JPH04144122A - Manufacture of polycrystalline silicon thin film - Google Patents

Manufacture of polycrystalline silicon thin film

Info

Publication number
JPH04144122A
JPH04144122A JP26625490A JP26625490A JPH04144122A JP H04144122 A JPH04144122 A JP H04144122A JP 26625490 A JP26625490 A JP 26625490A JP 26625490 A JP26625490 A JP 26625490A JP H04144122 A JPH04144122 A JP H04144122A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
wavelength
thin film
amorphous silicon
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26625490A
Other languages
Japanese (ja)
Other versions
JP2856533B2 (en
Inventor
Yuichi Masaki
裕一 正木
Takushi Nakazono
中園 卓志
Hiroyoshi Nakamura
中村 弘喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26625490A priority Critical patent/JP2856533B2/en
Publication of JPH04144122A publication Critical patent/JPH04144122A/en
Application granted granted Critical
Publication of JP2856533B2 publication Critical patent/JP2856533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a polycrystalline silicon film which has a high crystallinity and is most suitable to an active device such as a thin film transistor by a method wherein, when the polycrystalline silicon film is formed by a solid phase growth method in which an amorphous silicon film is heated, the refractive index and the attenuation factor of the amorphous silicon film are selected to be within respective specific ranges corresponding to different wavelengths. CONSTITUTION:An amorphous silicon film is heated to form a polycrystalline silicon film by a solid growth method. At that time, the refractive index (n) and the attenuation factor (k) of the amorphous silicon film are so selected as to be within respective specific ranges corresponding to different wavelengths. Those are: 250nm: n=1.88+ or -0.01, k=3.41+ or -0.01. 300nm: n=3.18+ or -0.01, k=3.70+ or -0.01. 350nm: n=4.44+ or -0.01, k=3.16+ or -0.01. 400nm: n=5.00+ or -0.01. k=2.22+ or -0.01. 450nm: n=5.07+ or -0.01, k=1.47+ or -0.01. 550nm: n=4.80+ or -0.01, k=0.63+ or -0.01. 600nm: n=4.65+ or -0.01, k=0.38+ or -0.01. 650nm: n=4.52+ or -0.01, k=0.17+ or -0.01. 700nm: n=4.65+ or -0.01, k=0.03+ or -0.01 750nm: n=4.35+ or -0.01, k=0.01+ or -0.01. 800nm: n=4.30+ or -0.01, k=0.01+ or -0.01. 850nm: n=4.25+ or -0.01, k=0.01+ or -0.01.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は多結晶シリコン薄膜の製造方法に係り、特に固
相成長法を用いた多結晶シリコン薄膜の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a polycrystalline silicon thin film, and particularly to a method for manufacturing a polycrystalline silicon thin film using a solid phase growth method.

(従来の技術) 近年、多結晶シリコン薄膜を用いた多結晶シリコン薄膜
トランジスタ等の能動素子は、非晶質シリコン膜を用い
た薄膜トランジスタ等の能動素子に比べて動作速度が大
幅に改善されることから注目を集めており、特に密着セ
ンサあるいは液晶表示装置の駆動回路部への適用が期待
されている。
(Prior art) In recent years, active devices such as polycrystalline silicon thin film transistors using polycrystalline silicon thin films have significantly improved operating speeds compared to active devices such as thin film transistors using amorphous silicon films. It is attracting attention and is expected to be applied particularly to contact sensors and drive circuits of liquid crystal display devices.

このような密着センサあるいは液晶表示装置の駆動回路
部に使用される能動素子の動作速度としては、少なくと
も8MHz〜10MHz以上が要求される。
The operating speed of an active element used in such a contact sensor or a drive circuit section of a liquid crystal display device is required to be at least 8 MHz to 10 MHz or higher.

そして、このような要求に応えるためには高い電子移動
度が必要となるため、少なくとも50cj/■・S以上
の結晶粒径が必要となってくる。
In order to meet such demands, a high electron mobility is required, and therefore a crystal grain size of at least 50 cj/■·S or more is required.

ところで、多結晶シリコン薄膜を製造する方法としては
、各方面で研究が進められており、大別して液相成長法
と固相成長法に分類される。
By the way, methods for manufacturing polycrystalline silicon thin films are being researched in various fields, and are broadly classified into liquid phase growth methods and solid phase growth methods.

液相成長法は、例えば電子ビーム蒸着、スパッタ等の物
理的薄膜堆積、あるいは減圧C,V、 D。
Liquid phase growth methods include, for example, electron beam evaporation, physical thin film deposition such as sputtering, or reduced pressure C, V, D.

(Che+*1cal Vapor Deposit)
 、ブラズ7C,V。
(Che+*1cal Vapor Deposit)
, Braz 7C,V.

D、等の化学的薄膜堆積により得られる多結晶シリコン
あるいは非晶質シリコンを融点温度以上にレーザービー
ムあるいは電子ビーム等を照射し溶融状態とした後に、
冷却させることにより再結晶化させるものである。
After polycrystalline silicon or amorphous silicon obtained by chemical thin film deposition such as D, etc. is irradiated with a laser beam or an electron beam to a temperature higher than the melting point temperature to melt it,
It is recrystallized by cooling.

固相成長法は、上述したような物理的薄膜堆積あるいは
化学的薄膜堆積により得られた多結晶シリコンあるいは
非晶質シリコン中に更にイオン注入された非晶質シリコ
ンを550〜650 ”Cといった融点以下の温度に数
時間保つことにより、結晶粒径の大きな多結晶シリコン
膜を得るものである。
The solid-phase growth method uses polycrystalline silicon obtained by physical thin film deposition or chemical thin film deposition as described above, or amorphous silicon in which ions are further implanted into amorphous silicon, at a melting point of 550 to 650 ''C. By maintaining the temperature below for several hours, a polycrystalline silicon film with a large crystal grain size can be obtained.

(発明が解決しようとする課題) ところで、上述した液相成長法は多結晶シリコンあるい
は非晶質シリコンを溶融した後に再結晶化させることか
ら結晶性の良い多結晶シリコン膜が得られるが、−度溶
融状態とすることがら不純物の取り込みも多くなる。こ
のため、純度の低い多結晶シリコン膜となるため、薄膜
トランジスタ等の能動素子に適用した場合、信頼性の高
い動作か得られないといった欠点がある。
(Problem to be Solved by the Invention) By the way, in the liquid phase growth method described above, a polycrystalline silicon film with good crystallinity can be obtained because polycrystalline silicon or amorphous silicon is melted and then recrystallized. Since it is in a highly molten state, more impurities are incorporated. Therefore, since the polycrystalline silicon film has low purity, there is a drawback that when applied to an active element such as a thin film transistor, highly reliable operation cannot be obtained.

これに対して固相成長法は、製造途中での膜中への不純
物の混入かないことから良好な多結晶シリコン膜が得ら
れるものの、液相成長法に比べて結晶性の良好な膜が得
られないといった欠点がある。
On the other hand, solid-phase growth can produce good polycrystalline silicon films because there are no impurities mixed into the film during manufacturing, but it does not produce films with better crystallinity than liquid-phase growth. It has the disadvantage that it cannot be used.

本願発明は上記した課題に鑑がみ成されたもので、新規
な固相成長法を用いた多結晶シリコン膜の製造方法を提
供するもので、特に従来では得られなかった結晶性が良
く、薄膜トランジスタ等の能動素子に最適な多結晶シリ
コン膜の製造方法を提供するものである。
The present invention has been made in view of the above-mentioned problems, and provides a method for manufacturing a polycrystalline silicon film using a novel solid-phase growth method. The present invention provides a method for manufacturing a polycrystalline silicon film that is optimal for active elements such as thin film transistors.

[発明の構成] (課題を解決するための手段) 本発明の多結晶シリコン薄膜の製造方法は、非晶質シリ
コン膜を加熱し固相成長させることにより多結晶シリコ
ン膜を製造する多結晶シリコン薄膜の製造方法であって
、非晶質シリコン膜の屈折率(n)、消衰体fi (k
)が、波長250nmにおいて、rrl、88±0.0
1. k=3.41±0.01.波長300r+a+に
おいて、n=3.18±0.01. k=3.70±0
.01.波長350nrAにおいて、n=4.44±0
.01. k=3.16±0.01.波長400nIl
において、n−5,00±0.01. k−2,22±
0.01゜波長450ni l:おイテ、rr5.07
+ 0.01. k−1,47±0.01.波長550
naにおイテ、n−4,80±0.01. k−0,6
3±0.01.波長B00na+において、n−4,[
i5±0.01゜k−OJB±0.01.波長B50n
mにおいて、n−4,52±0.01. k−0,17
±0.01.波長700nmにおいて、n−4,43+
O,Ol、 k−0,03±0.01.波長750nI
ll:おイテ、tr4J5fO,OL、 k−0,OL
±0.01.波長800nm l:おいて、rr4.3
0±0.01. k−0,01±0.01.波長850
niにおイテ、n−4,25±0.01. k−0,O
L+0.01. テあることを特徴としたものである。
[Structure of the Invention] (Means for Solving the Problem) The method for manufacturing a polycrystalline silicon thin film of the present invention is a polycrystalline silicon film manufacturing method for manufacturing a polycrystalline silicon film by heating an amorphous silicon film to cause solid phase growth. A method for manufacturing a thin film, the refractive index (n) of an amorphous silicon film, an quencher fi (k
) is rrl, 88±0.0 at a wavelength of 250 nm
1. k=3.41±0.01. At wavelength 300r+a+, n=3.18±0.01. k=3.70±0
.. 01. At wavelength 350nrA, n=4.44±0
.. 01. k=3.16±0.01. Wavelength 400nIl
In, n-5,00±0.01. k-2,22±
0.01゜Wavelength 450ni l: Good, rr5.07
+0.01. k-1,47±0.01. wavelength 550
It is good for na, n-4,80±0.01. k-0,6
3±0.01. At wavelength B00na+, n-4, [
i5±0.01゜k-OJB±0.01. Wavelength B50n
m, n-4,52±0.01. k-0,17
±0.01. At a wavelength of 700 nm, n-4,43+
O, Ol, k-0,03±0.01. Wavelength 750nI
ll: Oite, tr4J5fO, OL, k-0, OL
±0.01. Wavelength 800nm l: set, rr4.3
0±0.01. k-0,01±0.01. wavelength 850
It is good for ni, n-4, 25±0.01. k-0,O
L+0.01. It is characterized by having certain characteristics.

(作 用) 本発明者等は、固相成長法における出発材料である非晶
質シリコンと、これにより製造された多結晶シリコン薄
膜との相関を種々の方向から検討したところ、次のよう
な事実が明らかになった。
(Function) The present inventors investigated the relationship between amorphous silicon, which is the starting material in the solid phase growth method, and polycrystalline silicon thin films manufactured using the same from various perspectives, and found the following. The facts have become clear.

即ち、出発材料である非晶質シリコンの膜のボイドか小
さいほど、即ち緻密度が高いものほど、最終的に製造さ
れる多結晶シリコン薄膜の各結晶の粒径は大きなものか
得られる。
That is, the smaller the voids in the amorphous silicon film that is the starting material, that is, the higher the density, the larger the grain size of each crystal in the polycrystalline silicon thin film that is finally produced.

出発材料として用いられる膜の緻密度か高い非晶質シリ
コンの最隣接原子間距離は、緻密度の低い非晶質シリコ
ンに比べて狭いものである。このため、膜の緻密度か高
い非晶質シリコンの原子間の結合エネルギーは高く、原
子間の結合は切れにくい状態となっている。
The distance between the nearest neighboring atoms of amorphous silicon, which is used as a starting material and has a high density, is narrower than that of amorphous silicon, which has a low density. Therefore, the bonding energy between atoms in amorphous silicon, which has a highly dense film, is high, and the bonds between atoms are difficult to break.

このため、膜の緻密度が高い非晶質シリコンでは、固相
成長時の自己拡散が行われに<<、結晶核の発生頻度は
膜の緻密度の低い非晶質シリコンに比べて少ないものと
なる。
For this reason, in amorphous silicon, which has a highly dense film, self-diffusion occurs during solid phase growth, and the frequency of crystal nucleus generation is lower than in amorphous silicon, which has a less dense film. becomes.

従って、膜の緻密度が高い非晶質シリコンを出発材料と
すると、結晶核の発生頻度が低いことから、発生した結
晶核は隣接する結晶核の成長を妨げることなく、十分な
結晶成長を遂げることが可能となる。
Therefore, if amorphous silicon, which has a highly dense film, is used as a starting material, the frequency of crystal nuclei generation is low, and the generated crystal nuclei can achieve sufficient crystal growth without interfering with the growth of adjacent crystal nuclei. becomes possible.

また、膜の緻密度か高い非晶質シリコンを出発材料とす
ると、結晶核から少ない距離内に多数のシリコン原子が
存在するため、−度結晶核が発生してしまうと結晶成長
は急速に進行することとなる。
In addition, when amorphous silicon with high film density is used as a starting material, many silicon atoms exist within a short distance from the crystal nucleus, so once a crystal nucleus is generated, crystal growth progresses rapidly. I will do it.

このような理由により、出発材料である非晶質シリコン
の膜の緻密度が高いものほど、最終的に製造される多結
晶シリコン薄膜の各結晶の粒径は大きなものが得られ、
また固相成長に要する時間も従来に比べて大きく変わる
ことがない。
For this reason, the higher the density of the amorphous silicon film that is the starting material, the larger the grain size of each crystal in the polycrystalline silicon thin film that is finally produced.
Furthermore, the time required for solid phase growth does not change significantly compared to the conventional method.

また、本発明者等は、出発材料である非晶質シリコンの
膜の緻密度は分光エリプソメータにより求められる屈折
率(n)および消衰係数(k)により如実に示されるこ
とを見出だした。
Furthermore, the present inventors have discovered that the density of the amorphous silicon film that is the starting material is clearly indicated by the refractive index (n) and extinction coefficient (k) determined by a spectroscopic ellipsometer.

そして、更に種々の実験を行ったところ、特に出発材料
である非晶質シリコンの各波長に対する屈折率(n)お
よび消衰係数(k)が所定の範囲であることが結晶性の
良好な多結晶シリコン薄膜を得るための必須の条件とな
ることを見出だした。
Furthermore, various experiments were conducted, and it was found that the refractive index (n) and extinction coefficient (k) for each wavelength of amorphous silicon, which is the starting material, are within a predetermined range. We have discovered that this is an essential condition for obtaining crystalline silicon thin films.

非晶質シリコンの膜の緻密度は非晶質シリコンの膜中の
ボイド量により決定されるものと考えられ、この膜中の
ボイド量は分光エリプソメータにより求められる屈折率
(n)および消衰係数(k)に大きく影響するためと考
えられる。
The density of an amorphous silicon film is thought to be determined by the amount of voids in the amorphous silicon film, and the amount of voids in this film is determined by the refractive index (n) and extinction coefficient determined by a spectroscopic ellipsometer. This is thought to be because it greatly affects (k).

尚、本明細書中の屈折率(n)および消衰係数(k)は
、自動分光エリプソメータ(SOPI?A ’l+MM
ulti−Optical−3pectrometri
c−3canner ModelES−4G )により
求めたものである。
Note that the refractive index (n) and extinction coefficient (k) in this specification are determined using an automatic spectroscopic ellipsometer (SOPI?A'l+MM).
ulti-Optical-3pectrometry
c-3canner Model ES-4G).

そして、波長に対して屈折率(n)が上述の範囲よりも
小さいことは、膜中のボイド量が多いことを意味するも
ので、結晶性の良好な多結晶シリコン薄膜が得られなく
なってしまう。逆に、屈折率(n)が上述した範囲より
も大きいと結晶性の良好な多結晶シリコン薄膜が得られ
るものの、このような出発材料である非晶質シリコンを
形成することか困難となるためである。
If the refractive index (n) is smaller than the above range with respect to the wavelength, it means that the amount of voids in the film is large, making it impossible to obtain a polycrystalline silicon thin film with good crystallinity. . Conversely, if the refractive index (n) is larger than the above range, a polycrystalline silicon thin film with good crystallinity can be obtained, but it becomes difficult to form such a starting material, amorphous silicon. It is.

また、消衰係数(k)についても同様に、上述の範囲よ
りも小さいと結晶性の良好な多結晶シリコン薄膜が得ら
れなくなり、逆に上述の範囲よりも大きな非晶質シリコ
ンを形成することは技術的に困難なためである。
Similarly, regarding the extinction coefficient (k), if it is smaller than the above range, a polycrystalline silicon thin film with good crystallinity cannot be obtained, and conversely, an amorphous silicon film larger than the above range may be formed. This is because it is technically difficult.

本発明は、上述したように各波長に対して屈折率(n)
および消衰係数(k)か所定の範囲の緻密な非晶質シリ
コンの膜を出発材料として固相成長させることにより、
従来と同様に製造したものであっても良好な結晶性の多
結晶シリコン薄膜が得られるものである。
In the present invention, as described above, the refractive index (n) for each wavelength is
By solid-phase growth using a dense amorphous silicon film with a predetermined extinction coefficient (k) as a starting material,
A polycrystalline silicon thin film with good crystallinity can be obtained even if it is produced in the same manner as before.

また、上述した緻密な非晶質シリコンを得る方法として
は、従来公知の方法の各条件を適宜変更することにより
得ることができるが、特にシランガスあるいはジシラン
ガスを用いた減圧C,V。
Furthermore, the above-mentioned dense amorphous silicon can be obtained by appropriately changing the conditions of conventionally known methods, particularly by using reduced pressure C or V using silane gas or disilane gas.

D9、プラズマC,V、D、等の化学的薄膜堆積による
もの、あるいは多結晶シリコン中ににシリコンイオン、
水素化シリコンイオン、弗化シリコンイオン等のイオン
注入し非晶質化させる方法等か良い。
D9, plasma C, V, D, etc. by chemical thin film deposition, or silicon ions in polycrystalline silicon,
A method of implanting ions such as silicon hydride ions or silicon fluoride ions to make the material amorphous may be used.

(実 施 例) 以下、本発明の一実施例の多結晶シリコン薄膜の製造方
法について詳述する。′ (具体例) 減圧C,V、 D、装置により、反応ガスにジシランを
用い、成膜温度470 ”C,ガス圧OJtorrの条
件により絶縁性基板上に表1に示すような各波長に対す
る屈折率(n)および消衰係数(k)を有する非晶質シ
リコン膜を02ミクロンの膜厚で堆積させた。
(Example) Hereinafter, a method for manufacturing a polycrystalline silicon thin film according to an example of the present invention will be described in detail. (Specific example) Using a device with reduced pressures of C, V, and D, using disilane as a reaction gas, film formation temperature of 470 ''C, and gas pressure of OJtorr, refraction for each wavelength as shown in Table 1 was formed on an insulating substrate. An amorphous silicon film was deposited with a thickness of 0.2 microns, having a coefficient of extinction (n) and an extinction coefficient (k) of 0.02 microns.

ここで、各波長に対する屈折率(n)および消衰係数(
k)の測定は、自動分光エリプソメータ(SOPRA社
製)を用いて求めたものである。
Here, the refractive index (n) and extinction coefficient (
The measurement of k) was obtained using an automatic spectroscopic ellipsometer (manufactured by SOPRA).

この緻密度から非晶質シリコン膜の最隣接原子間距離を
算出すると2.38オングストロームとなり、単結晶シ
リコン膜の最隣接原子間距離である2、35オングスト
ロームに非常に近いことがわかる。
When the distance between the nearest neighboring atoms of the amorphous silicon film is calculated from this density, it is 2.38 angstroms, which is very close to the distance between the nearest neighboring atoms of the single crystal silicon film, which is 2.35 angstroms.

そして、600℃の基板温度に24時間保持し、固相成
長させて多結晶シリコン薄膜を得た。このようにして得
られた多結晶シリコン薄膜の結晶粒径を測定したところ
、結晶粒径2.0〜3.0 ミクロンの結晶性の良い多
結晶シリコン薄膜が得られていた。
Then, the substrate temperature was maintained at 600° C. for 24 hours, and solid phase growth was performed to obtain a polycrystalline silicon thin film. When the crystal grain size of the polycrystalline silicon thin film thus obtained was measured, it was found that a polycrystalline silicon thin film with good crystallinity was obtained with a crystal grain size of 2.0 to 3.0 microns.

(比較例) 減圧C,V、 D、装置により、反応ガスにシランを用
い、成IM!温度り50℃、ガス圧0.4 torrの
条件により絶縁性基板上に表1に示すような各波長に対
する屈折率(n)および消衰係数(k)を有する非晶質
シリコン膜を0,2ミク0ンの膜厚で堆積させた。
(Comparative example) Using silane as a reaction gas using reduced pressure C, V, D, IM! An amorphous silicon film having a refractive index (n) and an extinction coefficient (k) for each wavelength as shown in Table 1 was deposited on an insulating substrate at a temperature of 50°C and a gas pressure of 0.4 torr. It was deposited to a film thickness of 2 μm.

ここで、各波長に対する屈折率(n)および消衰係数(
k)の測定は、上述した具体例と同様に自動分光エリプ
ソメータを用いて求めたものである。
Here, the refractive index (n) and extinction coefficient (
The measurement of k) was obtained using an automatic spectroscopic ellipsometer in the same manner as in the above-mentioned specific example.

この緻密度から非晶質シリコン膜の最隣接原子間距離を
算出すると2443オングストロームとなり、具体例に
比べてかなり大きいことかわかる。
The distance between the nearest adjacent atoms of the amorphous silicon film is calculated from this density to be 2443 angstroms, which is considerably larger than the specific example.

そして、具体例と同様に800℃の基板温度に24時間
保持し、固相成長させて多結晶シリコン薄膜を得た。こ
のようにして得られた多結晶シリコン薄膜の結晶粒径を
測定したところ、結晶粒径0,1ミクロンの多結晶シリ
コン薄膜が得られていた。
Then, as in the specific example, the substrate temperature was maintained at 800° C. for 24 hours, and solid phase growth was performed to obtain a polycrystalline silicon thin film. When the crystal grain size of the polycrystalline silicon thin film thus obtained was measured, it was found that a polycrystalline silicon thin film with a crystal grain size of 0.1 micron was obtained.

以下余白 表 上述した具体例および比較例から明らかなように、 固相成長の出発材料である非晶質シリコンの各波長に対
する屈折率(n)および消衰係数(k)を所定の範囲と
することにより、結晶性が良好な多結晶シリコン薄膜を
容易に製造することかできる。
As is clear from the above-mentioned specific examples and comparative examples, the refractive index (n) and extinction coefficient (k) for each wavelength of amorphous silicon, which is the starting material for solid phase growth, are set within a predetermined range. As a result, a polycrystalline silicon thin film with good crystallinity can be easily produced.

また、上述した具体例以外にも、例えば減圧C9V、 
 D、装置により非晶質シリコン膜あるいは多結晶シリ
コン薄膜を形成した後に所定の条件でシリコンイオンを
膜中に注入する方法も本発明を実現するための比較的容
易な方法の一つである。
In addition to the specific examples mentioned above, for example, reduced pressure C9V,
D. Another relatively easy method for realizing the present invention is to form an amorphous silicon film or a polycrystalline silicon thin film using an apparatus and then implant silicon ions into the film under predetermined conditions.

[発明の効果] 以上詳述したように、本発明の多結晶シリコン薄膜の製
造方法によれば、固相成長法の欠点であった結晶粒径の
大きな多結晶シリコン薄膜が得にくいといった欠点を解
消し、液相成長法と同等に良好な多結晶シリコン薄膜を
得ることができた。
[Effects of the Invention] As detailed above, according to the method for producing a polycrystalline silicon thin film of the present invention, the drawback of the solid phase growth method, which is that it is difficult to obtain a polycrystalline silicon thin film with a large crystal grain size, can be overcome. We were able to solve this problem and obtain a polycrystalline silicon thin film as good as that obtained by liquid phase growth.

また、液相成長法に比べて膜中への不純物の混入もなく
、純度の高い多結晶シリコン薄膜が得られるものである
Furthermore, compared to the liquid phase growth method, there is no contamination of impurities into the film, and a highly pure polycrystalline silicon thin film can be obtained.

代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男Agent: Patent Attorney Noriyuki Chika Same Bamboo Flower Kikuo

Claims (1)

【特許請求の範囲】  非晶質シリコン膜を加熱し固相成長させることにより
多結晶シリコン膜を製造する多結晶シリコン薄膜の製造
方法において、 前記非晶質シリコン膜の屈折率(n)、消衰係数(k)
が 波長250nmにおいて、n=1.88±0.01、k
=3.41±0.01、 波長300nmにおいて、n=3.18±0.01、k
=3.70±0.01、 波長350nmにおいて、n=4.44±0.01、k
=3.16±0.01、 波長400nmにおいて、n=5.00±0.01、k
=2.22±0.01、 波長450nmにおいて、n=5.07±0.01、k
=1.47±0.01、 波長500nmにおいて、n=4.96±0.01、k
=0.97±0.01、 波長550nmにおいて、n=4.80±0.01、k
=0.63±0.01、 波長600nmにおいて、n=4.65±0.01、k
=0.38±0.01、 波長650nmにおいて、n=4.52±0.01、k
=0.17±0.01、 波長700nmにおいて、n=4.43±0.01、k
=0.03±0.01、 波長750nmにおいて、n=4.35±0.01、k
=0.01±0.01、 波長800nmにおいて、n=4.30±0.01、k
=0.01±0.01、 波長850nmにおいて、n=4.25±0.01、k
=0.01±0.01、 であることを特徴とした多結晶シリコン薄膜の製造方法
[Scope of Claims] A method for manufacturing a polycrystalline silicon thin film in which a polycrystalline silicon film is manufactured by heating an amorphous silicon film to cause solid phase growth, the refractive index (n) and extinction of the amorphous silicon film comprising: Attenuation coefficient (k)
At a wavelength of 250 nm, n=1.88±0.01, k
= 3.41 ± 0.01, at wavelength 300 nm, n = 3.18 ± 0.01, k
=3.70±0.01, at wavelength 350nm, n=4.44±0.01, k
=3.16±0.01, n=5.00±0.01, k at wavelength 400nm
=2.22±0.01, at wavelength 450nm, n=5.07±0.01, k
= 1.47 ± 0.01, at wavelength 500 nm, n = 4.96 ± 0.01, k
=0.97±0.01, at wavelength 550nm, n=4.80±0.01, k
=0.63±0.01, at wavelength 600nm, n=4.65±0.01, k
=0.38±0.01, at wavelength 650nm, n=4.52±0.01, k
=0.17±0.01, at wavelength 700nm, n=4.43±0.01, k
=0.03±0.01, at wavelength 750nm, n=4.35±0.01, k
=0.01±0.01, at wavelength 800nm, n=4.30±0.01, k
=0.01±0.01, at wavelength 850nm, n=4.25±0.01, k
=0.01±0.01, A method for producing a polycrystalline silicon thin film.
JP26625490A 1990-10-05 1990-10-05 Method for manufacturing polycrystalline silicon thin film Expired - Fee Related JP2856533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26625490A JP2856533B2 (en) 1990-10-05 1990-10-05 Method for manufacturing polycrystalline silicon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26625490A JP2856533B2 (en) 1990-10-05 1990-10-05 Method for manufacturing polycrystalline silicon thin film

Publications (2)

Publication Number Publication Date
JPH04144122A true JPH04144122A (en) 1992-05-18
JP2856533B2 JP2856533B2 (en) 1999-02-10

Family

ID=17428423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26625490A Expired - Fee Related JP2856533B2 (en) 1990-10-05 1990-10-05 Method for manufacturing polycrystalline silicon thin film

Country Status (1)

Country Link
JP (1) JP2856533B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470619A (en) * 1993-09-07 1995-11-28 Korea Advanced Institute Of Science And Technology Method of the production of polycrystalline silicon thin films
JPWO2023032450A1 (en) * 2021-09-02 2023-03-09

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470619A (en) * 1993-09-07 1995-11-28 Korea Advanced Institute Of Science And Technology Method of the production of polycrystalline silicon thin films
JPWO2023032450A1 (en) * 2021-09-02 2023-03-09
WO2023032450A1 (en) * 2021-09-02 2023-03-09 パナソニックIpマネジメント株式会社 Laser annealing device and laser annealing method

Also Published As

Publication number Publication date
JP2856533B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US7508120B2 (en) Piezoelectric element and method for manufacturing
Zhou et al. Growth of amorphous-layer-free microcrystalline silicon on insulating glass substrates by plasma-enhanced chemical vapor deposition
Hieber et al. Structural changes of evaporated tantalum during film growth
JPS61244020A (en) Oriented monocrystalline silicon film with restricted defecton insulation support
TWI284685B (en) Silicon semiconductor substrate and preparation thereof
JPH04144122A (en) Manufacture of polycrystalline silicon thin film
KR100422333B1 (en) Method for manufacturing a metal film having giant single crystals and the metal film
JPS5884401A (en) Resistor
JPS6046539B2 (en) Method for manufacturing silicon crystal film
JP4179452B2 (en) LiNbO3 oriented thin film forming method
JP4023677B2 (en) LiNbO3 oriented thin film forming method
JPH04127519A (en) Method for formation of polycrystalline silicon film
JPS5939791A (en) Production of single crystal
JPS5856405A (en) Production of semiconductor device
WO2007119733A1 (en) Method for fabricating variable resistance element
JPH0637351B2 (en) Method of manufacturing ferroelectric thin film
JPS59121823A (en) Fabrication of single crystal silicon film
JPH02188499A (en) Production of polycrystal silicon film having large crystal grain diameter
Sandeep et al. Piezoelectric aluminum nitride thin films for CMOS compatible MEMS: Sputter deposition and doping
JPH01264215A (en) Manufacture of semiconductor device
JPH05304097A (en) Manufacture of insb thin film
KR100786801B1 (en) The method for fabricating high-quality polycrystalline silicon thin films by applying the epitaxial silicon layer and electronic device comprising the same
Aronne et al. Bulk crystallisation of LaBGeO5 glass produced by Pr2O3. A DTA study
JPH021366B2 (en)
US7467448B2 (en) Method of manufacturing a piezoelectric ceramic

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees