JPH04144913A - Production of thin-film superconductor - Google Patents

Production of thin-film superconductor

Info

Publication number
JPH04144913A
JPH04144913A JP2265653A JP26565390A JPH04144913A JP H04144913 A JPH04144913 A JP H04144913A JP 2265653 A JP2265653 A JP 2265653A JP 26565390 A JP26565390 A JP 26565390A JP H04144913 A JPH04144913 A JP H04144913A
Authority
JP
Japan
Prior art keywords
oxide
film
substrate
temperature
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2265653A
Other languages
Japanese (ja)
Inventor
Toshifumi Sato
利文 佐藤
Shigemi Furubiki
古曳 重美
Hiroshi Ichikawa
洋 市川
Kentaro Setsune
瀬恒 謙太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2265653A priority Critical patent/JPH04144913A/en
Publication of JPH04144913A publication Critical patent/JPH04144913A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To easily and stably produce a thin-film superconductor having good superconducting characteristics by coating a hot substrate with an oxide coating film composed of one kind of Y and lanthanide elements, one kind of element of group IIa and copper and heat-treating the coated substrate in an oxygen- containing atmosphere. CONSTITUTION:An oxide coating film composed mainly of A (at least one kind of element selected from Y and lanthanide elements), B (at least one kind of group IIa elements) and copper is deposited on a substrate having controlled temperature, crystallization nuclei are formed in the coating film and the product is heat-treated in an oxygen-containing atmosphere at a controlled temperature to effect the growth of a crystal containing (A1-xCax)1B2Cu4 (0<=x<=0.3) and obtain a thin-film surer-conductor having high crystallinity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超伝導体の製造方法に関し 特に化合物薄膜超
伝導体の製造方法に関すa 従来の技術 高温超伝導体として、A15型2元系化合物として窒化
ニオブ(NbN)やゲルマニウムニオブ(NbsGe)
などが知られていたバ これらの材料の超伝導転移温度
はたかだか24にであった一人 ペロブスカイト系鋼酸
化物1よ さらに高い転移温度が期待され 例えばツア
イト・シュリフト・フェア・フィジーク・ベーーコンデ
ンスド・マター、第64t  第189頁〜第193頁
(1986年)  (J、G、Dendorz and
 [、A、Muller。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing superconductors, and in particular to a method for producing compound thin film superconductors. Niobium nitride (NbN) and germanium niobium (NbsGe)
The superconducting transition temperature of these materials was known to be at most 24, but an even higher transition temperature is expected compared to perovskite steel oxides1.・Matter, No. 64t, pp. 189-193 (1986) (J, G, Dendorz and
[, A. Muller.

Zeitschrift fur physik B−
Condensed Matter。
Zeitschrift fur physik B-
Condensed Matter.

ム、 189−193(1986))に記載されている
ようくBa−La−Cu−0系の高温超伝導体が提案さ
れていも さら艮 t−2−3系のY−Ba−Cu酸化物力(例え
ばフィジカル レビュー レタース 第58巻 第90
8頁〜第910頁(1987年)(MJ、Wu、J、R
,Ashburn、C0J、Torng、P、H,Ho
r。
Although a high-temperature superconductor of the Ba-La-Cu-0 system has been proposed as described in J. M., 189-193 (1986)), Y-Ba-Cu oxide of the t-2-3 system has been proposed. (For example, Physical Review Letters Vol. 58 No. 90
8-910 (1987) (MJ, Wu, J, R
, Ashburn, C.O.J., Torng, P.H., Ho.
r.

Rル、Meng、 L、Gao、 Z、J、Huang
、 Y、Q、Wang、 and C。
R, Meng, L, Gao, Z, J, Huang.
, Y., Q., Wang, and C.

W、Chu、  Physical Review L
etters、  !lL8. 908−910(19
87))に記載されているようく より高温の超伝導体
であることが提案されていも 1−2−3系の酸化物超伝導体(よ 酸素欠損型の超伝
導体であり、熱的安定性に欠け1゜さらく 例えばY−
Ba−Cu酸化物の1−2−4系力(ネイチャー、第3
36@ 第660頁−第662頁(1988年) (J
Jarpinski。
W, Chu, Physical Review L
etters! lL8. 908-910 (19
Although it has been proposed that the superconductor is a higher temperature superconductor, the oxide superconductor of the 1-2-3 system (which is an oxygen-deficient superconductor) is a thermally For example, Y-
1-2-4 system power of Ba-Cu oxide (Nature, Part 3
36 @ pages 660-662 (1988) (J
Jarpinski.

E、Kaldis、 E、Jilek、 S、Ru5i
ecki and B、Bucher。
E, Kaldis, E, Jilek, S, Ru5i
ecki and B, Bucher.

Letters to Nature、 、u13.6
60−662(1988))に記載されているようへ 
高温で安定な超伝導体であることが提案されていも さらEl−2−4系のY−Ca−B a−Cu酸化物パ
 例えばネイチャー、第341fs  第41頁−第4
2頁(1989年) (T、Miyatake、 S、
Gotoh、 N、[oshizuka and S、
Tanaka、 Letters to Nature
、工、 4l−42(1989))に記載されているよ
う凶 高温で安定な より高温の超伝導体であることが
提案されていも 1−2−4系の材料の超伝導機構の詳細は明かではない
力(転移温度が室温以上に高くなる可能性があり、高温
超伝導体として従来の2元系化合物より、より有望な特
性が期待されも 発明が解決しようとする課題 1−2−4系の材料は酸素欠損がなく、規則正しい結晶
構造をしているた敢 熱的に安定であムしかL  L−
2−4系の材料&よ 現在の技術で!i  主として焼
結という過程で形成されており、セラミックの粉末ある
いはブロックの形状で得られている場合が多11〜 超伝導材料を実用化する場へ 薄膜状に加工することが
強く要望されている力t この1−2−4系の薄膜化が
非常に困難であるという課題があった 本発明は超伝導特性が良好な(A + −11Ca w
 ) +BsCu4系の薄膜超伝導体を安定に しかも
容易に製造する方法を提供することを目的とす4課題を
解決するための手段 本発明の薄膜超伝導体の製造方法は 主成分が元素A(
AはYおよびランタン系列元素(原子番号57〜71)
のうち少なくとも1種)、元素B(BはIIa族元素の
うち少なくとも1種)及び銅からなる酸化物被膜を加熱
された基体上に付着させ、さらに前記酸化物被膜を酸素
を含む雰囲気中で処理温度を制御し、(A1−11Ca
m) +B麿Cua (但し0≦x≦0.3)を含む酸
化物を形成するための熱処理を行−入 上記課題を解決
した作用 本発明にかかわる薄膜超伝導体の製造方法(′L酸化物
被膜を付着させた後の熱処理温度を制御し前記酸化物被
膜を結晶化することに大きな特色があも すなわ板 温
度を制御した基体上に酸化物被膜を付着させ、結晶化の
ための核を形成した眞酸素を含有する雰囲気中で制御し
た温度で熱処理することにより、被膜に酸素を供給する
と共&へ付着工程で作成した核を中心に結晶成長し 結
晶性の良い薄膜超伝導体が得られも 但しこの熱処理温度1よ 酸化物被膜を結晶化させる温
度以上でなければなら哄 まな 付着工程で作成した酸
化物被膜中の核を破壊するほど高い温度であってはなら
な1 実施例 本発明の実施例を図面とともに説明すも第1図に本発明
の薄膜超伝導体の概念断面図を示す。第1図において、
3元化合物被膜12Lスパッタリング飄 蒸着&  C
VD法等通常の手法により形成すも 基体11113元化合物被膜12の保持を目的とし 例
えば酸化マグネシラな チタン酸ストロンチウム サフ
ァイア等通常の材料が供されもこの被膜12は元素A(
ここiQ  元素AはYおよびランタン系列元素(原子
番号57−71)のうち少なくとも1種の元素を示す。
Letters to Nature, u13.6
60-662 (1988))
Although it has been proposed that the El-2-4 series Y-Ca-Ba-Cu oxide is a stable superconductor at high temperatures, for example, Nature, No. 341fs, p. 41-4
2 pages (1989) (T, Miyatake, S.
Gotoh, N., [oshizuka and S.
Tanaka, Letters to Nature
Although it has been proposed that the 1-2-4 material is a higher temperature superconductor, the details of the superconducting mechanism of 1-2-4 materials are unknown. An unknown force (the transition temperature may be higher than room temperature, and although it is expected that it will have more promising properties as a high-temperature superconductor than conventional binary compounds, the invention aims to solve the problem 1-2- 4-based materials have no oxygen vacancies and have a regular crystal structure, so they are thermally stable.
2-4 materials and current technology! i It is mainly formed through the process of sintering, and is often obtained in the form of ceramic powder or blocks11~ For the practical application of superconducting materials, there is a strong desire to process them into thin films. Force t The problem of this invention was that it was extremely difficult to make the 1-2-4 system thin, but the present invention has good superconducting properties (A + -11Ca w
) A method for producing a thin film superconductor of the present invention is aimed at providing a method for stably and easily producing a +BsCu4-based thin film superconductor.
A is Y and a lanthanum series element (atomic number 57-71)
an oxide film consisting of at least one of the following), element B (B is at least one group IIa element), and copper is deposited on a heated substrate, and the oxide film is further deposited in an atmosphere containing oxygen. By controlling the treatment temperature, (A1-11Ca
m) Heat treatment is performed to form an oxide containing +B Cua (0≦x≦0.3).Method for producing a thin film superconductor according to the present invention ('L oxidation A major feature is that the heat treatment temperature after depositing the oxide film is controlled to crystallize the oxide film. By heat-treating at a controlled temperature in an atmosphere containing the true oxygen that formed the nuclei, oxygen is supplied to the film and crystals grow around the nuclei created during the adhesion process, creating a thin film superconductor with good crystallinity. However, this heat treatment temperature must not be higher than the temperature at which the oxide film crystallizes, but must not be so high as to destroy the nuclei in the oxide film created in the deposition process. Examples Examples of the present invention will be explained with reference to the drawings. Fig. 1 shows a conceptual cross-sectional view of the thin film superconductor of the present invention. In Fig. 1,
Ternary compound coating 12L sputtering vapor deposition & C
For the purpose of retaining the 3-element compound film 12 formed on the sumo substrate 11111 by a normal method such as the VD method, a normal material such as magnesila oxide, strontium titanate, sapphire, etc. is provided, but this film 12 does not contain the element A (
Here, iQ element A represents at least one element among Y and a lanthanum series element (atomic number 57-71).

)1元素B(ここく 元素BはIIa族元素のうち少な
くとも1種の元素を示す。)、Cu、0系複合化合物(
A:B:  Cu=1:  2:  4)あるいは元素
人の一部をCaで置換した複合化合物で構成されム被膜
12ti  付着したそのままでは超伝導特性を示さず
、酸素を含む雰囲気中で熱処理し 熱処理後に急冷する
ことによって超伝導特性が得られも 被膜の超伝導特性を向上させる為には 酸素を補充した
抵 結晶性を向上し 配向性を向上する必要があも 付
着したそのままの被膜の不足している酸素を補うたべ 
酸素含有雰囲気中での熱処理を行う。しかしながら上記
熱処理工程だけでは被膜の超伝導特性を向上させるには
不十分であることが判明した 被膜付着時に結晶化の為
の核を生成し この核をつぶさずに結晶成長させる熱処
理工程が必要であa 本発明者らは熱処理後の3元化合物被膜12の超伝導特
性と、被膜形成時の基体温度ならびに熱処理温度との関
係について、 3元化合物被膜12の結晶構造をX線回
折で詳細に調べ島 基体温度が300℃未満で被膜12を堆積した場合、結
晶核に基づくピークはほとんど見られなかっ九 ところが300℃から550℃の範囲に加熱した基体に
堆積した被膜には弱いピークがみられたまた 基体温度
が550℃から700℃の範囲では 結晶性に優れた(
A+−++Cam)IB*Cus酸化物構造が主体とな
りへ このように付着工程中の基体温度を制御することにより
、結晶核の成長が促せ、付着工程後の酸素含有雰囲気中
の熱処理により、その核を中心とした結晶化が進行した ざらへ 酸素を含む雰囲気中の熱処理を600℃から8
00℃の温度範囲で行うことにより、 (A+−xca
x)+BtCua酸化物の相の著しいピークが得られ 
結晶性に優れた薄膜が得られもしかし熱処理温度を高く
して800℃から900℃の範囲で行うと、 (A 1
− w Ca 11 ) + 82Cu a酸化物より
も(A+−xcax)+BeCu5酸化物が占める割合
が大きくなム ざら!、:、600℃以下の熱処理温度では 熱処理後
に結晶性は改善されにく(〜 一方配同性の観点か収 (A を−糞Ca糞)lB2c
u4酸化物では通常a軸配向した相とC軸配向した相が
混在することが判明した 本発明者らは酸素を含む雰囲気中の熱処理温度と配向性
との関係について検討を加えた結果 600℃から80
0℃の範囲の熱処理では 温度が高いほどC軸配向性が
顕著になり、温度が低いほどC軸配向性が顕著になるこ
とも発見し九以下に具体的実施例を示し 本発明をさら
に詳細に説明すも 実施例1 第1図に示したよう!−酸化マグネシウム単結晶(10
0)面を基体11として用−\ 高周波マグネトロンス
パッタにより、 Er−Ca−Ba−Cu−0ターゲツ
トをスパッタリング蒸着して、基体ll上にEr−Ca
−Ba−Cu−0被膜12として付着させ形成し九 但
し付着工程の条件Gi  基体11を250t、300
t、  500t。
) 1 element B (here Element B indicates at least one element among Group IIa elements), Cu, 0-based composite compound (
A: B: Cu = 1: 2: 4) or a composite compound in which a part of the element is replaced with Ca.The film 12ti does not exhibit superconducting properties as it is attached, but is heat treated in an oxygen-containing atmosphere. Although superconducting properties can be obtained by rapid cooling after heat treatment, in order to improve the superconducting properties of the film, it is necessary to supplement oxygen to improve the crystallinity and orientation. Eat to supplement the oxygen
Heat treatment is performed in an oxygen-containing atmosphere. However, it was found that the above heat treatment process alone was not sufficient to improve the superconducting properties of the film.A heat treatment process was required to generate nuclei for crystallization during film deposition and to grow crystals without crushing these nuclei. aa The present inventors investigated the relationship between the superconducting properties of the ternary compound film 12 after heat treatment, the substrate temperature during film formation, and the heat treatment temperature by examining the crystal structure of the ternary compound film 12 in detail using X-ray diffraction. When the coating 12 was deposited at a substrate temperature of less than 300°C, almost no peaks due to crystal nuclei were observed.However, weak peaks were observed in the coating deposited on a substrate heated to a temperature in the range of 300°C to 550°C. Furthermore, when the substrate temperature was in the range of 550°C to 700°C, the crystallinity was excellent (
A+-++Cam) IB*Cus The oxide structure is the main component, and by controlling the substrate temperature during the deposition process, the growth of crystal nuclei can be promoted, and by heat treatment in an oxygen-containing atmosphere after the deposition process, the nuclei can be grown. Heat treatment in an oxygen-containing atmosphere from 600℃ to 8℃
(A+-xca
x) A significant peak of the +BtCua oxide phase was obtained.
A thin film with excellent crystallinity could be obtained, but if the heat treatment temperature was increased to a temperature range of 800°C to 900°C, (A 1
- w Ca 11 ) + 82Cu The proportion of (A+-xcax)+BeCu5 oxide is larger than that of a oxide! , :, At a heat treatment temperature of 600°C or less, crystallinity is difficult to improve after heat treatment (~ On the other hand, from the viewpoint of conformity, yield (A - feces Ca feces) lB2c
It has been found that in U4 oxide, there is usually a coexistence of an a-axis oriented phase and a c-axis oriented phase.The present inventors investigated the relationship between heat treatment temperature in an oxygen-containing atmosphere and orientation, and the result was 600°C. From 80
It was also discovered that in heat treatment in the range of 0°C, the higher the temperature, the more pronounced the C-axis orientation, and the lower the temperature, the more pronounced the C-axis orientation. As explained in Example 1, as shown in Figure 1! -Magnesium oxide single crystal (10
0) surface as the substrate 11 -\ An Er-Ca-Ba-Cu-0 target is sputter-deposited on the substrate 11 by high-frequency magnetron sputtering.
-Ba-Cu-0 coating 12 is deposited and formed. However, the conditions of the deposition process Gi are: 250t, 300t
t, 500t.

550t、  600℃のそれぞれの温度にヒーターで
加熱LArとO!の混合ガス雰囲気(4:  1)、ガ
ス圧0.5Paで被膜12の堆積を行っ九250℃の基
体温度で付着させた一被膜ζ友 はとんど結晶化してい
な−300t:% 500℃% 550℃の基体温度で
付着させた被膜はわずかに結晶化しており、 (Ez、
*cas、+)IBatCu4酸化物の核が形成されて
いも 600℃の基体温度でGEL  付着させた被膜
の大部分がA+BaCu*酸化物になってしまLx  
(E rm、mc as、+) +B arcu4酸化
物の核を形成するには基体温度が高すぎもその喪 前記
のそれぞれの基体温度で付着させた被膜を、 1気圧の
酸素を含む雰囲気中において760℃で12時間熱処理
をした結果 250℃の基体温度で付着させた被膜ζ友
 熱処理した後にも結晶性は改善されなく、 300t
、  500t。
Heat LAr and O! to 550t and 600℃ using heaters. The coating 12 was deposited in a mixed gas atmosphere (4:1) at a gas pressure of 0.5 Pa, and the coating 12 deposited at a substrate temperature of 9250°C was hardly crystallized. % The coating deposited at a substrate temperature of 550°C was slightly crystallized, (Ez,
Even if *cas, +) IBatCu4 oxide nuclei are formed, most of the GEL deposited film becomes A+BaCu*oxide Lx at a substrate temperature of 600°C.
(Erm, mcas, +) +Barcu4 The substrate temperature is too high to form oxide nuclei. As a result of heat treatment at 760℃ for 12 hours, the film was deposited at a substrate temperature of 250℃. Even after heat treatment, the crystallinity was not improved and the film was heated to 300t.
, 500t.

550℃の基体温度で付着させた被膜を熱処理したもの
について4友 各々結晶性の良い(Era、・Cas、
+)+BaaCua酸化物薄膜が得られ また600℃
の基体温度で付着させた被膜を熱処理したものについて
ζよ 大部分がA+B*Cus酸化物になってしまった 従って、優れた超伝導特性を有する(Er・、・Cai
、+)+Bazcu4酸化物薄膜を得るためには300
℃から550℃の範囲の基体温度が適切であも 実施例2 第1図に示したようへ 酸化マグネシウム単結晶(10
0)面を基体11として用t\ 高周波マグネトロンス
パッタにより、 Er−Ca−Ba−Cu−0ターゲツ
トをスパッタリング蒸着して、基体11上にEr−Ca
−Ba−Cu−0被膜12として付着させ形成した 但
し付着工程の条件4ヨ゛基体11を500℃の温度にヒ
ーターで加熱LArとOsの混合ガス雰囲気(4:  
1)、ガス圧0.5Paで被膜12の堆積を行ったその
41気圧の酸素を含む雰囲気中において熱処理温度を5
50t、  600鵞 700寛 760@c% 80
0t、  850℃のそれぞれの温度で12時間熱処理
した後の結晶性を比較した550℃で熱処理したものは
結晶性は改善されな く、  Boot、   700
  “C1760鳳  800 ℃で熱処理したものに
ついては 結晶性の良い(Erm、*ca*、+)+B
aecua酸化物薄膜が得られ九また850℃で熱処理
すると、大部分がA + B 2 CU$酸化物になっ
てしまっ九 従って、600℃から800℃の範囲の熱処理温度が適
切であム また 600℃から800℃の範囲で熱処理した場合、
温度が高いほどC軸配向性が強く現れ温度が低いほどC
軸配向性が強く現れへ760℃で熱処理をしたものit
  C軸配向性が強く現れ九 その薄膜のX線回折パタ
ーンの一例をjfr2図に示も ざらへ 700℃で12時間熱処理をしたもの4&  
C軸配向性が強く現れ九 その薄膜のX線回折パターン
の一例を第3図に示も 第2図および第3図が示すごとく、熱処理温度を変化さ
せることによって、薄膜の結晶の配向性を容易に制御で
き、また これらの薄膜は優れた超伝導特性を示した さら艮 得られた(E rm、@c as、+) +B
 agcu4酸化物薄膜と、比較の為(E rs、=c
 ai、+) IBa象Cu5fl!化物薄膜とを、真
空中600℃で1時間熱処理した後の特性を比較したと
こ&  (Ers、5Cas、+)+Ba5Cu4酸化
物薄膜は超伝導特性を示した力((Ers、*Cas、
+)+Ba*Cu*酸化物薄膜は半導体的挙動を示し1
゜ このよう番ζ 本発明の薄膜超伝導体の製造方法で得ら
れた薄膜は安定性に優れているた数 超伝導材として実
用され得も 上記実施例ではCaを含む組成について明記した。6t
eaを含まない組成についても同様の結果であった さ
らにAはErに限らずランタン系列元素(原子番号57
−71)であれば同様の結果であっ丸 ま?、、BL 
 IIa族元素であれば同様の結果であっ九 また基体として酸化マグネシウムを用いた例を示した低
 チタン酸ストロンチウ入 サファイアでも全く同様の
特性が得られた 発明の効果 以上のように本発明LL  (At−xCax) +B
 a2Cu4酸化物(0≦X≦0.3)を、付着1渫 
熱処理温度を制御する薄膜超伝導体の製造方法であるの
玄 非常に安定性と再現性とに優れた超伝導薄膜を提供
できも しかも本発明によると、薄膜中の結晶の配向性を自由に
制御できる効果もあa
Four friends were found to have good crystallinity (Era, ・Cas,
+)+BaaCua oxide thin film was obtained and at 600℃
When the film was deposited at a substrate temperature of
, +)+300 to obtain a Bazcu4 oxide thin film.
Example 2 Even if the substrate temperature in the range of 550°C is suitable, magnesium oxide single crystal (10
0) surface as the substrate 11. An Er-Ca-Ba-Cu-0 target is sputter-deposited on the substrate 11 by high-frequency magnetron sputtering.
-Ba-Cu-0 was deposited as a coating 12. However, the conditions for the deposition process were 4. The substrate 11 was heated to a temperature of 500°C with a heater in a mixed gas atmosphere of LAr and Os (4:
1) The film 12 was deposited at a gas pressure of 0.5 Pa, and the heat treatment temperature was increased to 5 Pa in an atmosphere containing oxygen at 41 atm.
50t, 600 goose 700kan 760@c% 80
Comparing the crystallinity after heat treatment at 0t and 850℃ for 12 hours, the crystallinity was not improved in the case of heat treatment at 550℃, Boot, 700
“C1760 Otori: Those heat treated at 800℃ have good crystallinity (Erm, *ca*, +)+B
When an aecua oxide thin film is obtained and heat treated at 850°C, most of it becomes A + B 2 CU$ oxide.9 Therefore, a heat treatment temperature in the range of 600°C to 800°C is appropriate. When heat treated in the range from ℃ to 800℃,
The higher the temperature, the stronger the C-axis orientation, and the lower the temperature, the stronger the C-axis orientation.
It is heat treated at 760℃ to show strong axial orientation.
A strong C-axis orientation appears.9 An example of the X-ray diffraction pattern of the thin film is shown in the jfr2 figure.A film heat-treated at 700°C for 12 hours.
An example of the X-ray diffraction pattern of the thin film is shown in Figure 3.As shown in Figures 2 and 3, the crystal orientation of the thin film can be changed by changing the heat treatment temperature. These thin films showed excellent superconducting properties. (Erm, @cas, +) +B
For comparison with the agcu4 oxide thin film (E rs, = c
ai, +) IBa elephant Cu5fl! Comparing the properties after heat treatment at 600°C in vacuum for 1 hour, the & (Ers, 5Cas, +)+Ba5Cu4 oxide thin film showed superconducting properties ((Ers, *Cas,
+)+Ba*Cu* oxide thin film exhibits semiconductor behavior 1
The thin film obtained by the method for producing a thin film superconductor of the present invention has excellent stability and can be put to practical use as a superconducting material. In the above examples, compositions containing Ca are specified. 6t
Similar results were obtained for compositions that do not contain ea. Furthermore, A is not limited to Er, but also lanthanum series elements (atomic number 57
-71), the same result would be obtained. ,,BL
Similar results were obtained for Group IIa elements. Also, exactly the same characteristics were obtained for sapphire containing low strontium titanate, which is an example of using magnesium oxide as a substrate. At-xCax) +B
Deposit a2Cu4 oxide (0≦X≦0.3) once
This invention is a method for manufacturing thin film superconductors that controls the heat treatment temperature.It is possible to provide superconducting thin films with excellent stability and reproducibility. There are also effects that can be controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の薄膜超伝導体の断面構成概
念医 第2図及び第3図は本発明の薄膜超伝導体の製造
方法の熱処理温度を変えた時のX線回折パターン図であ
ム 11・・・基体 12・・・3元化合物被罠代理人の氏
名 弁理士 小鍜治明 ほか2名第 図 O 3ρ 4ρ Jフ 第 図 却 tθ
FIG. 1 shows a conceptual diagram of the cross-sectional structure of a thin film superconductor according to an embodiment of the present invention. Diagram 11...Substrate 12...Name of ternary compound trapped agent Patent attorney Haruaki Ogata and two others Diagram O 3ρ 4ρ JF Diagram tθ

Claims (3)

【特許請求の範囲】[Claims] (1)主成分が元素A(AはYおよびランタン系列元素
(原子番号57〜71)のうち少なくとも1種)、元素
B(BはIIa族元素のうち少なくとも1種)及び銅から
なる酸化物被膜を加熱された基体上に付着する付着工程
、さらに前記付着工程後に、前記酸化物を酸素を含む雰
囲気中で処理温度を制御し、(A_1_−_xCa_x
)_1B_2Cu_4(但し0≦x≦0.3)を含む酸
化物を形成する熱処理工程を有することを特徴とする薄
膜超伝導体の製造方法。
(1) An oxide whose main components are element A (A is at least one of Y and lanthanum series elements (atomic numbers 57 to 71)), element B (B is at least one group IIa element), and copper. An adhesion step in which the film is adhered onto a heated substrate, and further, after the adhesion step, the oxide is treated in an oxygen-containing atmosphere by controlling the treatment temperature and (A_1_−_xCa_x
)_1B_2Cu_4 (However, 0≦x≦0.3)
(2)基体の加熱が300℃から550℃の範囲である
ことを特徴とする請求項1記載の薄膜超伝導体の製造方
法。
(2) The method for producing a thin film superconductor according to claim 1, wherein the heating of the substrate is in the range of 300°C to 550°C.
(3)熱処理温度が600℃から800℃の範囲である
ことを特徴とする請求項1記載の薄膜超伝導体の製造方
法。
(3) The method for producing a thin film superconductor according to claim 1, wherein the heat treatment temperature is in the range of 600°C to 800°C.
JP2265653A 1990-10-02 1990-10-02 Production of thin-film superconductor Pending JPH04144913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2265653A JPH04144913A (en) 1990-10-02 1990-10-02 Production of thin-film superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2265653A JPH04144913A (en) 1990-10-02 1990-10-02 Production of thin-film superconductor

Publications (1)

Publication Number Publication Date
JPH04144913A true JPH04144913A (en) 1992-05-19

Family

ID=17420126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2265653A Pending JPH04144913A (en) 1990-10-02 1990-10-02 Production of thin-film superconductor

Country Status (1)

Country Link
JP (1) JPH04144913A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5856204A (en) * 1995-09-28 1999-01-05 Matsushita Electric Industrial Co., Ltd. Tunnel-type Josephson element and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5856204A (en) * 1995-09-28 1999-01-05 Matsushita Electric Industrial Co., Ltd. Tunnel-type Josephson element and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4988670A (en) Method of forming oxide superconducting films by in-situ annealing
CA2037481C (en) Method of preparing oxide superconducting film
US5114906A (en) Process for depositing tl-containing superconducting thin films on (110) mgo substrates
US4940842A (en) Method for preparing superconducting oxide films by seeding formation and heat treatment
JPH04144913A (en) Production of thin-film superconductor
JPS63239742A (en) Manufacture for film superconductor
Hughes et al. In situ growth of PbSrYCaCuO films by laser ablation
JPH01208327A (en) Production of thin film of superconductor
US4981839A (en) Method of forming superconducting oxide films using zone annealing
US5240904A (en) Process for preparing a-axis oriented superconducting oxide thin films
JP2702711B2 (en) Manufacturing method of thin film superconductor
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JPH0483714A (en) Production of thin-film superconductor
US4950644A (en) Method for the epitaxial preparation of a layer of a metal-oxide superconducting material with a high transition temperature
JP3038758B2 (en) Method for producing oxide superconducting thin film
JPH02170311A (en) Manufacture of oxide superconductor thin film
JP2785977B2 (en) Method and apparatus for forming oxide high-temperature superconducting film by plasma-induced evaporation
JPH03131595A (en) Formation of superconductor thin film
JPH02167827A (en) Thin-film superconductor
JPS63299019A (en) Manufacture of thin film superconductive material
JPH0517147A (en) Production of thin compound oxide film containing lead
JPH04349108A (en) Formation of high temperature superconducting thin film
Suzuki et al. Growth of c-Axis Oriented NdBa 2 Cu 3 O 7-y Films with Transition Temperature Exceeding 92 K by dc Sputtering
JPH02248322A (en) Production of bi-sr-ca-cu-o type superconductor
JPH01170060A (en) Semiconductor substrate having superconductor layer