JPH04144993A - Substrate for forming oxide superconductor thin film - Google Patents

Substrate for forming oxide superconductor thin film

Info

Publication number
JPH04144993A
JPH04144993A JP2266656A JP26665690A JPH04144993A JP H04144993 A JPH04144993 A JP H04144993A JP 2266656 A JP2266656 A JP 2266656A JP 26665690 A JP26665690 A JP 26665690A JP H04144993 A JPH04144993 A JP H04144993A
Authority
JP
Japan
Prior art keywords
thin film
substrate
crystal
mixed crystal
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2266656A
Other languages
Japanese (ja)
Inventor
Akira Oishi
朗 大石
Tadataka Morishita
忠隆 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Mitsubishi Heavy Industries Ltd
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER, Mitsubishi Heavy Industries Ltd filed Critical KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Priority to JP2266656A priority Critical patent/JPH04144993A/en
Publication of JPH04144993A publication Critical patent/JPH04144993A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To facilitate the growth of an oxide superconductor thin film by changing the crystal-mixing ratio of a mixed crystal thin film in a substrate comprising a silicon single crystal and a La1-xNdxGaO3 mixed crystal thin film layer formed on the silicon single crystal towards the direction of film thickness. CONSTITUTION:An intermediate layer La1-xNdxGaO3 on a single crystalline Si (100) formed by MBE method to prepare a substrate. La, Nd, Ga2O3 are prepared as evaporation sources, and the partial pressure of oxygen in a chamber during the formation of the film is fixed to 2X10<-4> Torr. The temperatures of the evaporation sources are controlled by a computer to change the mixed crystal composition of the formed film. The thin film of a NdGaO3 composition is first formed on a single crystalline Si in a thickness of 156Angstrom at a substrate temperature of 715 deg.C. The mixed crystal thin film of La0.2Nd0.8GaO3 is subsequently formed in a thickness of 156Angstrom , and the mixed crystal thin film of La0.6 Nd0.4GaO3 mixed thin film is finally formed to provide the subject substrate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、LnBavCusOx、 I、nBatcu
a(lx(Ln : Y、 I、a。
Detailed Description of the Invention (Industrial Application Field) The present invention provides LnBavCusOx, I, nBatcu
a(lx(Ln: Y, I, a.

Ce、 Nd、 Ps+ F、u、 Gd、 Tb、 
Dy+ Ho、 Hr+ Tm、 yb、 I、u等、
以下、この酸化物をYBCOという)等の酸化物超電導
体薄膜を形成するための基板に関する。
Ce, Nd, Ps+ F, u, Gd, Tb,
Dy+ Ho, Hr+ Tm, yb, I, u, etc.
The present invention relates to a substrate for forming an oxide superconductor thin film such as YBCO (hereinafter, this oxide will be referred to as YBCO).

(従来の技術) 超電導体を半導体デバイスとハイブリッド化するために
は、Si単結晶基板上にYBCO等の超電導薄膜を形成
できることが必須条件であると考えられている。
(Prior Art) In order to hybridize a superconductor with a semiconductor device, it is considered to be an essential condition that a superconducting thin film such as YBCO can be formed on a Si single crystal substrate.

ところで、超電導薄膜を形成するためには、基板温度を
600〜800℃という高ム1に保持する必要があるが
、SiとY)IcOとはこの高温で著しく反応するため
、Si中結晶基板ににY 11 CO超電導薄膜を直接
形成することはできない。それ故、ZrO,、あるいは
、5rTiOs等の比較的化学的安定性の高い薄膜をS
 i (It結晶の」−に中間層として形成し、その」
−に超電導薄膜を形成することが試みられている。
By the way, in order to form a superconducting thin film, it is necessary to maintain the substrate temperature at a high temperature of 600 to 800°C, but since Si and Y)IcO react significantly at this high temperature, it is difficult to form a crystalline substrate in Si. It is not possible to directly form a Y 11 CO superconducting thin film on. Therefore, thin films with relatively high chemical stability such as ZrO or 5rTiOs are
i (formed as an intermediate layer in the It crystal), and its
Attempts have been made to form superconducting thin films in -.

また、基板と超電導薄膜の結晶格子のマツチングをみる
と、例えば、YBatCusOxは、a;3.82人、
b3.89人、c=11.68人なる斜方晶系であり、
Siはa=5.43人なる立方晶系であるため、仮に、
S i (l結晶基板上に直接エピタキシャル躾が形成
できたとしても、Si単結晶とYBCO薄唖との間に格
子定数のミスマツチが生じて格子歪が発生し、超電導薄
膜の特性は十分なものを期待することはできない。」二
記z「0..5rTi(13等の薄膜を中間層として挟
み込むという従来の技術においても、3 i 11結品
」−のZrL、5rTiO+等の中間層薄膜に数多(の
欠陥が導入されるため、さらにこの中間層薄膜上に成膜
する超電導薄膜の結晶性も十分とは言いがたく、超電導
特性を最大限に発揮させることはできない。
Furthermore, looking at the matching of the crystal lattices of the substrate and superconducting thin film, for example, YBatCusOx has a; 3.82 people;
It is orthorhombic with b3.89 people and c=11.68 people,
Since Si is a cubic crystal system with a=5.43 people, hypothetically,
Even if an epitaxial layer could be formed directly on a crystal substrate, a mismatch in the lattice constants between the Si single crystal and the YBCO thin film would cause lattice strain, and the properties of the superconducting thin film would be insufficient. 2. Even in the conventional technology of sandwiching a thin film of 0..5rTi (13, etc.) as an intermediate layer, it is impossible to expect that the interlayer thin film of ZrL, 5rTiO+, etc. Since a large number of defects are introduced, the crystallinity of the superconducting thin film formed on this intermediate layer thin film cannot be said to be sufficient, and the superconducting properties cannot be maximized.

(発明が解決しようとする課題) そこで、本発明は、上記の欠点を解消し、S i 11
結晶と中間層薄膜、及び、中間層薄膜と超電導薄膜の格
子定数のミスマツチをできるだけ軽減し、若しくは、完
全に除去することにより、良質の酸化物超電導薄膜の成
長を可能にする酸化物超電導薄膜形成用基板を提供しよ
うとするものである。
(Problems to be Solved by the Invention) Therefore, the present invention solves the above-mentioned drawbacks and solves the problem of S i 11
Oxide superconducting thin film formation that enables the growth of high-quality oxide superconducting thin films by reducing or completely eliminating mismatches in lattice constants between crystals and intermediate layer thin films, and between intermediate layer thin films and superconducting thin films. The aim is to provide a substrate for

(課題を解決するための手段) 本発明は、S 41+1結晶」―に形成した1、a+−
xNdxGaO+Δシ晶薄膜層からなる晶化膜層電導薄
膜形成用基板において、上記混晶薄膜の混晶比率を膜厚
方向に段階的に、若しくは、連続的に変化させたことを
特徴とする酸化物超電導薄膜形成用基板である。
(Means for Solving the Problems) The present invention provides an S41+1 crystal formed in 1, a+-
A crystallized film layer conductive thin film forming substrate consisting of xNdxGaO+ΔSi crystal thin film layer, characterized in that the mixed crystal ratio of the mixed crystal thin film is changed stepwise or continuously in the film thickness direction. This is a substrate for forming superconducting thin films.

(作用) 本発明者等は、S i it結晶と超電導薄膜の間の格
子定数のミスマツチを解消するために、中間層化III
Aを種々研究したところ、1、a + XNdxGao
s混品材料が」1記ミスマツチを解消し、かつ、Slと
YBCOの反応を抑制するバッファ層としての機能を兼
ね備え−Cいることを見いだした。
(Function) In order to eliminate the mismatch in lattice constant between the S i it crystal and the superconducting thin film, the present inventors have developed an intermediate layer III
After various studies on A, 1, a + XNdxGao
It was discovered that the mixed material (-C) eliminates the mismatch described in (1) and also functions as a buffer layer that suppresses the reaction between Sl and YBCO.

本発明では、第2図に示すl;a+−xNdxGaOs
混晶材料の格子定数の混晶組成依存性を利用して、Si
’tl結晶に接する中間層の領域を、Si単結晶の結晶
格子と同じか極めて近い格子定数を有するように、中間
層の1.a+−xNdxGaOs混晶材料の混晶率Xを
選択し、かつ、超電導薄膜に接する中間層の領域につい
ても同様に混晶率Xを選択し、」―記2つの領域の間を
段階的に、若しくは、連続的に混晶率Xを変化さぜるこ
とにより、Si単結晶と中間層、中間層と超電導薄膜と
の間の格子定数不整合を回避してエピタキシャル成長に
近い膜成長を可能にするとともに、中間層内部について
も段階的に若しくは連続的に変化する混晶率Xに対応し
て格子定数も徐々に変化させることができるので、その
間に内部応力も緩和され、良質の超電導薄膜を形成する
ことができるようになった。
In the present invention, l;a+-xNdxGaOs shown in FIG.
Using the dependence of the lattice constant of the mixed crystal material on the composition of the Si
1 of the intermediate layer so that the region of the intermediate layer in contact with the 'tl crystal has a lattice constant that is the same as or extremely close to the crystal lattice of the Si single crystal. Select the mixed crystal ratio X of the a+-xNdxGaOs mixed crystal material, and similarly select the mixed crystal ratio X for the region of the intermediate layer in contact with the superconducting thin film, step by step between the two regions, Alternatively, by continuously changing the mixed crystal ratio At the same time, the lattice constant within the intermediate layer can also be changed gradually in response to the mixed crystal ratio X, which changes stepwise or continuously, so internal stress is also alleviated during this time, forming a high-quality superconducting thin film. Now you can.

なお、本発明の超電導薄膜形成用基板は、M B 14
法、レーザスパッタリング蒸着法等、任意の成膜法で作
製することができる。
The substrate for forming a superconducting thin film of the present invention is M B 14
It can be produced by any film forming method such as a laser sputtering method or a laser sputtering vapor deposition method.

(実施例) lit結晶Si(+00)面の」〕に中間層Cat−J
dxGaOsをM1珪法で形成して基板を作製した。蒸
発源としては、1、a + N d + G a v 
03を準備し、成膜中のチ中ンバー内酸素分圧を2XI
O−’Torrに固定し、蒸発源の温度をコンピュータ
で制御して成膜の混晶組成を変化させた。まず、単結晶
Siの」―に1idGaO,組成の薄膜を156人の膜
厚で形成した。このときのノ、E板温度は715℃であ
った。次に、Lao、yにdo、5Ga(13の混晶薄
膜を156人の膜厚で形成し、最後に1.ao、5Nd
o、aGaOa混晶薄膜を154人の膜厚で形成した。
(Example) An intermediate layer Cat-J is formed on the lit crystal Si (+00) plane.
A substrate was fabricated by forming dxGaOs using the M1 silicon method. As an evaporation source, 1, a + N d + G av
03 and set the oxygen partial pressure in the chamber to 2XI during film formation.
The temperature of the evaporation source was fixed at O-' Torr, and the mixed crystal composition of the film was changed by controlling the temperature of the evaporation source using a computer. First, a thin film having a composition of 1idGaO was formed on single crystal Si to a thickness of 156 layers. At this time, the temperature of the E plate was 715°C. Next, a mixed crystal thin film of do, 5Ga (13) was formed with a film thickness of 156 on Lao, y, and finally 1.ao, 5Nd
o, aGaOa mixed crystal thin film was formed to a thickness of 154.

比較のために、単結晶5i(10G)而の上にZrOx
、5rTiO1、NdGa0+をそれぞれ成膜した基板
を用意した。
For comparison, ZrOx on top of single crystal 5i (10G)
, 5rTiO1, and NdGa0+ were prepared.

−1−記実施例の基板と中H■層を有しないSi基板、
及び、」−記比較例の1λ板を用い、その」二にエキシ
マレーザ(^rP 193ns)を用いてレーザ蒸着法
で超電導薄膜YHatCusOxを形成した。超電導薄
膜の成膜条件は、エキンマレーザのエネルギー密度を1
」/C1、チャン/望−内の酸素分圧を成膜中IXI(
I”’r(l r r 、冷却中3XIO”Torr、
〕λ板温度670℃とした。
-1- The substrate of the embodiment described above and a Si substrate without an intermediate H layer,
And, a superconducting thin film YHatCusOx was formed by laser evaporation using the 1λ plate of Comparative Example 2 and an excimer laser (^rP 193 ns). The deposition conditions for the superconducting thin film are such that the energy density of the ekinoma laser is set to 1
”/C1, change the oxygen partial pressure in the chamber/desire to IXI (
I"'r(l r r, 3XIO"Torr during cooling,
] The λ plate temperature was set at 670°C.

tiIられた超電導薄膜について、超電導特性として、
77Kにおける臨界温度(Tc)、臨界電流密度(Jc
)を調べた。
Regarding the tiI superconducting thin film, the superconducting properties are as follows:
Critical temperature (Tc), critical current density (Jc) at 77K
) was investigated.

表1 接超電導薄膜を形成したものについて、特性値が示され
ていないが、反応劣化のためTc、 Jcを観測できな
かったことを意味する。本発明の実施例は、比較例に比
べてTc、 Jcのいずれも高い値を示している。この
実施例で得たSi単結晶/中間層薄膜/超電導薄膜の各
々の界面は、第1図のように格子定数のマツチングが極
めて良好であることが分かる。
Table 1 Characteristic values are not shown for those with superconducting thin films formed, but this means that Tc and Jc could not be observed due to reaction deterioration. The examples of the present invention show higher values of both Tc and Jc than the comparative examples. It can be seen that the lattice constants of the Si single crystal/intermediate layer thin film/superconducting thin film interfaces obtained in this example have extremely good matching as shown in FIG.

なお、第1図は中間層のLao、tNdo、5GaOs
層を省略して示したものである。
Note that Figure 1 shows the intermediate layer Lao, tNdo, and 5GaOs.
The illustration is shown with layers omitted.

(発明の効果) 本発明は、上記の構成を採用することにより、5iIl
結晶と超電導薄膜との間に1.a+−xNtLxGaO
+歪超格子を介在させることができ、超電導特性の優れ
た酸化物超電導薄膜の成長を極めて容易にし、Si半導
体と超電導体のハイブリッド化したデバイスの作製を容
易にした。
(Effects of the Invention) By adopting the above configuration, the present invention achieves 5iIl
1. Between the crystal and the superconducting thin film. a+-xNtLxGaO
+ A strained superlattice can be interposed, making it extremely easy to grow an oxide superconducting thin film with excellent superconducting properties, and facilitating the production of a hybrid device of a Si semiconductor and a superconductor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例でSi単結晶上に作製した中間層薄膜及
び超電導薄膜についての結晶格子のマツチングの状態を
示した図で、第2図は本発明の中間層La+−xNdx
Ga03混晶材料について、格子定数の混晶組成依存性
を示した図、である。 第1 図
FIG. 1 is a diagram showing the crystal lattice matching state of the intermediate layer thin film and superconducting thin film produced on Si single crystal in the example, and FIG. 2 is a diagram showing the state of crystal lattice matching of the intermediate layer La+-
FIG. 2 is a diagram showing the dependence of the lattice constant on the mixed crystal composition for a Ga03 mixed crystal material. Figure 1

Claims (1)

【特許請求の範囲】[Claims]  Si単結晶上に形成したLa_1_−_xNd_xG
aO_3混晶薄膜層からなる酸化物超電導薄膜形成用基
板において、上記混晶薄膜の混晶比率を膜厚方向に段階
的に、若しくは、連続的に変化させたことを特徴とする
酸化物超電導薄膜形成用基板。
La_1_-_xNd_xG formed on Si single crystal
An oxide superconducting thin film comprising a substrate for forming an oxide superconducting thin film comprising an aO_3 mixed crystal thin film layer, wherein the mixed crystal ratio of the mixed crystal thin film is changed stepwise or continuously in the film thickness direction. Substrate for formation.
JP2266656A 1990-10-05 1990-10-05 Substrate for forming oxide superconductor thin film Pending JPH04144993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2266656A JPH04144993A (en) 1990-10-05 1990-10-05 Substrate for forming oxide superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2266656A JPH04144993A (en) 1990-10-05 1990-10-05 Substrate for forming oxide superconductor thin film

Publications (1)

Publication Number Publication Date
JPH04144993A true JPH04144993A (en) 1992-05-19

Family

ID=17433862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2266656A Pending JPH04144993A (en) 1990-10-05 1990-10-05 Substrate for forming oxide superconductor thin film

Country Status (1)

Country Link
JP (1) JPH04144993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831348A (en) * 2015-05-22 2015-08-12 中国科学院上海微系统与信息技术研究所 NdGaO3 monocrystal substrate treating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831348A (en) * 2015-05-22 2015-08-12 中国科学院上海微系统与信息技术研究所 NdGaO3 monocrystal substrate treating method

Similar Documents

Publication Publication Date Title
Nashimoto et al. Epitaxial growth of MgO on GaAs (001) for growing epitaxial BaTiO3 thin films by pulsed laser deposition
US7364989B2 (en) Strain control of epitaxial oxide films using virtual substrates
JP3188358B2 (en) Method for producing oxide superconductor thin film
JPH0354116A (en) Compound oxide superconducting thin film and production thereof
JPH04144993A (en) Substrate for forming oxide superconductor thin film
JPH10182292A (en) Oxide laminated structure and its production
JP4148624B2 (en) Dielectric thin film and electronic component thereof
JPH0218974A (en) Supeconducting device and its manufacture
Ogale et al. Dopant incorporation during epitaxial growth of a multicomponent oxide thin film from vapor phase: A case study of Fe/YBa2Cu3O7− δ system
JPH059100A (en) Synthesis of oxide superconducting thin film
JPH01145397A (en) Production of oxide superconducting thin film
JPH03275504A (en) Oxide superconductor thin film and its production
JPH0369596A (en) Substrate material for superconducting thin film
JP2959290B2 (en) Superconducting laminated thin film and manufacturing method thereof
JP2541037B2 (en) Oxide superconducting thin film synthesis method
JPH01101677A (en) Electronic device
JP3968747B2 (en) (100) Oriented copper oxide high-temperature superconducting thin film and method for producing the same
JPH02311396A (en) Thin-film superconductor and its production
JPH01183496A (en) Production of single crystal oxide superconducting thin film
JPH04144994A (en) Production of oxide superconductor thin film
JPS6341087A (en) Manufacture of superconductive thin film
JPH09331084A (en) Oxide superconductor josephson junction element
JPH02172821A (en) Formation of superconducting thin film
JPH0244782A (en) Superconductive element and manufacture thereof
WO2004059753A1 (en) Oxide superconducting thin film