to the increase in storage capacity in recent years.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、トランスファゲートの両脇に突
出したサイドウオールを形成し、層間絶縁膜を介してM
OS)ランジスタのドレイン領域側のフィールド酸化膜
上からトランスファゲートの上部にわたり下面電極及び
キャパシタ絶縁膜及び上面電極を形成する。このような
構造とすることにより、単位セル面積を拡大させること
なく、キャパシタ電極の面積を増加させることができ、
キャパシタの容量を増加することができる。
In the semiconductor device of the present invention, protruding sidewalls are formed on both sides of the transfer gate, and M
OS) A lower surface electrode, a capacitor insulating film, and an upper surface electrode are formed from the field oxide film on the drain region side of the transistor to the upper part of the transfer gate. With such a structure, the area of the capacitor electrode can be increased without increasing the unit cell area.
Capacity of the capacitor can be increased.

〔実施例〕〔Example〕

つぎに本発明を実施例により説明する。 Next, the present invention will be explained by examples.

第1図(a)〜(c)は本発明の第1の実施例を製造工
程順に説明するための断面図である。第1図(a)にお
いて、P型シリコン基板lに選択酸化法を用いて400
0人程度0フィールド酸化膜2を形成し、その上に熱酸
化により約200人のゲート絶縁膜となる二酸化シリコ
ン膜3を、さらに、CVD法を用いてゲート電極となる
約3000人のポリシリコン膜4を、またその上に約3
000人のツノ出し用のシリコン窒化膜5を順次積層す
る。それからホトリソグラフィ技術を用いて二酸化シリ
コン1lj3. ;t:リシリコン膜4、シリコン窒化
膜5の3層の積層体を所望のパターンにエツチングし、
イオン注入によりn″型不純物領域7′8′を形成する
。つぎに第1図(b)のように、CVD法を用いてサイ
ドウオール形成のために約2000人の二酸化シリコン
層6を形成し、異方性ドライエツチングを行い、二酸化
シリコン層によるサイドウオール6を形成する。つぎに
再度イオン注入を行いLDD、トランジスタのソース(
またはドレイン)、ドレイン(またはソース)領域とな
るn+不純物領域7,8を形成する。つぎに第1図(c
)のように、シリコン窒化膜5を除去してゲート電極4
の上面より上方に突出した角(ツノ)状のサイドウオー
ル6となし、つぎに全面に層間絶縁膜としてCVD法に
より約2000人の二酸化シリコン膜9を成長させ、ホ
トリソグラフィ技術を用いて、二酸化シリコン膜9にド
レイン不純物領域8へ通じるコンタクトホール10を形
成する。つぎにその上にキャパシタの下面電極となるポ
リシリコン膜をCVD法により約4000人成長させ、
ホトリソグラフィ技術を用いて所望のパターンにエツチ
ングしメモリセル用キャパシタ下面電極11を形成する
。その後、下面電極11の上にキャパシタ絶縁膜として
CVD法により窒化膜12を約100人成長させ、その
後熱酸化法により窒化膜12表面に酸化膜を形成する。
FIGS. 1(a) to 1(c) are cross-sectional views for explaining the first embodiment of the present invention in the order of manufacturing steps. In FIG. 1(a), a P-type silicon substrate l is oxidized to 400% by selective oxidation.
A field oxide film 2 of about 0 is formed, on which a silicon dioxide film 3 of about 200 is formed by thermal oxidation, and then a polysilicon film of about 3000 is formed, which becomes a gate electrode, by CVD. 4 and about 3
000 silicon nitride films 5 for exposing the horns are sequentially laminated. Then, using photolithography techniques, silicon dioxide 1lj3. ;t: Etching the three-layer stack of silicon film 4 and silicon nitride film 5 into a desired pattern;
An n'' type impurity region 7'8' is formed by ion implantation.Next, as shown in FIG. 1(b), a silicon dioxide layer 6 of approximately 2000 layers is formed using the CVD method to form a sidewall. , anisotropic dry etching is performed to form a sidewall 6 of silicon dioxide layer.Next, ion implantation is performed again to form the source of the LDD and transistor (
n+ impurity regions 7 and 8 which become drain (or source) regions are formed. Next, Figure 1 (c
), the silicon nitride film 5 is removed and the gate electrode 4 is
A horn-shaped sidewall 6 is formed that protrudes upward from the upper surface. Next, a silicon dioxide film 9 of about 2,000 layers is grown on the entire surface as an interlayer insulating film by the CVD method. A contact hole 10 communicating with drain impurity region 8 is formed in silicon film 9 . Next, approximately 4,000 people grow a polysilicon film on top of it using the CVD method, which will become the bottom electrode of the capacitor.
A desired pattern is etched using photolithography to form the memory cell capacitor lower surface electrode 11. Thereafter, approximately 100 nitride films 12 are grown as a capacitor insulating film on the lower electrode 11 by CVD, and then an oxide film is formed on the surface of the nitride film 12 by thermal oxidation.

それから、酸化膜を覆うようにCVD法を用いてキャパ
シタの上面電極となる約1500人のポリシリコン膜を
成長させ、ホトリソグラフィ技術を用いてエツチングし
、メモリセル用キャパシタ上面電極13を形成する。次
に全面に層間絶縁膜として、CVD法により二酸化シリ
コン層14を成長させ、ホトリソグラフィ技術を用いて
ソース領域7′へ通じるコンタクトホール15を二酸化
シリコン層14に形成し、つぎに、例えばシリサイドを
スパッタ法により堆積させ、ホトリソグラフィ技術を用
いて配線16を形成する。
Then, a polysilicon film of approximately 1,500 layers, which will become the upper surface electrode of the capacitor, is grown using the CVD method so as to cover the oxide film, and etched using the photolithography technique to form the capacitor upper surface electrode 13 for the memory cell. Next, a silicon dioxide layer 14 is grown as an interlayer insulating film over the entire surface by CVD, a contact hole 15 leading to the source region 7' is formed in the silicon dioxide layer 14 by photolithography, and then, for example, silicide is grown. It is deposited by a sputtering method, and the wiring 16 is formed using a photolithography technique.

つぎに本発明の第2の実施例を第2図(a)、(b)を
用いて説明する。第1実施例の第1図(c)において、
二酸化シリコン膜9をCVD法により成長させたのち、
ホトリソグラフィ技術により二酸化シリコン膜9にドレ
イン領域8へ通じるコンタクトホールを形成する際、第
2図(a)のように、サイドウオール6上からフィール
ド酸化膜2上にわたりホトレジスト21を除去する。そ
の後、二酸化シリコン膜9をエツチングし、第2図(b
)のように、ドレイン領域8に通じるセルファラインコ
ンタクトホール22を形成する。その後、第1図実施例
と同様の工程を施し、下面キャパシタ電極11、キャパ
シタ絶縁!In 12 、上面電極13などを形成する
Next, a second embodiment of the present invention will be described using FIGS. 2(a) and 2(b). In FIG. 1(c) of the first embodiment,
After growing the silicon dioxide film 9 by CVD method,
When forming a contact hole leading to the drain region 8 in the silicon dioxide film 9 by photolithography, the photoresist 21 is removed from the sidewall 6 to the field oxide film 2, as shown in FIG. 2(a). Thereafter, the silicon dioxide film 9 is etched, and as shown in FIG.
), a self-line contact hole 22 communicating with the drain region 8 is formed. Thereafter, the same process as in the embodiment of FIG. 1 is performed to form the lower surface capacitor electrode 11 and capacitor insulation! In 12 , the upper surface electrode 13 and the like are formed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、スタック型ダイナミック
RAMのメモリセルのMOS)ランジスタのサイドウオ
ールを角状に形成することにより、メモリセルの集積度
を低下させることなくキャパシタ電極の面積を増加させ
ることができ、容量を増加できるという効果を有する。
As explained above, the present invention makes it possible to increase the area of the capacitor electrode without reducing the degree of integration of the memory cell by forming the sidewall of the MOS transistor of the memory cell of the stacked dynamic RAM into an angular shape. This has the effect of increasing capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(c)は本発明の第1の実施例を製造工
程順に説明するための断面図、第2図(a)。 (b)は本発明の第2の実施例を製造工程順に説明する
ための断面図、第3図は従来の半導体装置の断面図であ
る。 1・・・・・・P型シリコン基板、2・・・・・・フィ
ールド酸化膜、3・・・・・・ゲート絶縁膜、4・・・
・・・ゲート電極、5・・・・・・ツノ出し用窒化膜、
6・・・・・・サイドウオール、7・・・・・・ソース
領域、8・・・・・・ドレイン領域、9゜14・・・・
・・層間絶縁膜、10.15・・・・・・コンタクトホ
ール、11・・・・・・キャパシタ下面電極、12・・
・・・・−キャパシタ絶縁膜、13・・・・・・キャパ
シタ上面電極、16・・・・・・シリサイド配線。 代理人 弁理士  内 原   晋 第1図
FIGS. 1(a) to 1(c) are cross-sectional views for explaining the first embodiment of the present invention in the order of manufacturing steps, and FIG. 2(a) is a sectional view of the first embodiment of the present invention. (b) is a cross-sectional view for explaining the second embodiment of the present invention in the order of manufacturing steps, and FIG. 3 is a cross-sectional view of a conventional semiconductor device. 1... P-type silicon substrate, 2... Field oxide film, 3... Gate insulating film, 4...
... Gate electrode, 5... Nitride film for protruding horns,
6... Side wall, 7... Source region, 8... Drain region, 9°14...
...Interlayer insulating film, 10.15...Contact hole, 11...Capacitor bottom electrode, 12...
--- Capacitor insulating film, 13 --- Capacitor top electrode, 16 --- Silicide wiring. Agent: Susumu Uchihara, patent attorney Figure 1

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板上にゲート絶縁膜を介して形成され
たゲート電極と、このゲート電極の両側にこのゲート電
極を間にはさむようにして前記基板に形成された反対導
電型のソース(またはドレイン)およびドレイン(また
はソース)領域と、前記ゲート電極の上およびドレイン
領域の上にわたり形成された、絶縁膜を間にはさむ下面
電極と上面電極からなるメモリセル用キャパシタとを有
する半導体装置において、前記ゲート電極の両脇にこの
ゲート電極上面より突出した絶縁物のサイドウォールが
形成され、このサイドウォールの前記ドレイン側のサイ
ドウォールを含み前記ゲート電極上面からドレイン領域
上面にわたり絶縁膜を介して前記メモリセル用キャパシ
タが形成されていることを特徴とする半導体装置。
A gate electrode formed on a semiconductor substrate of one conductivity type via a gate insulating film, and a source (or drain) of the opposite conductivity type formed on the substrate with the gate electrode sandwiched between the gate electrodes on both sides of the gate electrode. and a drain (or source) region, and a memory cell capacitor formed over the gate electrode and over the drain region and comprising a lower surface electrode and an upper surface electrode with an insulating film in between. Insulating sidewalls protruding from the upper surface of the gate electrode are formed on both sides of the electrode, and the memory cell is connected to the memory cell from the upper surface of the gate electrode to the upper surface of the drain region through an insulating film, including the sidewall on the drain side of the sidewall. A semiconductor device characterized in that a capacitor is formed therein.
JP2118169A 1990-05-08 1990-05-08 Semiconductor device Expired - Lifetime JP2867601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2118169A JP2867601B2 (en) 1990-05-08 1990-05-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2118169A JP2867601B2 (en) 1990-05-08 1990-05-08 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0414866A true JPH0414866A (en) 1992-01-20
JP2867601B2 JP2867601B2 (en) 1999-03-08

Family

ID=14729828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2118169A Expired - Lifetime JP2867601B2 (en) 1990-05-08 1990-05-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2867601B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359155B1 (en) * 1995-04-07 2003-03-03 주식회사 하이닉스반도체 Method for manufacturing electric charge storage node of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359155B1 (en) * 1995-04-07 2003-03-03 주식회사 하이닉스반도체 Method for manufacturing electric charge storage node of semiconductor device

Also Published As

Publication number Publication date
JP2867601B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
JP3172321B2 (en) Method for manufacturing semiconductor memory device
JPH01132152A (en) Manufacture of groove-shaped capacitor cell for semiconductor device
JP2950392B2 (en) Semiconductor device and manufacturing method thereof
JPH03173174A (en) Semiconductor storage device
JP2648448B2 (en) Method for manufacturing capacitor of semiconductor memory device
JP2894740B2 (en) MOS type semiconductor device
JPH01124234A (en) Semiconductor device having isolation oxide film and manufacturing thereof
JPS6156445A (en) Semiconductor device
JPH11297965A (en) Semiconductor memory device and manufacture threrefor
JP3241789B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPH0414866A (en) Semiconductor device
JPH02307262A (en) Semiconductor storage device and manufacture thereof
JPH04306875A (en) Structure of semiconductor memory device
JPH0575059A (en) Semiconductor storage device and its manufacture
JPH04348070A (en) Semiconductor device and its manufacture
JP3489090B2 (en) Semiconductor device and manufacturing method thereof
JPS6336142B2 (en)
JP2794761B2 (en) Semiconductor memory cell and manufacturing method thereof
JPH0382155A (en) Semiconductor memory cell and manufacture thereof
JP3082691B2 (en) Semiconductor device and manufacturing method thereof
JPH03257859A (en) Semiconductor device and manufacture thereof
JP3048417B2 (en) Method for manufacturing semiconductor device
JPH04216666A (en) Semiconductor device and its manufacture
JP2594176B2 (en) Method for manufacturing semiconductor memory device
JP2827377B2 (en) Semiconductor integrated circuit