JPH0369596A - Substrate material for superconducting thin film - Google Patents

Substrate material for superconducting thin film

Info

Publication number
JPH0369596A
JPH0369596A JP1201374A JP20137489A JPH0369596A JP H0369596 A JPH0369596 A JP H0369596A JP 1201374 A JP1201374 A JP 1201374A JP 20137489 A JP20137489 A JP 20137489A JP H0369596 A JPH0369596 A JP H0369596A
Authority
JP
Japan
Prior art keywords
ions
thin film
substrate material
crystal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1201374A
Other languages
Japanese (ja)
Other versions
JP2533649B2 (en
Inventor
Shintaro Miyazawa
宮澤 信太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1201374A priority Critical patent/JP2533649B2/en
Publication of JPH0369596A publication Critical patent/JPH0369596A/en
Application granted granted Critical
Publication of JP2533649B2 publication Critical patent/JP2533649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve quality by consisting the above substrate material of the single crystal of the K2MnF4 structure constituted of 4 components of the elements shown by a specific stoichiometric ratio. CONSTITUTION:The substrate material for the superconductive thin film of the defect-free tetragonal crystal is obtd. by using the single crystal of the compd. having the K2MnF4 structure which is constituted of >=4 components of the elements expressed by the stoichiometric ratio ReABX4 (X is >= one kind of anions; Re is >= one kind of rare earth element ions; A and B are respectively cations which may be partly substd.) and consisting further preferably of alkaline earth element ions, such as Sr ions, such as the cation A, element ions of group VIa, VIIa and VIII transition metals, and Ga ions as the cation B and is expressed by the table.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はYBa2Cu、Oxに代表される酸化物高温超
伝導体の単結晶性薄膜を実現するための基板結晶材料に
関するものである。ここで単結晶性薄膜とは完全な単結
晶てなくとも、基板面に対して結晶学的に配向した場合
をも含むものをいう。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a substrate crystal material for realizing a single crystalline thin film of an oxide high temperature superconductor such as YBa2Cu or Ox. Here, the term "single-crystalline thin film" refers to a thin film that is not a complete single crystal but includes a film that is crystallographically oriented with respect to the substrate surface.

〔従来の技術) (La、、Ba、) 2Cub4が約30にで超伝導体
となることが発見されて以来、超伝導転移温度(To)
が約90にのReBa2Cu30. (Re :希土類
元素)、Tcが約1108のB1−3r−Ca−Cu−
0系、Tcが約120にのTl−Ba−CaCu−0&
が相次いで発見され、それにつれてデバイス応用を目的
にこれら酸化物高温超伝導体の薄膜形成が盛んに研究・
開発されている。この薄膜形成には基板が必要であるが
、これまでは酸化物結晶のJO,5rTi(h、YsZ
(Y添加zro2)はどが専ら用いられている。超伝導
体薄膜の特性はその結晶性に大きく依存し、従って基板
と格子整合がとれたエピタキシャル単結晶膜が望ましい
が、MgOの格子定数はa−b−c−4,215人、Y
SZのそれはa−b−3,64人、 c−5,27Aで
、いわゆる酸化物高温超伝導体の格子定数であるaχb
χ38人、副格子としてよく与えられるJTi (=f
T5 ) x 5 、4入とは大きく異なり、良質な単
結晶膜は得られない。一応SrTiO3の格子定数はa
−b−c−3,905人で、酸化物高温超伝導体のそれ
に近いことから有望であるが、その結晶性は結晶製造方
法(ヘルヌーイ沃)に起因した副粒界が多く必ずしも満
足のいく基板とは云えない。ごく最近になって酸素八面
体を単位とした結晶構造をもつ、いわゆる擬ベロウスカ
イト構造のLa八へ08. LaGa0+が注目されて
し)るが、これらは基本的には菱面体晶であることから
ペロウスカイト基本構造から大きく歪んでおり、結晶欠
陥である双晶(tWin)が含まれており、かつこれを
除くことは木質的に出来ない。
[Prior art] Since it was discovered that (La,, Ba,) 2Cub4 becomes a superconductor at about 30°C, the superconducting transition temperature (To)
ReBa2Cu30. (Re: rare earth element), B1-3r-Ca-Cu- with Tc of about 1108
0 series, Tl-Ba-CaCu-0& with Tc of about 120
have been discovered one after another, and as a result, the formation of thin films of these oxide high-temperature superconductors has been actively researched and used for device applications.
being developed. A substrate is required to form this thin film, but up until now, oxide crystal JO, 5rTi(h, YsZ
(Y-added zro2) is exclusively used. The properties of a superconductor thin film greatly depend on its crystallinity, and therefore an epitaxial single crystal film that is lattice-matched to the substrate is desirable, but the lattice constant of MgO is
That of SZ is a-b-3,64 people, c-5,27A, and aχb, which is the lattice constant of the so-called oxide high temperature superconductor.
χ38 people, JTi (=f
T5 ) x 5 , which is significantly different from the 4-input method, cannot obtain a high-quality single crystal film. The lattice constant of SrTiO3 is a
-b-c-3,905 people, which is promising because it is close to that of oxide high-temperature superconductors, but its crystallinity is not necessarily satisfactory due to the large number of sub-grain boundaries caused by the crystal manufacturing method (Hernoulli Io). It cannot be called a board. Very recently, the so-called pseudo-belouskite structure, which has a crystal structure based on oxygen octahedrons, has been developed.08. Although LaGa0+ has been attracting attention, since they are basically rhombohedral crystals, they are greatly distorted from the basic perowskite structure, and contain twin crystals (tWin), which are crystal defects. It is not possible to remove it due to the nature of the wood.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したように、従来の基板を用いた酸化物高温超伝導
体薄膜の結晶品質はよくなく、一般には配向した多結晶
I模となってしまう。
As mentioned above, the crystal quality of oxide high temperature superconductor thin films using conventional substrates is not good, and generally results in oriented polycrystalline I-like films.

本発明は従来用いられている酸化物基板のもつ欠点であ
る、格子定数の不整合及び結晶欠陥(双晶)の極めて少
ない、新たな基板材料を提供することを目的とする。
An object of the present invention is to provide a new substrate material that has very few lattice constant mismatches and crystal defects (twins), which are disadvantages of conventionally used oxide substrates.

〔課題を解決するための手段) 本発明は化学量諭比Re八へX4で示される4戊分(但
し、Xは1種以上の陰イオン、Reは1種以上の希土類
元素イオン、AおよびBはそれぞれ一部置換されてもよ
い陽イオン)以上の元素から構成されたに2MnF4構
造の単結晶からなることを特徴とする。
[Means for Solving the Problems] The present invention provides a stoichiometric ratio Re8 to Each of B is a cation that may be partially substituted.

〔作 用) 本発明における新材料は酸素八面体を基本構造とした正
方晶系に属し、かつ結晶構造かに2MnF4構造であり
、その化学式がRe八へX4であられされるものである
。(Xは酸素を主とするが、これに限定されない。)R
eは1種以上の希土類イオン、AおよびBは陽イオンで
、それぞれ他の陽イオンで部置換されていてもよい。従
来の材料とは成分比及び結晶構造が全く異なる。
[Function] The new material of the present invention belongs to a tetragonal system with an oxygen octahedron as its basic structure, has a crystalline structure of 2MnF4, and has a chemical formula of Re8 to X4. (X mainly represents oxygen, but is not limited to this.)R
e is one or more rare earth ions, and A and B are cations, each of which may be partially substituted with another cation. The component ratio and crystal structure are completely different from conventional materials.

先ず本発明にかかわる基板材料の選定概念について説明
する。良質なエピタキシャル単結晶薄膜を得る九の3大
要素として、■格子定数の整合、■結晶構造の類似性、
■熱膨張係数の整合、を挙げることが出来る。
First, the concept of selecting a substrate material related to the present invention will be explained. The three major factors for obtaining high-quality epitaxial single crystal thin films are: ■ Matching of lattice constants, ■ Similarity of crystal structure,
■ Matching of thermal expansion coefficients.

■格子定数に関して、形成する薄膜である酸化物高温超
伝導体として、転移温度Tc30〜40にの(La+−
xMx) 2CUO4(M+Ba、Sr、Ce)の格子
定数は擬正方晶系でa(、z3.78人、To約90に
のYBa2Cu3Oxの格子定数は斜方晶系でaoz3
.82入、 bo43.88人、Tcが約80にと約1
10にの相が得られる3i−5r−Ca−Cu −0系
の格子定数は正方晶系でa。悠5,4人、最高のTc1
20にの相が出現するTl−Ba−5r−Cu−0系の
それはやはり正方晶系でa。χ3.86人、が一般に受
は入れられている。ここで結晶学上で取扱かわれている
単位胞の刻角線格子を考えると、Bi系の格子定数ao
′ χao/JTz3.a2人となる。すなわち高温超
伝導体の格子定数はいずれも378〜3.86人の範囲
内にあり材料系に大きく依存しない。
■Regarding the lattice constant, as the oxide high-temperature superconductor that is the thin film to be formed, (La+-
The lattice constant of YBa2Cu3Ox is orthorhombic and the lattice constant of YBa2Cu3Ox is orthorhombic.
.. 82 entries, BO 43.88 people, Tc about 80 and about 1
The lattice constant of the 3i-5r-Ca-Cu -0 system from which the phase No. 10 is obtained is tetragonal and a. Yu 5, 4 people, the best Tc1
The Tl-Ba-5r-Cu-0 system in which the phase 20 appears is also a tetragonal system. χ3.86 people are generally accepted. Considering the interval line lattice of the unit cell treated here in crystallography, the lattice constant ao of the Bi system is
' χao/JTz3. a There will be two people. That is, the lattice constants of high-temperature superconductors are all within the range of 378 to 3.86 and do not depend greatly on the material system.

ヘテロエピタキシーの観点から最も技術的に進歩してい
る半導体工学の分野では、格子不整合は1%以下が許容
されているものの、最近のIII −V族/Siへテロ
エピタキシーでは4%が認められている。従って、ここ
では最大許容不整合を4%とする。いま、薄膜の格子定
数をa。、基板の格子定数をboとすると、格子不整合
性MfはMf−七鉦二LLxtoo  (%) 鉦上b と結晶学的に定義されるので、上記a。= 3.78〜
3.86λに対応するす。は、Mf=4%として、(3
,6318〜3.9343A )〜(3,7086〜4
.0176人)と求められる。すなわち、基板の格子定
数3.6318〜4.0178人が前記超伝導体薄膜に
適することになる。
In the field of semiconductor engineering, which is the most technologically advanced in terms of heteroepitaxy, lattice mismatches of 1% or less are tolerated, but in recent III-V/Si heteroepitaxy, 4% is allowed. ing. Therefore, here, the maximum allowable mismatch is set to 4%. Now, let the lattice constant of the thin film be a. , if the lattice constant of the substrate is bo, then the lattice mismatch Mf is crystallographically defined as Mf−Shanagaku2LLxtoo (%) Kagamiueb, so the above a. = 3.78~
It corresponds to 3.86λ. is (3
,6318~3.9343A)~(3,7086~4
.. 0176 people). That is, a substrate having a lattice constant of 3.6318 to 4.0178 is suitable for the superconductor thin film.

■結晶構造に関して 酸化物超伝導体は、その結晶構造
の基本は酸素・八面体BO6(B:陽イオン)が骨格を
成して、いわゆる環ベロウスカイト構造となっているこ
とか定説となって受は入れられている。しかしながら、
鉱物学上のベロウスカイ1−構造酸化物はCaTi(L
+に代表される如く化学式へB03の化合物であり、そ
の格子定数は−1−述した超伝導体のそれよりも大きい
のが一般的であり、かつへ元素とB元素との組合によっ
ては格子か大きく歪んで側方晶系以下の結晶対称性の低
い構造(例えは単斜晶系)となり易い為に結晶欠陥であ
る双晶か入ってしまう。従って、双晶が生しない結晶構
造として正方晶系が望ましい。
■Regarding the crystal structure It is accepted that the basic crystal structure of oxide superconductors is that oxygen and octahedral BO6 (B: cation) form the skeleton, forming a so-called ring bellowskite structure. is included. however,
Mineralogically, the bellowsky 1-structure oxide is CaTi(L
It is a compound with the chemical formula B03 as represented by +, and its lattice constant is generally larger than that of the superconductor mentioned above, and depending on the combination of the he element and the B element, the lattice constant is larger than that of the superconductor mentioned above. However, because it is easily distorted and becomes a structure with low crystal symmetry below the lateral crystal system (for example, a monoclinic system), twin crystals, which are crystal defects, are generated. Therefore, a tetragonal system is preferable as a crystal structure in which twins do not occur.

■熱膨張係数に関して:正方晶系ペロウスカイト系酸化
物の熱膨張係数は実験的に整理されており、はぼ10〜
12ppm/”Cであり、上述した超伝導体の熱膨張係
数11〜12ppm/lと極めて近いことが多くの文献
データを整理して判った。
■Regarding the coefficient of thermal expansion: The coefficient of thermal expansion of tetragonal perowskite oxides has been determined experimentally, and ranges from 10 to 10.
Based on a lot of literature data, it has been found that the thermal expansion coefficient is 12 ppm/''C, which is extremely close to the above-mentioned superconductor's thermal expansion coefficient of 11 to 12 ppm/l.

11eAB04を見出した。ここでReは1f111以
上の希土類元素、AおよびBはそれぞれ一部が他のイオ
ンと置換されてもよい陽イオンである。表1に代表的R
eABO,化合物とその格子定数およびこれらを基板と
して成長させるのに最適な超伝導体を示す。いずれもの
項で述べた格子定数の値の中に含まれていることか判る
11eAB04 was discovered. Here, Re is a rare earth element of 1f111 or more, and each of A and B is a cation that may be partially substituted with another ion. Table 1 shows typical R
eABO, a compound, its lattice constant, and the most suitable superconductor for growing these as a substrate are shown. It can be seen that these are included in the values of the lattice constants mentioned in each section.

ReABX<の各イオンのうち、陽イオンAとしてはア
ルカリ土類元素のイオン、特にSrイオンが、Bイオン
としては、遷移元素のイオン、特にVla族、■a族お
よび■族遷移金属の元素のイオンおよびGaイオンが望
ましい。
Among the ions of ReABX<, cations A are alkaline earth element ions, especially Sr ions, and B ions are transition element ions, especially Vla group, ■a group, and group ■ transition metal elements. ions and Ga ions are preferred.

(以 下 余 白) 〔実施例) 本発明者は以上の3要素に対する数値的、結晶学的考察
から、基板材料としてに2MnF4構造をもつ酸化物超
伝導体YBa2Cu3Oxをrfスパッタ法同時蒸着で
各種基板上に基板温度650〜780℃で約300Å堆
積した。その結果、La5rGaO+ 、 l、asr
cr04LaSrFeO4基板に対しては転移温度85
〜9[IKを示す良好な単結晶膜が得られた。
(Left below) [Example] Based on numerical and crystallographic considerations regarding the above three elements, the present inventors developed various types of oxide superconductor YBa2Cu3Ox having a 2MnF4 structure as a substrate material by simultaneous vapor deposition using RF sputtering method. About 300 Å was deposited on the substrate at a substrate temperature of 650-780°C. As a result, La5rGaO+ , l, asr
For cr04LaSrFeO4 substrate, the transition temperature is 85
A good single crystal film exhibiting an IK of ~9 was obtained.

実施例2 (La、、Sr、)2Cub4をrfスパッタ法てL 
a S r kl n Os基板上に堆積した結果、T
c約32にの薄膜を得たか、表面モフォロジーは1、a
srco04やLa5rGa04基板上に比へて少し粗
ねていた。このことは格子不整合Mfが約2.6%と狭
義のエピタキシー(Mf約1%)に比べ大きいことによ
ると判断てきる。
Example 2 (La,,Sr,)2Cub4 was formed by RF sputtering L
a S r kl n As a result of deposition on the Os substrate, T
A thin film of approximately 32 c was obtained, and the surface morphology was 1, a
It was a little rough compared to the srco04 and La5rGa04 substrates. This is considered to be because the lattice mismatch Mf is about 2.6%, which is larger than epitaxy in a narrow sense (Mf about 1%).

基板の格子定数値は、形成される超伝導体の種類によっ
て適宜Mfχ1%になるよう選ぶへきである。すなわち
超伝導体の種類によって表1に例示される本発明の基板
材料の中から選定されることが望ましいことは云うまで
もない。本発明の基本は上述したエピタキシャル成長の
ための3要素に立脚したRe八へO4化合物を提示した
もので、表1に示した化合物以外てもに2MnF、+構
造正方晶系材ネ4てあれば本発明を限定するものではな
い。
The lattice constant value of the substrate is appropriately selected to be Mfχ1% depending on the type of superconductor to be formed. That is, it goes without saying that it is desirable to select the substrate material of the present invention from among the substrate materials of the present invention exemplified in Table 1 depending on the type of superconductor. The basis of the present invention is to present Re8 and O4 compounds based on the three elements for epitaxial growth mentioned above. This is not intended to limit the invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による基板は結晶欠陥のな
い正方晶系結晶である事、超伝導体と共通する酸素八面
体の骨格を有する結晶構造をもっている事、酸素八面体
ペロウスカイト化合物と類似の熱膨張係数をもっている
事、などの特徴をもっているので、本発明基板を用いる
ことによって、 極めて良質な単結晶性エピタキシャル超伝導体薄膜が得
られる利点がある。
As explained above, the substrate according to the present invention is a tetragonal crystal without crystal defects, has a crystal structure having an oxygen octahedral skeleton common to superconductors, and has a crystal structure similar to an oxygen octahedral perouskite compound. Since it has characteristics such as a high coefficient of thermal expansion, the use of the substrate of the present invention has the advantage that an extremely high-quality single-crystalline epitaxial superconductor thin film can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 化学量諭比ReABX_4で示される4成分(但し、X
は1種以上の陰イオン、Reは1種以上の希土類元素イ
オン、AおよびBはそれぞれ一部置換されてもよい陽イ
オン)以上の元素から構成されたK_2MnF_4構造
の単結晶からなることを特徴とする超伝導体薄膜用基板
材料。
The four components indicated by the stoichiometric ratio ReABX_4 (however, X
is one or more types of anions, Re is one or more types of rare earth element ions, and A and B are each cations that may be partially substituted. Substrate material for superconductor thin films.
JP1201374A 1989-08-04 1989-08-04 Substrate material for superconductor thin film Expired - Fee Related JP2533649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1201374A JP2533649B2 (en) 1989-08-04 1989-08-04 Substrate material for superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1201374A JP2533649B2 (en) 1989-08-04 1989-08-04 Substrate material for superconductor thin film

Publications (2)

Publication Number Publication Date
JPH0369596A true JPH0369596A (en) 1991-03-25
JP2533649B2 JP2533649B2 (en) 1996-09-11

Family

ID=16440014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1201374A Expired - Fee Related JP2533649B2 (en) 1989-08-04 1989-08-04 Substrate material for superconductor thin film

Country Status (1)

Country Link
JP (1) JP2533649B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002644A (en) * 2001-06-14 2003-01-08 Japan Science & Technology Corp Method for removing twin crystal of lanthanum-based- oxide superconducting crystal
US9136046B2 (en) 2011-02-15 2015-09-15 Furukawa Electric Co., Ltd. Superconducting wire rod and method for manufacturing superconducting wire rod

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101951677B1 (en) 2017-08-22 2019-02-25 엘지전자 주식회사 Connector water proof housing and mobile terminal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002644A (en) * 2001-06-14 2003-01-08 Japan Science & Technology Corp Method for removing twin crystal of lanthanum-based- oxide superconducting crystal
US9136046B2 (en) 2011-02-15 2015-09-15 Furukawa Electric Co., Ltd. Superconducting wire rod and method for manufacturing superconducting wire rod

Also Published As

Publication number Publication date
JP2533649B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
Nashimoto et al. Epitaxial growth of MgO on GaAs (001) for growing epitaxial BaTiO3 thin films by pulsed laser deposition
Ramesh et al. Epitaxial growth of ferroelectric bismuth titanate thin films by pulsed laser deposition
Hsu et al. MgO epitaxial thin films on (100) GaAs as a substrate for the growth of oriented PbTiO3
JPH01320224A (en) Combined structure of superconductor and substrate, superconductor device, superconductor structure and combined structure of superconductor and galliumate
US5602080A (en) Method for manufacturing lattice-matched substrates for high-Tc superconductor films
Kim et al. Seeded epitaxial growth of PbTiO 3 thin films on (001) LaAlO 3 using the chemical solution deposition method
JP2004505444A (en) Thin film metal oxide structure and method of manufacturing the same
JPH0369596A (en) Substrate material for superconducting thin film
CN1312332C (en) Oxide high-temperature superconductor and its production method
Bals et al. Transmission electron microscopy on interface engineered superconducting thin films
JPH01145397A (en) Production of oxide superconducting thin film
JP4247867B2 (en) Manufacturing method of oxide superconducting thin film on sapphire substrate
Ogale et al. Dopant incorporation during epitaxial growth of a multicomponent oxide thin film from vapor phase: A case study of Fe/YBa2Cu3O7− δ system
CA2264724A1 (en) Series of layers and component containing such
JPH035397A (en) Vapor growth method for thin oxide crystal film
di Uccio et al. Structural properties of single-domain (103) YBCO films grown on buffered (110) MgO
Oishi et al. New Substrate La 1− x Nd x GaO 3 for High-T c YBa 2 Cu 3 O x Epitaxial Films
Fenner et al. Heteroepitaxial Metal Oxides on Silicon by Laser Ablation
JP2004207482A (en) Oxide superconductive thin film
JP2958645B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JPH03275504A (en) Oxide superconductor thin film and its production
JPH03131595A (en) Formation of superconductor thin film
Lyonnet et al. Pulsed Laser Deposition of Zr 1-x CexO 2 and Ce 1-x La x O 2-x/2 for Buffer Layers and Insulating Barrier in Oxide Heterostructures
Wakana et al. High-quality a-axis oriented EuBa2Cu3O7− δ films on sapphire substrates
JPH04144993A (en) Substrate for forming oxide superconductor thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees