JPH04147605A - Manufacture of rare earth iron-boron permanent magnet - Google Patents

Manufacture of rare earth iron-boron permanent magnet

Info

Publication number
JPH04147605A
JPH04147605A JP2272733A JP27273390A JPH04147605A JP H04147605 A JPH04147605 A JP H04147605A JP 2272733 A JP2272733 A JP 2272733A JP 27273390 A JP27273390 A JP 27273390A JP H04147605 A JPH04147605 A JP H04147605A
Authority
JP
Japan
Prior art keywords
rare earth
iron
boron
raw material
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2272733A
Other languages
Japanese (ja)
Inventor
Katsunori Iwasaki
克典 岩崎
Shigeo Tanigawa
茂穂 谷川
Masaaki Tokunaga
徳永 雅亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2272733A priority Critical patent/JPH04147605A/en
Publication of JPH04147605A publication Critical patent/JPH04147605A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Abstract

PURPOSE:To manufacture a high performance uniform magnetic characteristic rare earth-iron-boron permanent magnet by using a plurality of raw materials having different grain growth speeds with respect to processing temperature as the raw materials before hot processing. CONSTITUTION:Stock material powder in which a grain growth speed is low with respect to temperature and fine crystal grain sizes are likely to be yielded is a raw material to which there is added about 0.2 to 2 atomic % of Ga, Ti, Zr, Si, Hj, and Ta for example. For example, the raw material is raw material powder in which contents of a rare earth element are properly controlled. Raw material powder different in supercooling upon quenching is a material which is made amorphous by raising the supercooling for example. For example, raw material powder completely crystallized in a quenching state by reducing the supercooling for example. Where a large- sized anisotropic magnet is manufactured, there may be used raw material powder reduced in coersive force after hot processing for a part in contact with a die inner wall upon hot processing when a preliminary molded structure in cold processing, while there may be used at the magnet center a raw material in which the absolute value of the coersive force is relatively greater and the growth speed of the crystal grain is medium.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高性能でかつ磁気特性の均一な、希土類−鉄一
ポロン(硼素)系永久磁石の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a rare earth-iron-boron permanent magnet with high performance and uniform magnetic properties.

〔従来の技術〕[Conventional technology]

希土類−鉄−ボロン系永久磁石は、従来の高性能希±l
!磁石である希土類コバルト磁石と比較して高い磁気特
性が得られることから、近年その市場需要が高まってい
る。特に大型コンピューター等の外部磁気記憶装置に使
用される磁気ヘッドの駆動装置であるボイスコイルモー
ター用の分野においては大半が希土類−鉄一ボロン磁石
に代替えされている状況にある。また希土類磁石の新し
い用途として、近年ウィグラー、アンジュレータ−、リ
ニアモーターカー等の磁気回路に使用される大型の磁石
需要も増加している。これ等の応用に利用される永久磁
石に要求される性能としては高いエネルギー積を有する
ことは熱論のこと、磁石の均一性も重要な性能のひとつ
としであげられる。
Rare earth-iron-boron permanent magnets are conventional high-performance rare ±l
! The market demand for magnets has been increasing in recent years because they have higher magnetic properties than rare earth cobalt magnets. Particularly in the field of voice coil motors, which are magnetic head drive devices used in external magnetic storage devices such as large-scale computers, rare earth-iron-boron magnets are now being used as the majority of magnets. Furthermore, as a new use for rare earth magnets, demand for large magnets used in magnetic circuits such as wigglers, undulators, and linear motor cars has increased in recent years. The performance required of permanent magnets used in these applications is that they have a high energy product, and uniformity of the magnet is also an important performance.

これ等の応用分野においては、現在粉末冶金法を用いた
希土類−鉄一ボロン磁石あるいは希土類コバルト磁石が
使用されている。
In these application fields, rare earth-iron-boron magnets or rare-earth cobalt magnets using powder metallurgy are currently used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、これ等の磁石により得られる磁石の最大
エネルギー積は、せいぜい38MGOe程度である。ま
た、粉末冶金法による希土類磁石は磁石微粉末を金型内
で磁場により配向させ冷開成形し、高温で焼結し、更に
熱処理することにより製造されるが、単体の磁石重量が
500grを越えるような大型磁石の場合は技術上色々
な問題点がある。第1に、大型磁石を金型内で磁場成形
する場合、金型内の磁場分布が均一でないため配向度の
ばらつきが避けられない、この結果製品内での5%程度
の残留磁束密度のばらつきは避けられない。
However, the maximum energy product obtained by these magnets is approximately 38 MGOe at most. In addition, rare earth magnets produced by powder metallurgy are produced by orienting fine magnet powder in a mold using a magnetic field, cold-opening it, sintering it at high temperatures, and then heat-treating it, but the weight of a single magnet exceeds 500g. There are various technical problems with such large magnets. First, when a large magnet is magnetically formed in a mold, variations in the degree of orientation are unavoidable because the magnetic field distribution in the mold is not uniform.As a result, the residual magnetic flux density varies by about 5% within the product. is unavoidable.

第2の問題点としては大型の永久磁石を高温で焼結する
場合、C軸方向とC面方向での収縮率が異なるため、炉
内の温度分布が悪い場合には、そり等の問題が生じ歩留
を低下させることがある。第3の問題としては、粉末冶
金法による焼結磁石の場合は熱処理により適正な保磁力
を付与させるが、大型磁石の場合、磁石内部と周辺部に
おいて熱履歴が異なること、また冷却時の冷却速度が異
なるため、磁石内部と周辺部で10〜20%程度の保磁
力のばらつきが避けられないという欠点を有する。
The second problem is that when large permanent magnets are sintered at high temperatures, the shrinkage rates in the C-axis direction and C-plane direction are different, so if the temperature distribution in the furnace is poor, problems such as warping may occur. This may cause a decrease in yield. The third problem is that in the case of sintered magnets made by powder metallurgy, appropriate coercive force is imparted through heat treatment, but in the case of large magnets, the thermal history is different between the inside and the surrounding area of the magnet, and the cooling during cooling. Since the speeds are different, there is a drawback that the coercive force inevitably varies by about 10 to 20% between the inside of the magnet and the periphery.

特に希土類−鉄−ボロン磁石の場合、保磁力、残留磁束
密度の温度係数が大きく、このような保磁力のばらつき
は応用上の制約となる。一方、希土類−鉄−ボロン磁石
の新しい製造方法として、溶湯急冷等の過冷却法で得た
、アモルファスあるいは微細結晶からなる薄帯や粉末を
原料として温間での加圧焼結や塑性加工により、等方性
または異方性の磁石を得る方法が提案されている。この
新しい希土類−鉄一ボロン磁石の製造法に関しても種々
の提案がなされており、例えば特開平2−94604号
では本発明者等は内部潤滑剤として有機系化合物を添加
して40MGOe以上の高い磁気特性を得ている。また
、外部潤滑側や加工方法の改善により残留磁束密度を改
善した発明提案している。しかしながら、ウィグラー、
アンジュレータ−、リニアモーターカー等の大型磁石を
製造する場合には、焼結磁石と同様に磁石中心部と外周
部で10〜20%の保磁力のばらつきが避けられないと
いう問題点を有する。これは希土類−鉄一ボロン磁石の
保磁力が基本的には磁石を構成する個々の結晶粒の大き
さに依存するためである。したがって磁石全体で均一な
保磁力を得るためには、温間加工時の被加工体の温度分
布を出来るだけ均一にし結晶粒径を出来るだけ均一に揃
えるこが重要である。しかしながら、被加工体を外部加
熱しながら温間加工するため、大型磁石の場合磁石中心
部と外周部でのある程度の温度差は避けられない。この
ことは結晶粒の成長速度が一般に温度の対数関数に比例
するため、磁石外周部と中心部での結晶粒径の不均一を
もたらす要因となる。この問題点を解決するためには、
例えば温間加工前の予熱時間を十分に取り被加工体の温
度分布を均一にすれば良いが、この場合には磁石全体の
結晶粒径が粗大化し全体の保磁力を低下させてしまうこ
とになる。
Particularly in the case of rare earth-iron-boron magnets, the temperature coefficients of coercive force and residual magnetic flux density are large, and such variations in coercive force are a constraint on application. On the other hand, as a new manufacturing method for rare earth-iron-boron magnets, amorphous or microcrystalline ribbons or powder obtained by supercooling methods such as quenching of molten metal are used as raw materials, and warm pressure sintering or plastic working is used. , methods of obtaining isotropic or anisotropic magnets have been proposed. Various proposals have been made regarding the manufacturing method of this new rare earth-iron-boron magnet. For example, in JP-A-2-94604, the present inventors added an organic compound as an internal lubricant to create a high magnetic field of 40 MGOe or more. It has acquired characteristics. They also proposed an invention that improved the residual magnetic flux density by improving the external lubrication side and the processing method. However, Wiggler,
When manufacturing large magnets such as undulators and linear motor cars, there is a problem that, like sintered magnets, a variation in coercive force of 10 to 20% between the center and the outer circumference of the magnet cannot be avoided. This is because the coercive force of a rare earth-iron-boron magnet basically depends on the size of the individual crystal grains that make up the magnet. Therefore, in order to obtain a uniform coercive force throughout the magnet, it is important to make the temperature distribution of the workpiece as uniform as possible during warm working and to make the crystal grain size as uniform as possible. However, since the workpiece is warm-processed while being externally heated, a certain degree of temperature difference between the center and the outer circumference of the magnet is unavoidable in the case of large magnets. Since the growth rate of crystal grains is generally proportional to a logarithmic function of temperature, this is a factor that causes non-uniformity in crystal grain size between the outer periphery and the center of the magnet. In order to solve this problem,
For example, it is possible to make the temperature distribution of the workpiece uniform by taking sufficient preheating time before warm working, but in this case, the crystal grain size of the entire magnet becomes coarse and the overall coercive force decreases. Become.

〔課題を解決するための手段〕[Means to solve the problem]

このような従来技術の持つ問題点を解決するため、本発
明者等は温間加工前の原料として加工温度に対して異な
る粒成長速度を持つ複数の原料を用いることにより大型
磁石においても保磁力、残留磁束密度とも均一な高性能
な永久磁力が得られることを見出した。本発明における
異なる粒成長速度を持つ複数の原料とは例えば、組成の
異なる原料粉末であり、例えば急冷時の過冷却度が異な
る原料粉末である。温度に対して粒成長速度が遅く微細
な結晶粒径が得られ易い原料粉末としては、例えばGa
、 Ti、 Zr、 Si、 Hj、 Ta、を0.2
乃至2原子%程度添加した原料であり、例えば希土類元
素−の含有量を適正に制御した原料粉末である。
In order to solve these problems with the conventional technology, the present inventors used multiple raw materials with different grain growth rates with respect to the processing temperature as raw materials before warm processing, thereby increasing the coercive force even in large magnets. We have discovered that high-performance permanent magnetic force with uniform residual magnetic flux density can be obtained. In the present invention, the plurality of raw materials having different grain growth rates are, for example, raw material powders having different compositions, for example, raw material powders having different degrees of supercooling during rapid cooling. For example, Ga
, Ti, Zr, Si, Hj, Ta, 0.2
It is a raw material to which about 2 atomic % is added, for example, a raw material powder in which the content of rare earth elements is appropriately controlled.

急冷時の過冷却度が異なる原料粉末とは、例えば過冷却
度を高めてアモルファス状態にした材料であり、例えば
過冷却度を小さくして急冷状態で完全に結晶化させた原
料粉末である。
Raw material powders having different degrees of supercooling during quenching are, for example, materials that have been made into an amorphous state by increasing the degree of supercooling, and are, for example, raw material powders that have been completely crystallized in a quenched state by reducing the degree of supercooling.

本発明により例えば大型の異方性磁石を製造する場合、
冷間での予備成形体成形特温間加工時の金型内壁に接す
る部分に温間加工後の保磁力低下の少い原料粉末を使用
すれば良く、一方磁石中心部には保磁力の絶対価は比較
的大きく、結晶粒の成長速度は中程度の原料を使用すれ
ば良い、このような異種粉末の分配方法としては、冷間
成長時にまず粒成長速度の遅い原料粉末を金型内に一定
量投入した後、中間層として結晶粒の成長速度が中程度
の原料粉末を一定量投入し、更に粒成長速度の遅い原料
粉末を投入し冷間成形することによりサンドインチ構造
を有する予備成形体を成形することが可能である。また
、結晶粒成長速度の遅・い原料粉末を予備成形体の外周
部に分配する場合には、冷開成形時の原料投入時金型キ
ャビティ内に、しきいを設は異種の原料粉末を投入する
ことlこより結晶粒成長速度の遅い原料の内側に結晶粒
成長速度が中程度の原料をがん合させた予備成形体とす
ることが可能である。また上記、2つの方法を組み合わ
せて、結晶粒成長速度が中程度の原料を中核に配した予
備成形体も本発明に方含される。
For example, when manufacturing a large anisotropic magnet according to the present invention,
It is sufficient to use raw material powder that has a small coercive force drop after warm processing for the part in contact with the inner wall of the mold during cold preform forming, and for the part in contact with the inner wall of the mold during special hot processing, while at the center of the magnet, the absolute coercive force It is sufficient to use a raw material with a relatively large grain size and a medium grain growth rate.As a method of distributing such different types of powder, the raw material powder with a slow grain growth rate is first placed in the mold during cold growth. After adding a certain amount, a certain amount of raw material powder with a medium grain growth rate is added as an intermediate layer, and then a raw material powder with a slow grain growth rate is added and cold-formed to create a preform with a sandwich inch structure. It is possible to mold the body. In addition, when distributing raw material powder with a slow crystal grain growth rate to the outer periphery of the preform, it is necessary to set a threshold in the mold cavity when raw material is introduced during cold-open molding. It is possible to produce a preformed body in which a raw material with a medium grain growth rate is bonded inside a raw material with a slow grain growth rate. Further, the present invention also includes a preformed body in which the above two methods are combined and a core material is arranged with a raw material having a medium grain growth rate.

上記予備成形体を例えば650〜750 ”Cで加圧焼
結した後、700〜750″Cで塑性加工を施すことに
より、磁石全体で保磁力が均一な永久磁石の製造が可能
である。
By pressure-sintering the preformed body at, for example, 650 to 750''C, and then subjecting it to plastic working at 700 to 750''C, it is possible to manufacture a permanent magnet with uniform coercive force throughout the magnet.

以下実施例につき本発明の詳細な説明する。The present invention will be described in detail with reference to Examples below.

〔実施例〕〔Example〕

(実施例1) NdHaFebalCOsGao、sBbなる超急冷薄
帯を溶湯窓。
(Example 1) A super-quenched ribbon of NdHaFebalCOsGao and sBb was used as a molten metal window.

冷性(単ロール法)により作製した。(粉末A)一方N
d I L 5Feba l Co?、 5Gao、 
sTj o、 sBbなる超2、冷薄帯を作製した。(
粉末B) これ等2種の粉末を、直径60a+s、深さ100sn
のキャビティを有する金型内に良く直径3oIIIIl
の敷居を同心円状に配置し、敷居の内側には粉末Aを、
敷居の外側には粉末Bを一定量充填した後、敷居を鉛直
線上に引き抜いた後、成形圧3)、/cdで成形し直径
60IIIIl、高さ6oIllI11の予備成形体を
作製した。
Produced by cold method (single roll method). (Powder A) On the other hand, N
d I L 5Feba l Co? , 5Gao,
Super 2 cold ribbons of sTj o and sBb were produced. (
Powder B) These two types of powder were placed in a container with a diameter of 60a+s and a depth of 100sn.
Inside the mold with a cavity of well diameter 3oIIIl
The sills are arranged in concentric circles, and powder A is placed on the inside of the sills.
After filling the outside of the sill with a certain amount of powder B, the sill was pulled out on a vertical line and then molded at a molding pressure of 3), /cd to produce a preformed body with a diameter of 60IIIl and a height of 6oIllI11.

この予備成形体を、予め650 ”Cで0.5トシ/d
の圧力下で加圧焼結し、密度的7.6g/ccの圧密体
とした後、720℃で加工率50%まで据込み加工した
後更に750°Cで加工率75%まで追加工し、直径1
201IIll高さ10m1llの磁石体を得た。−方
比較例として粉末A (B)のみを用いて、直径60m
m、高さ60m5+の予備成形体を成形し実施例と同様
の方法で直径120ns、高さ10蒙膳の磁石体を得た
This preform was heated at 650 ”C to 0.5 toy/d.
After pressure sintering under the pressure of , diameter 1
A magnet body with a height of 201IIll and a height of 10ml was obtained. - As a comparative example, only powder A (B) was used, and the diameter was 60 m.
A preformed body with a diameter of 120 ns and a height of 10 mm was obtained in the same manner as in the example.

このようにして得た据込み磁石を中心を含む直線状に1
2分割し、各々の保磁力を測定し中心線上の保磁力の分
布を調べた。同様に比較材についても保磁力の分布を調
べた、結果を第1図に示す。
The upsetting magnet obtained in this way is placed in a straight line including the center.
It was divided into two parts, the coercive force of each was measured, and the distribution of coercive force on the center line was investigated. Similarly, the coercive force distribution of comparative materials was investigated, and the results are shown in FIG.

第1図から明らかなように本発明による予備成形体を使
用することにより磁石全体で均一な保磁力を有する超急
冷磁石が得られることが分かる。
As is clear from FIG. 1, by using the preform according to the present invention, an ultra-quenched magnet having a uniform coercive force throughout the magnet can be obtained.

(実施例2) Nd+a、5FebafCO7,5Ga+、Jiなる超
急冷薄帯を単ロール法により作製した。溶湯急冷時の冷
部速度をひとつは25m/秒としもうひとつは10−7
秒とした。
(Example 2) Ultra-quenched ribbons of Nd+a, 5FebafCO7, 5Ga+, and Ji were produced by a single roll method. The cooling section speed during quenching of the molten metal is 25 m/sec for one and 10-7 for the other.
Seconds.

この2種類の超急冷薄帯を650〜800℃の温度範囲
で30分間熱処理することにより超急冷薄帯の保磁力の
温度変化を調べた。結果を第2図に示す、10m/秒で
溶湯急冷した薄帯は750°C以上で保磁力は急激に低
下するが、25s/秒で溶湯急冷した薄帯は800°C
においても比較的高い保磁力を有していることが分かる
。この2種の超急冷薄帯を使用してφ60Ilst 4
7曽−のサントイ・ンチ構造を有する、冷間予備成形体
を作製した。冷間予備成形体の中央部には10蒙/秒で
溶湯急冷して得られた薄帯を粉砕した磁粉を上下両端部
には、25−7秒で溶湯急冷して得られた薄帯を粉砕し
た磁粉を使用した。このサンドウイチ構造を有する予備
成形帯を700 ’Cで加圧焼結し、φ3C1+mXf
30m−の圧密体を得た。比較例として、25m/秒で
溶湯急冷して得た粉末のみを使用し、同様の圧密体を作
製した。この圧密体を長さ方向に5分割し保磁力の長さ
方向の分布を測定した。結果を第3図に示す。第3図か
ら明らかなように本発明によれば保磁力の均一な磁石が
得られることが分かる。
These two types of super-quenched ribbons were heat-treated in a temperature range of 650 to 800° C. for 30 minutes to examine temperature changes in coercive force of the super-quenched ribbons. The results are shown in Figure 2. The coercive force of the ribbon rapidly cooled at 10 m/s decreases above 750°C, but the coercive force of the ribbon rapidly cooled at 25 s/s reaches 800°C.
It can be seen that it has a relatively high coercive force. Using these two types of ultra-quenched ribbons, φ60Ilst 4
A cold preformed body having a 7-inch Santoinchi structure was produced. Magnetic powder obtained by pulverizing a thin ribbon obtained by rapidly cooling a molten metal at 10 M/sec is placed in the center of the cold preform, and thin ribbons obtained by rapidly cooling a molten metal at 25-7 seconds are placed at both upper and lower ends of the cold preform. Pulverized magnetic powder was used. This preformed band having a sandwich structure was pressure sintered at 700'C, and φ3C1+mXf
A compacted body of 30 m was obtained. As a comparative example, a similar compacted body was produced using only the powder obtained by rapidly cooling the molten metal at 25 m/sec. This compacted body was divided into five parts in the length direction, and the distribution of coercive force in the length direction was measured. The results are shown in Figure 3. As is clear from FIG. 3, according to the present invention, a magnet with uniform coercive force can be obtained.

(実施例3) Nd+JebafCO7,5Gao、sBbなる組成の
超急冷薄帯(A)とNd14FebafICo7,5G
ao、sνO,SB6なる組成の超急冷薄帯(B)を実
施例1と同様の方法で作製し、粗粉砕し500μm以下
の磁性粉を得た。この2種の粉末をA粉末が予備成形体
の中核部に配置されるよう充填しB粉末を外周部に配置
されるように充填し口60m■Xf!80+mの予備成
形体を得た。この予備成形体を実施例1と同様の方法で
2段階で最終加工率75%まで据込み加工を行い。
(Example 3) Ultra-quenched ribbon (A) with a composition of Nd+JebafCO7,5Gao, sBb and Nd14FebafICo7,5G
An ultra-quenched ribbon (B) having a composition of ao, svO, and SB6 was produced in the same manner as in Example 1, and coarsely ground to obtain magnetic powder of 500 μm or less. These two types of powder were filled so that the A powder was placed in the core of the preform, and the B powder was placed in the outer periphery. A preform of 80+m was obtained. This preform was subjected to upsetting processing in two steps in the same manner as in Example 1 to a final processing rate of 75%.

口120 +++mX f! 1311111の異方性
の磁石を得た。この磁石の各部から、口10mmX i
 13#1mの保磁力測定用のテストピースを切り出し
磁石各部における保磁力の分布を調べた。結果を比較材
との対比で第4図に示す。
Mouth 120 +++mX f! An anisotropic magnet of 1311111 was obtained. From each part of this magnet, the mouth 10mmX i
A 13#1m test piece for coercive force measurement was cut out and the distribution of coercive force in each part of the magnet was examined. The results are shown in Figure 4 in comparison with comparative materials.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来不可能であった磁気特性特に保磁
力の均一な大型の超急冷希土類−鉄−ボロン系永久磁石
の製造が可能となり、ウィグラー、アンジュレータ−、
リニアモーターカー等への応用が可能である。
According to the present invention, it has become possible to manufacture large-scale super-quenched rare earth-iron-boron permanent magnets with uniform magnetic properties, especially coercive force, which were previously impossible, such as wigglers, undulators,
It can be applied to linear motor cars, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる永久磁石の保磁力の分布を示す
図、第2図は据込み加工温度と保磁力の関係を示す図、
第3図は保磁力分布を示す図、第4図は試料中の保磁力
の分布を示す散布図である。 第1図 試料分割位置 第2図 据込み加工温度(”C) 第3図 BCDEF 第4図 数字は保磁力
FIG. 1 is a diagram showing the distribution of coercive force of the permanent magnet according to the present invention, FIG. 2 is a diagram showing the relationship between upsetting temperature and coercive force,
FIG. 3 is a diagram showing the coercive force distribution, and FIG. 4 is a scatter diagram showing the coercive force distribution in the sample. Figure 1 Sample division position Figure 2 Upsetting temperature (C) Figure 3 BCDEF Figure 4 Numbers indicate coercive force

Claims (1)

【特許請求の範囲】 1、希土類、鉄、ボロンを主成分とする磁石合金を溶湯
急冷等の過冷却状態で固化して得た、アモルファスある
いは微細結晶又はそれ等の混合物からなる超急冷薄帯あ
るいは粉末を500μm以下に粉砕して得た磁石粉末を
冷間成形し予備成形体とした後、温間での加圧焼結ある
いは加圧焼結後引続き温間での塑性加工により等方性あ
るいは異方性の磁石を製造する希土類−鉄−硼素系磁石
の製造方法において、冷間成形時に組成の異なる2種以
上の磁性粉を積層して成形することを特徴とする希土類
−鉄−硼素系永久磁石の製造方法。 2、特許請求範囲第1項記載の希土類−鉄−硼素系永久
磁石合金の製造方法において、冷間予備成形時に、予め
過冷却度の異なる2種以上の磁性粉を積層して成形する
ことを特徴とする希土類−鉄−硼素系永久磁石の製造方
法。 3、特許請求範囲第1項記載の希土類−鉄−硼素系永久
磁石合金の製造方法において、冷間予備成形時に組成の
異なる2種以上の磁性粉を同心上に配置し成形すること
を特徴とする希土類−鉄−硼素系永久磁石の製造方法。 4、特許請求範囲第3項記載の希土類−鉄−硼素系永久
磁石合金において、過冷却度の異なる2種以上の磁性粉
を同心上に配置し成形することを特徴とする希土類−鉄
−硼素系永久磁石の製造方法。 5、特許請求範囲第1項又は第2項記載の希土類−鉄−
硼素系永久磁石合金の製造方法において、組成あるいは
過冷度の異なる2種以上の磁性粉を積層かつ同心上に配
置して予備成形することを特徴とする、希土類−鉄−硼
素系永久磁石の製造方法。 6、特許請求範囲第1ないし5項のいずれかの項に記載
の希土類−鉄−硼素系永久磁石合金の製造方法において
、予備成形体の外周部に配置される磁性粉が、粒成長速
度の温度依存性が小さいことを特徴とする希土類−鉄−
硼素系永久磁石合金の製造方法。
[Claims] 1. Ultra-quenched ribbon made of amorphous or microcrystalline or a mixture thereof, obtained by solidifying a magnetic alloy mainly composed of rare earth elements, iron, and boron in a supercooled state such as quenching of a molten metal. Alternatively, magnet powder obtained by pulverizing the powder to 500 μm or less is cold-formed to form a preform, and then isotropically formed by warm pressure sintering or warm pressure sintering followed by warm plastic working. Alternatively, in a method for manufacturing a rare earth-iron-boron magnet for manufacturing an anisotropic magnet, the rare-earth-iron-boron magnet is characterized in that two or more types of magnetic powders having different compositions are laminated and molded during cold forming. A method of manufacturing permanent magnets. 2. In the method for producing a rare earth-iron-boron permanent magnet alloy as described in claim 1, two or more types of magnetic powders having different degrees of supercooling are laminated and formed in advance during cold preforming. A method for manufacturing a rare earth-iron-boron permanent magnet. 3. The method for producing a rare earth-iron-boron permanent magnet alloy according to claim 1, characterized in that two or more types of magnetic powders having different compositions are concentrically arranged and molded during cold preforming. A method for producing a rare earth-iron-boron permanent magnet. 4. A rare earth-iron-boron permanent magnet alloy according to claim 3, characterized in that two or more kinds of magnetic powders having different degrees of supercooling are concentrically arranged and molded. A method of manufacturing permanent magnets. 5. Rare earth metal - iron - according to claim 1 or 2
A method for manufacturing a boron-based permanent magnet alloy, which is characterized by preforming two or more types of magnetic powders having different compositions or degrees of supercooling by laminating and concentrically arranging them. Production method. 6. In the method for producing a rare earth-iron-boron permanent magnet alloy according to any one of claims 1 to 5, the magnetic powder arranged on the outer periphery of the preform has a grain growth rate. Rare earth metal - iron - characterized by low temperature dependence
A method for producing a boron-based permanent magnet alloy.
JP2272733A 1990-10-11 1990-10-11 Manufacture of rare earth iron-boron permanent magnet Pending JPH04147605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2272733A JPH04147605A (en) 1990-10-11 1990-10-11 Manufacture of rare earth iron-boron permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2272733A JPH04147605A (en) 1990-10-11 1990-10-11 Manufacture of rare earth iron-boron permanent magnet

Publications (1)

Publication Number Publication Date
JPH04147605A true JPH04147605A (en) 1992-05-21

Family

ID=17518023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2272733A Pending JPH04147605A (en) 1990-10-11 1990-10-11 Manufacture of rare earth iron-boron permanent magnet

Country Status (1)

Country Link
JP (1) JPH04147605A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632471A2 (en) * 1993-06-14 1995-01-04 Santoku Metal Industry Co., Ltd. Permanent magnet containing rare earth metal, boron and iron
EP0867897A1 (en) * 1997-03-25 1998-09-30 Alps Electric Co., Ltd. Fe based hard magnetic alloy having super-cooled liquid region
EP0898287A2 (en) * 1997-08-22 1999-02-24 Alps Electric Co., Ltd. Hard magnetic alloy having supercooled liquid region, sintered or cast product thereof and applications
WO2010089652A1 (en) * 2009-02-04 2010-08-12 Toyota Jidosha Kabushiki Kaisha Method for production of ndfebga magnet and ndfebga magnet material
CN108630366A (en) * 2017-03-17 2018-10-09 中国科学院宁波材料技术与工程研究所 A kind of rare-earth permanent magnet and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632471A2 (en) * 1993-06-14 1995-01-04 Santoku Metal Industry Co., Ltd. Permanent magnet containing rare earth metal, boron and iron
EP0632471A3 (en) * 1993-06-14 1995-02-15 Santoku Metal Ind Permanent magnet containing rare earth metal, boron and iron.
EP0867897A1 (en) * 1997-03-25 1998-09-30 Alps Electric Co., Ltd. Fe based hard magnetic alloy having super-cooled liquid region
EP0898287A2 (en) * 1997-08-22 1999-02-24 Alps Electric Co., Ltd. Hard magnetic alloy having supercooled liquid region, sintered or cast product thereof and applications
EP0898287A3 (en) * 1997-08-22 1999-03-31 Alps Electric Co., Ltd. Hard magnetic alloy having supercooled liquid region, sintered or cast product thereof and applications
US6172589B1 (en) 1997-08-22 2001-01-09 Alps Electric Co., Ltd. Hard magnetic alloy having supercooled liquid region, sintered or cast product thereof or stepping motor and speaker using the alloy
WO2010089652A1 (en) * 2009-02-04 2010-08-12 Toyota Jidosha Kabushiki Kaisha Method for production of ndfebga magnet and ndfebga magnet material
CN108630366A (en) * 2017-03-17 2018-10-09 中国科学院宁波材料技术与工程研究所 A kind of rare-earth permanent magnet and preparation method thereof
CN108630366B (en) * 2017-03-17 2020-09-08 中国科学院宁波材料技术与工程研究所 Rare earth permanent magnet and preparation method thereof

Similar Documents

Publication Publication Date Title
US4960469A (en) Method of manufacturing magnetically anisotropic magnet materials and device for same
KR101687981B1 (en) Rare-earth permanent magnetic powders, bonded magnet comprising same, and device using bonded magnet
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
JPH01704A (en) Rare earth-iron permanent magnet
EP1479787B2 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
US5352302A (en) Method of producing a rare-earth permanent magnet
JPH04147605A (en) Manufacture of rare earth iron-boron permanent magnet
JP3693838B2 (en) Alloy ribbon for rare earth magnet, alloy fine powder, and production method thereof
JPS62203302A (en) Cast rare earth element-iron system permanent magnet
JPH07122412A (en) Rare earth quenched magnet, bonded magnet and manufacture thereof
JPH07105301B2 (en) Manufacturing method of magnetic anisotropy Nd-Fe-B magnet material
JP2018107446A (en) Rare earth permanent magnet material and manufacturing method thereof
US5211766A (en) Anisotropic neodymium-iron-boron permanent magnets formed at reduced hot working temperatures
JPH08260112A (en) Alloy thin strip for permanent magnet, alloy powder obtained from the same, magnet and production of alloy thin strip for permanent magnet
US4966633A (en) Coercivity in hot worked iron-neodymium boron type permanent magnets
GB2206241A (en) Method of making a permanent magnet
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder
EP0443647A1 (en) Hot-worked rare earth-iron-carbon magnets
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
JP3935512B2 (en) Method for manufacturing anisotropic bonded magnet
JPH02102504A (en) Manufacture of rare earth-iron-boron anisotropic magnet powder
JPS63213322A (en) Rare earth iron permanent magnet
JPH01175207A (en) Manufacture of permanent magnet