JPH04144089A - Heat emitting element having positive resistance temperature coefficient - Google Patents

Heat emitting element having positive resistance temperature coefficient

Info

Publication number
JPH04144089A
JPH04144089A JP26766390A JP26766390A JPH04144089A JP H04144089 A JPH04144089 A JP H04144089A JP 26766390 A JP26766390 A JP 26766390A JP 26766390 A JP26766390 A JP 26766390A JP H04144089 A JPH04144089 A JP H04144089A
Authority
JP
Japan
Prior art keywords
resistance
electrode wires
emitting element
heat emitting
electroconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26766390A
Other languages
Japanese (ja)
Inventor
Tadataka Yamazaki
山崎 忠孝
Nobuyuki Hirai
伸幸 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26766390A priority Critical patent/JPH04144089A/en
Publication of JPH04144089A publication Critical patent/JPH04144089A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the trend of a heat emitting element turning into higher resistance and prolong the lifetime by adding a specific amount of silica to electroconductive particles, leaving to bridging reaction, turning into fine powder, mixing with crystalline highpolymer compound dispersedly, and accomplishing a resistance element consisting chiefly of this obtained substance as major component assuming the form of a long stretching tube, and also providing a pair of electrode wires spirally formed. CONSTITUTION:A (PTC) heat emitting element having positive resistance temp. coefficient is formed from a PTC resistance element 1 in the form of long stretching tube and a pair of electrode wires 2, 3 wound spirally, wherein the resistance element and electrode wires are covered with electric insulation 4. The resistance element 1 is fabricated through such procedures as dispersing 5-35wt.% electroconductive fine powder in crystalline highpolymer compound, bridging using an electron beam or a bridging agent for ex. organic peroxides, turning into finer particles, accomplish granular electroconductive compound, and mixing it with crystalline highpolymer compound dispersedly. The resultant object is not likely with crack initiation in the electroconductive powder due to thermal expansion, and degradation of the resistance value is prevented, and thus a heat emitting element of long life is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は採暖器具及び一般の加熱装置として利用される
正抵抗温度係数をもつ発熱体に関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a heating element with a positive temperature coefficient of resistance that is used as a heating appliance and a general heating device.

従来の技術 従来のチューブ状の正抵抗温度係数をもつ(以下PTC
と称す)発熱体は、一対の電極線間に設けたPTC抵抗
体のPTC特性により適宜な温度に自己制御されている
。しかし、特に大きな電力密度が要求される場合におい
ては、発熱体の温度分布を一様にするため、一対の電極
線間方向の温度分布を良好にすることが不可欠であり、
その解決策として、一対の電極線間の距離を互いに接近
させて構成する手段が講しられてきた。
Conventional technology Conventional tube-shaped positive resistance temperature coefficient (hereinafter referred to as PTC)
The heating element is self-controlled to an appropriate temperature by the PTC characteristics of a PTC resistor provided between a pair of electrode wires. However, when particularly high power density is required, it is essential to improve the temperature distribution in the direction between the pair of electrode wires in order to make the temperature distribution of the heating element uniform.
As a solution to this problem, measures have been taken in which the distance between a pair of electrode wires is made closer to each other.

第2図において、電極線7及び電極線9は互いに接近し
て設けられた平行線状の金属電極であり、この間にPT
C抵抗体8を配することにより、高出力のPTC発熱体
を現出している。
In FIG. 2, the electrode wire 7 and the electrode wire 9 are parallel linear metal electrodes provided close to each other, and between them, the PT
By arranging the C resistor 8, a high output PTC heating element appears.

発明が解決しようとする課題 一般にこうしたPTC発熱体は、長期的な使用によりヒ
ータ全体が高抵抗化して発熱温度が低下するいとう欠点
を有していた。特に高分子組成物が架橋物を細粉化した
導電性粉末を混合したタイプのPTC抵抗体は導電性粉
末とバインダーとしての高分子との間で海鳥構造を有し
ているため安全件と加工安定性に優れている反面、発熱
分布の均一性が得にくいため、上記のような傾向が顕著
にみられた。
Problems to be Solved by the Invention In general, such PTC heating elements have a disadvantage that, with long-term use, the resistance of the entire heater increases and the heat generation temperature decreases. In particular, PTC resistors of the type in which a polymer composition is mixed with a conductive powder made by finely powdering a crosslinked material have a seabird structure between the conductive powder and the polymer as a binder, so there are safety concerns and processing problems. Although it has excellent stability, it is difficult to obtain uniform heat generation distribution, so the above-mentioned tendency was noticeable.

本発明の目的は上記!Ill!を改善するもので、安全
で且つ長期使用に耐えるPTC発熱体を提供しようとす
るものである。
The purpose of the present invention is the above! Ill! The purpose is to provide a PTC heating element that is safe and durable for long-term use.

課題を解決するための手段 本発明は上記目的を達成するため、結晶性高分子組成物
中に導電性微粉末を分散させてなる導電性組成物を玉成
分とする長尺のチューブ状の正抵抗温度係数をもつ抵抗
体と、前記抵抗体の長手方向に沿ってスパイラル状に巻
かれた一対の等間隔の相対峙する電極線と、この電極線
を外装する電気絶縁体とを備えた正抵抗温度係数をもつ
発熱体とし、また導電組成物として、電子線あるいは有
機過酸化物等の架橋剤により架橋した後、これを細粉化
して粒子状導電性組成物とし、これを結晶性高分子組成
物に混合分散して形成された導電性組成物を用いる正温
度係数をもつ発熱体とした。
Means for Solving the Problems In order to achieve the above object, the present invention provides a long tube-shaped positive electrode whose bead component is a conductive composition prepared by dispersing conductive fine powder in a crystalline polymer composition. A positive electrode comprising a resistor having a temperature coefficient of resistance, a pair of electrode wires facing each other at equal intervals wound spirally along the longitudinal direction of the resistor, and an electrical insulator sheathing the electrode wires. A heating element with a temperature coefficient of resistance and a conductive composition are cross-linked with an electron beam or a cross-linking agent such as an organic peroxide, and then finely powdered to form a particulate conductive composition. A heating element with a positive temperature coefficient was created using a conductive composition formed by mixing and dispersing it in a molecular composition.

作用 上記構成において、粒子状導電性組成物中に、疎水性ノ
リ力(平均2次粒子径1.5μm)の添加量が100V
間欠通電時の抵抗値変化におよぼす影響について、検討
した結果を第3図に示す、第3図より明らかなように、
導電粒体中のシリカの添加量と抵抗値変化率との間には
、密接な関係が存在することがわかる。得に5〜35重
量%の間で、抵抗値の変化が安定される。これは導電粉
体がシ、1カムこより補強され、さらに熱膨張か緩和さ
れる−め;二、導電粒体内部の熱劣化が極度にくい止め
られる機構が形成されるので、発熱体の通電による高抵
抗化が改善でき、長寿命化かIU能となる。
Effect In the above configuration, the amount of hydrophobic glue force (average secondary particle diameter 1.5 μm) added to the particulate conductive composition is 100V.
Figure 3 shows the results of examining the effect on resistance value changes during intermittent energization.As is clear from Figure 3,
It can be seen that there is a close relationship between the amount of silica added in the conductive particles and the rate of change in resistance value. Changes in resistance are particularly stable between 5 and 35% by weight. This is because the conductive powder is reinforced by the first cam, which further reduces thermal expansion.Secondly, a mechanism is formed that prevents thermal deterioration inside the conductive powder, which is extremely difficult to prevent due to energization of the heating element. High resistance can be improved, resulting in longer life or IU performance.

実施例 以下、本発明の〜実施例として示したr)Tc発熱体を
図面乙こ基づいて説明する。
EXAMPLES Hereinafter, r) Tc heating elements shown as examples of the present invention will be explained based on the drawings.

第1図において、長尺のチューブ状のPTC抵抗体】と
この抵抗体1の長手方向に沿ってスパイラル状ムこ巻か
れた一対の等間隔の電極線2(外径0、1−の銅線を1
6本撚りしたもの)と電極線3(前記電極線2に同一の
構成)とが設けられている。
In FIG. 1, a long tube-shaped PTC resistor] and a pair of equally spaced electrode wires 2 (copper with outer diameters of 0 and 1- line 1
(6 strands twisted) and an electrode wire 3 (same configuration as the electrode wire 2) are provided.

さらに、前記全体を絶縁体(ポリ塩化ビニル)で被覆し
てPTC発熱体としている。
Further, the entire body is covered with an insulator (polyvinyl chloride) to form a PTC heating element.

なお、前記実施例では、PTC抵抗体1は下記組成物か
ら成る。結晶性高分子組成物としてポリエチレンを用い
、導電性微粉末として、40重量%のファーネスブラッ
クと17重量%の平均2次粒子径1.5μmの疎水性シ
リカを含む低密度ポリエチレン混練Th 100重量部
に架橋剤としてジクミルパーオキサイドを4.5重量部
配合したものを180’Cで1時間熱処理を施すことに
より得た架橋物を冷凍粉砕によって平均粒子径60μm
の粒子状導電性組成物を作成した。その後、この粒子状
導電性組成物を結晶性高分子組成物としての低圧度ポリ
エチレン中に導電性微粉末としてのカーボンブラックを
組成比28重量%混練したものを用いた。なお、この正
抵抗温度係数をもつ抵抗体は4.3×10“Ω−1の体
積固有抵抗値を示した。さらにAC100■で通電する
と約62°Cの飽和温度を示した。
In addition, in the said Example, the PTC resistor 1 consists of the following composition. 100 parts by weight of low-density polyethylene kneading Th using polyethylene as a crystalline polymer composition and containing 40% by weight of furnace black and 17% by weight of hydrophobic silica with an average secondary particle size of 1.5 μm as conductive fine powder. A mixture of 4.5 parts by weight of dicumyl peroxide as a crosslinking agent was heat-treated at 180'C for 1 hour to obtain a crosslinked product, which was freeze-pulverized to an average particle size of 60 μm.
A particulate conductive composition was prepared. Thereafter, this particulate conductive composition was prepared by kneading carbon black as a conductive fine powder in a composition ratio of 28% by weight into a low-pressure polyethylene as a crystalline polymer composition. The resistor having this positive temperature coefficient of resistance exhibited a volume resistivity of 4.3 x 10''Ω-1.Furthermore, when energized at AC 100⁻, it exhibited a saturation temperature of about 62°C.

上記の導電性組成物を用いた本発明の実施例と酸化硅素
を無添加の導電性粒子を用いたサンプルとの対比のため
、雰囲気温度100’C1印加電圧200■の通電耐久
試験を行った。抵抗値変化率が50%に達する時間とし
て、後者は6500時間であったが、前記の実施例では
、10.000時間経過するも未だ到達していないこと
から通電耐久性が優れている。
In order to compare the example of the present invention using the above-mentioned conductive composition with a sample using conductive particles without addition of silicon oxide, an electric current durability test was conducted at an ambient temperature of 100'C and an applied voltage of 200cm. . The time required for the rate of change in resistance value to reach 50% was 6,500 hours in the latter case, but in the above-mentioned example, this had not yet been reached even after 10,000 hours had elapsed, indicating excellent current-carrying durability.

尚、前記実施例ではヘースとしての結晶性高分子組成物
として低密度ポリエチレンを示したが、ポリアミド、エ
チレン−酢酸ビニル共重合体、アクリル酸やマレイン酸
等のグラフト重合体、ポリプロピレン等であってもよい
In the above examples, low-density polyethylene was shown as the crystalline polymer composition as the base, but polyamide, ethylene-vinyl acetate copolymer, graft polymers such as acrylic acid and maleic acid, polypropylene, etc. Good too.

発明の効果 上記のように本発明の正抵抗温度係数をもつ発熱体によ
れば、通電時の発熱による熱膨張差に起因する導電粉体
中のクラ、りが生しにくいために、抵抗値の劣化が防止
でき、極めて長寿命の発熱体が実現できる。また、抵抗
値変化率が従来例と比較して大きく向上され、極めて高
信鎖度のある安全な自己温度制御作用を有する発熱体を
実現することができる等の効果がある。
Effects of the Invention As described above, according to the heating element having a positive temperature coefficient of resistance of the present invention, cracks and cracks in the conductive powder due to the difference in thermal expansion due to heat generation during energization are less likely to occur, so that the resistance value decreases. The deterioration of the heating element can be prevented, and a heating element with an extremely long life can be realized. Further, the rate of change in resistance value is greatly improved compared to the conventional example, and it is possible to realize a heating element having an extremely high degree of reliability and a safe self-temperature control function.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の=・実施例を示すPTC発熱体の絶縁
体を切開いて内部を示した側面図、第2図は従来のPT
C発熱体の絶縁体を切開いて内部を示した側面図、第3
図は導電粉末中の酸化硅素台を量がAClooVの間欠
通電時の抵抗値変化率におよぼす影響について示した特
性回である。 l・・・・・・PTC抵抗体、2.3・・・・・・電極
線、4・・・・・・絶縁体。 代理人の氏名 弁理士 小鍜治 明 はが2名p 昌it  停 第 図 第 図 置を槌鷹?1真1(曹1y、)
Fig. 1 is a side view showing the inside of a PTC heating element by cutting open the insulator showing an embodiment of the present invention, and Fig. 2 is a side view showing the inside of a PTC heating element according to an embodiment of the present invention.
C. Side view showing the inside of the heating element by cutting out the insulator, No. 3
The figure is a characteristic diagram showing the influence of the amount of silicon oxide in the conductive powder on the rate of change in resistance value during intermittent energization of AClooV. l...PTC resistor, 2.3...electrode wire, 4...insulator. Name of agent: Patent attorney Akira Okaji 2 people p. 1 Shin 1 (Cao 1y,)

Claims (1)

【特許請求の範囲】[Claims] 結晶性高分子組成物中に導電性微粉末と少なくとも酸化
硅素を5〜35重量%とを分散させて実子線あるいは有
機過酸化物等の架橋剤により架橋した後、これを細粉化
して、粒子状導電性塑性物とし、これを結晶性高分子組
成物に混合分散して形成された導電性組成物を主成分と
する長尺のチューブ状の正抵抗温度係数をもつ抵抗体と
、前記抵抗体の長手方向に沿ってスパイラル状に巻かれ
た一対の等間隔の相対峙する電極線と、この電極線を外
装する電気絶縁体とを備えた正抵抗温度係数をもつ発熱
体。
Conductive fine powder and at least 5 to 35% by weight of silicon oxide are dispersed in a crystalline polymer composition, crosslinked with a crosslinking agent such as a solid beam or an organic peroxide, and then pulverized. a resistor having a positive temperature coefficient of resistance in the form of a long tube, the main component of which is a conductive composition formed by mixing and dispersing the particulate conductive plastic material in a crystalline polymer composition; A heating element with a positive temperature coefficient of resistance, comprising a pair of equally spaced electrode wires facing each other wound spirally along the longitudinal direction of the resistor, and an electrical insulator sheathing the electrode wires.
JP26766390A 1990-10-04 1990-10-04 Heat emitting element having positive resistance temperature coefficient Pending JPH04144089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26766390A JPH04144089A (en) 1990-10-04 1990-10-04 Heat emitting element having positive resistance temperature coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26766390A JPH04144089A (en) 1990-10-04 1990-10-04 Heat emitting element having positive resistance temperature coefficient

Publications (1)

Publication Number Publication Date
JPH04144089A true JPH04144089A (en) 1992-05-18

Family

ID=17447809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26766390A Pending JPH04144089A (en) 1990-10-04 1990-10-04 Heat emitting element having positive resistance temperature coefficient

Country Status (1)

Country Link
JP (1) JPH04144089A (en)

Similar Documents

Publication Publication Date Title
US4910389A (en) Conductive polymer compositions
JPH04144089A (en) Heat emitting element having positive resistance temperature coefficient
JP2936788B2 (en) Method for manufacturing resistor having positive temperature coefficient of resistance and heating element using the resistor
KR0153409B1 (en) Polymer composition having positive temperature coefficient characteristics
JPH04144090A (en) Heat emitting element having positive resistance temperature coefficient
JPH0217609A (en) Positive resistance temperature coefficient heating element
JPH0439885A (en) Heating body having positive resistance temperature coefficient
JPH0359986A (en) Heating body with positive resistance temperature coefficient
JPH04144091A (en) Heat emitting element having positive resistance temperature coefficient
JPH06500662A (en) conductive polymer device
JPH0443587A (en) Heater having positive resistance temperature coefficient
JPH0218902A (en) Positive temperature coefficient heater
JP2734253B2 (en) Positive resistance temperature coefficient heating element
JPH0439884A (en) Heating body having positive resistance temperature coefficient
JPS59226493A (en) Self-temperature controllable heater
JPH0359985A (en) Heating body with positive resistance temperature coefficient
JP2638862B2 (en) Positive low temperature coefficient heating element
JP2730062B2 (en) Positive resistance temperature coefficient heating element
JP2734250B2 (en) Positive resistance temperature coefficient heating element
JPH04144088A (en) Heat emitting element having positive resistance temperature coefficient
JPH0359984A (en) Heating body with positive resistance temperature coefficient
JP2734251B2 (en) Positive resistance temperature coefficient heating element
JPH0359983A (en) Heating body with positive resistance temperature coefficient
JPS61198590A (en) Self-temperature controlling heater
JPH03176980A (en) Heating element with positive resistance temperature coefficient