JPH0359984A - Heating body with positive resistance temperature coefficient - Google Patents

Heating body with positive resistance temperature coefficient

Info

Publication number
JPH0359984A
JPH0359984A JP19628789A JP19628789A JPH0359984A JP H0359984 A JPH0359984 A JP H0359984A JP 19628789 A JP19628789 A JP 19628789A JP 19628789 A JP19628789 A JP 19628789A JP H0359984 A JPH0359984 A JP H0359984A
Authority
JP
Japan
Prior art keywords
metal electrode
electrode wires
ptc
temperature coefficient
resistance body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19628789A
Other languages
Japanese (ja)
Inventor
Tadataka Yamazaki
山崎 忠孝
Nobuyuki Hirai
伸幸 平井
Takahito Ishii
隆仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19628789A priority Critical patent/JPH0359984A/en
Publication of JPH0359984A publication Critical patent/JPH0359984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PURPOSE:To prevent a crack of interfaces between metal electrode wires and a PTC resistance body by placing a high-conductive compositions whose conductivity is higher than that of the PTC resistance body, between the PTC resistance body and the metal electrode wires. CONSTITUTION:This is a (PTC) heating body with a positive resistance temperature coefficient, furnishing a PTC resistance body 1, and metal electrode wires 2 and 3 provided parallel at a specific interval opposing along the tube-form longitudinal direction of the TPC resistance body 1, and the both electrode wires 2 and 3 are covered with high-conductive compositions 4 and 5 respectively. Furthermore, the whole body is covered with an insulator 6. Consequently, a deterioration of the interfaces between the metal electrode wires 2 and 3, and the PTC resistance body 1, resulting from the thermal expansion difference by the heating when the current is applied, can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は採暖器具及び一般の加熱装置として利用される
正抵抗温度係数をもつ発熱体に関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a heating element with a positive temperature coefficient of resistance that is used as a heating appliance and a general heating device.

従来の技術 従来のチューブ状の正抵抗温度係数をもつ(以下PTC
と称す)発熱体は、一対の電極線間に設けたPTC抵抗
体のPTC特性により適宜な温度に自己制御されている
。しかし、特に大きな電力密度が要求される場合におい
ては、発熱体の温度分布を一様にするため、一対の電極
線間方向の温度分布を良好にすることが不可欠であり、
その解決策として、一対の電極線間の距離を互いに接近
させて構成する方法が講じられてきた。
Conventional technology Conventional tube-shaped positive resistance temperature coefficient (hereinafter referred to as PTC)
The heating element is self-controlled to an appropriate temperature by the PTC characteristics of a PTC resistor provided between a pair of electrode wires. However, when particularly high power density is required, it is essential to improve the temperature distribution in the direction between the pair of electrode wires in order to make the temperature distribution of the heating element uniform.
As a solution to this problem, a method has been taken in which the distance between a pair of electrode wires is made closer to each other.

第2図において、電極線7及び電極線8は互いに接近し
て一定の間隔をもって設けられた平行線状の金属電極で
あり、これら電極線7.8を包囲するようPTC抵抗体
9を配することにより、高出力のPTC発熱体を現出し
ている。
In FIG. 2, electrode wires 7 and 8 are parallel metal electrodes placed close to each other at a constant interval, and a PTC resistor 9 is arranged to surround these electrode wires 7.8. As a result, a high-output PTC heating element is produced.

発明が解決しようとする課題 一般にこうしたPTC発熱体は、長期的な使用により主
としてPTC抵抗体と電極線との界面に形成される電気
的絶縁層によってヒータ全体が高抵抗化して発熱温度が
低下するという欠点を有していた。特に高分子組成物が
架橋物であって、細粉化した導電性粉末を混合したタイ
プのPTC抵抗体は導電性粉末とバインダーとしての高
分子との間で海島構造を有しているため安全性と加工安
定性に優れている反面、発熱分布の均一性が得にくいた
め、上記のような傾向が顕著にみられた。
Problems to be Solved by the Invention In general, with long-term use of such PTC heating elements, the electrical insulating layer formed mainly at the interface between the PTC resistor and the electrode wires increases the resistance of the entire heater and lowers the heat generation temperature. It had the following drawback. In particular, PTC resistors whose polymer composition is cross-linked and mixed with finely ground conductive powder are safe because they have a sea-island structure between the conductive powder and the polymer as a binder. Although it has excellent properties in terms of hardness and processing stability, it is difficult to obtain a uniform heat generation distribution, so the above-mentioned tendency was noticeable.

本発明の目的は上記問題点を改善するもので、安全で且
つ長期使用に耐えるPTC発熱体を提供しようとするも
のである。
An object of the present invention is to improve the above-mentioned problems and to provide a PTC heating element that is safe and durable for long-term use.

課題を解決するための手段 本発明は上記目的を達成するため、結晶性高分子組成物
中に導電性微粉末を分散させてなる導電性組成物を主成
分とする長尺のチューブ状の正抵抗温度係数をもつ抵抗
体と、この抵抗体より高い導電性を有する高導電性組成
物を介して前記抵抗体に包囲され且つ一定の間隔をもっ
て平行に対峙する一対の金属電極線と、この金属電極線
を外装する電気絶縁体とを備えた正抵抗温度係数をもつ
発熱体とした。
Means for Solving the Problems In order to achieve the above object, the present invention provides a long tube-shaped positive electrode whose main component is a conductive composition obtained by dispersing conductive fine powder in a crystalline polymer composition. a resistor having a temperature coefficient of resistance; a pair of metal electrode wires surrounded by the resistor through a highly conductive composition having higher conductivity than the resistor and facing each other in parallel with a constant interval; The heating element has a positive temperature coefficient of resistance and includes an electric insulator covering the electrode wire.

作用 本発明では上記のようにPTC抵抗体と金属電極線との
間に、PTC抵抗体より高い導電性を有する高導電性組
成物を介在させるように金属電極線を包囲され且つ一定
の間隔をもって平行に対峙するようにしたことにより、
金属電極線とPTC抵抗体の熱膨張差に基づく界面割れ
を防止し、熱膨張差を緩和でき、さらに電気導通路を確
保する機構が形成できる。また金属電極線との界面近傍
の電蝕反応で消失するカーボン等の粒子状導電性組成物
を補給することが可能となるので、発熱体の通電による
高抵抗化が改善できる。
Operation In the present invention, as described above, the metal electrode wire is surrounded and spaced at a constant interval so that a highly conductive composition having higher conductivity than the PTC resistor is interposed between the PTC resistor and the metal electrode wire. By making them face parallel,
It is possible to prevent interface cracking due to the difference in thermal expansion between the metal electrode wire and the PTC resistor, to alleviate the difference in thermal expansion, and to form a mechanism that ensures an electrically conductive path. Furthermore, it is possible to replenish the particulate conductive composition such as carbon that disappears due to the electrolytic corrosion reaction near the interface with the metal electrode wire, so it is possible to improve the resistance of the heating element due to energization.

実施例 以下、本発明の一実施例として示したPTC発熱体を□
図面に基づいて説明する。
Example Below, a PTC heating element shown as an example of the present invention is shown as □
The explanation will be based on the drawings.

第1図において、PTC抵抗抵抗体子のPTC抵抗抵抗
体子ューブ状長手方向に沿って対向して一定間隔で平行
に設けた金属電極線2(外径0゜1mmの銅線を16本
撚りしたもの)と金属電極線3(前記金属電極線2と同
一構成)とがあり、それぞれ高導電性組成物4及び5が
被覆介在して設けられている。さらに前記全体を絶縁体
6(ポリ塩化ビニル等)で被覆してPTC発熱体として
いる。
In Fig. 1, metal electrode wires 2 (16 twisted copper wires with an outer diameter of 0°1 mm) are arranged in parallel at regular intervals and facing each other along the longitudinal direction of the PTC resistor tube shape of the PTC resistor resistor element. There are a metal electrode wire 3 (same configuration as the metal electrode wire 2) and a metal electrode wire 3 (same configuration as the metal electrode wire 2), each of which is coated with highly conductive compositions 4 and 5. Further, the entire body is covered with an insulator 6 (polyvinyl chloride, etc.) to form a PTC heating element.

なお、前記実施例では、PTC抵抗体1は下記組成物か
ら成る。結晶性高分子組成物としてポリエチレンを用い
、導電性微粉末として、40重量%のファーネスブラッ
クを含む低密度ポリエチレン混練物100重量部に架橋
剤としてジクミルパーオキサイドを3.5重量部配合し
たものを180℃で1時間熱処理を施すことにより得た
架橋物を冷凍粉砕によって平均粒子径60μmの粒子状
導電性組成物を作成した。その後、この粒子状導電性組
成物を結晶性高分子組成物としての(la)を低密度ポ
リエチレン中に導電性微粉末としてのカーボンブラック
を組成比28重量%混練したものを用いた。なお、この
正抵抗温度係数をもつ抵抗体は3.2X10’Ω−cm
の体積固有抵抗値を示した。
In addition, in the said Example, the PTC resistor 1 consists of the following composition. Using polyethylene as a crystalline polymer composition, 3.5 parts by weight of dicumyl peroxide as a crosslinking agent was blended with 100 parts by weight of a kneaded low-density polyethylene containing 40% by weight of furnace black as a conductive fine powder. A particulate conductive composition having an average particle size of 60 μm was prepared by freeze-pulverizing the crosslinked product obtained by heat-treating it at 180° C. for 1 hour. Thereafter, this particulate conductive composition was prepared by kneading (la) as a crystalline polymer composition into low density polyethylene and carbon black as a conductive fine powder at a composition ratio of 28% by weight. Note that the resistor with this positive temperature coefficient of resistance is 3.2X10'Ω-cm
The volume resistivity value was shown as follows.

さらに高導電性組成物には50重量%のカーボンブラッ
クを含む5〜10Ω−cmの体積固有抵抗値を示す低密
度ポリエチレン組成物を用いた。
Further, as the highly conductive composition, a low density polyethylene composition containing 50% by weight of carbon black and exhibiting a volume resistivity of 5 to 10 Ω-cm was used.

上記の導電性組成物を用いた本発明の実施例と、このよ
うな高導電性組成物を用いないサンプルとの対比のため
、雰囲気温度100℃、印加電圧200Vの通電耐久試
験を行った。抵抗値変化率が50%に達する時間として
、後者はsoo。
In order to compare the example of the present invention using the above conductive composition with a sample not using such a highly conductive composition, an electric current durability test was conducted at an ambient temperature of 100° C. and an applied voltage of 200 V. The latter is soo as the time for the rate of change in resistance value to reach 50%.

時間であったが、前記の実施例では20,000時間経
過するも未だ到達していないことから通電耐久性の優れ
ている。
However, in the above-mentioned example, even after 20,000 hours, it has not yet reached this point, indicating that the current-carrying durability is excellent.

尚、前記実施例ではベースとしての結晶性高分子組成物
として低密度ポリエチレンを示したが、ポリアミド、エ
チレン−酢酸ビニル共重合体、アクリル酸やマレイン酸
等のクラフト重合体、あるいはスチレン−ブタジェンブ
ロック共重合体等の熱可塑性エラストマー等であっても
よい。
In the above examples, low density polyethylene was shown as the base crystalline polymer composition, but polyamide, ethylene-vinyl acetate copolymer, kraft polymers such as acrylic acid and maleic acid, or styrene-butadiene may also be used. It may also be a thermoplastic elastomer such as a block copolymer.

発明の効果 上記のように本発明の正抵抗温度係数をもつ発熱体によ
れば、金属電極線とPTC抵抗体との間に、高導電性組
成物を介して電気的接続がなされているために、通電時
の発熱による熱膨張差に起因する金属電極線とPTC抵
抗体との界面の劣化が防止でき、極めて長寿命の発熱体
が実現できる。また、抵抗値変化率が従来例と比較して
大きく向上され、極めて高信頼度のある安全な自己温j
哀制御作用を有する発熱体を実塊することができる等の
効果がある。
Effects of the Invention As described above, according to the heating element having a positive temperature coefficient of resistance of the present invention, electrical connection is made between the metal electrode wire and the PTC resistor through the highly conductive composition. In addition, deterioration of the interface between the metal electrode wire and the PTC resistor due to the difference in thermal expansion due to heat generated during energization can be prevented, and a heating element with an extremely long life can be realized. In addition, the rate of change in resistance value has been greatly improved compared to conventional examples, and extremely reliable and safe self-temperature control has been achieved.
There are effects such as being able to form a heating element that has a heat-controlling effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示ずPTC発熱体の断面図
、第2図は従来のI) l’ C発熱体の断面図である
FIG. 1 is a sectional view of a PTC heating element, not showing an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional I) l'C heating element.

Claims (1)

【特許請求の範囲】[Claims] (1)結晶性高分子組成物中に導電性微粉末を分散させ
てなる導電性組成物を主成分とする長尺のチューブ状の
正抵抗温度係数をもつ抵抗体と、この抵抗体より高い導
電性を有する高導電性組成物を介して前記抵抗体に包囲
され且つ一定の間隔をもって平行に対峙する一対の金属
電極線と、この金属電極線を外装する電気絶縁体とを備
えたことを特徴とする正抵抗温度係数をもつ発熱体。
(1) A long tube-shaped resistor having a positive temperature coefficient of resistance higher than that of the long tube-shaped resistor whose main component is a conductive composition made by dispersing conductive fine powder in a crystalline polymer composition. A pair of metal electrode wires surrounded by the resistor through a highly conductive composition having electrical conductivity and facing each other in parallel with a certain interval, and an electrical insulator sheathing the metal electrode wires. A heating element with a characteristic positive temperature coefficient of resistance.
JP19628789A 1989-07-27 1989-07-27 Heating body with positive resistance temperature coefficient Pending JPH0359984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19628789A JPH0359984A (en) 1989-07-27 1989-07-27 Heating body with positive resistance temperature coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19628789A JPH0359984A (en) 1989-07-27 1989-07-27 Heating body with positive resistance temperature coefficient

Publications (1)

Publication Number Publication Date
JPH0359984A true JPH0359984A (en) 1991-03-14

Family

ID=16355294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19628789A Pending JPH0359984A (en) 1989-07-27 1989-07-27 Heating body with positive resistance temperature coefficient

Country Status (1)

Country Link
JP (1) JPH0359984A (en)

Similar Documents

Publication Publication Date Title
US4277673A (en) Electrically conductive self-regulating article
JPH0777161B2 (en) PTC composition, method for producing the same and PTC element
US4367168A (en) Electrically conductive composition, process for making an article using same
EP0123540A2 (en) Conductive polymers and devices containing them
JPH0359984A (en) Heating body with positive resistance temperature coefficient
JPH0359985A (en) Heating body with positive resistance temperature coefficient
JP3140054B2 (en) Conductive polymer device
JPH0359986A (en) Heating body with positive resistance temperature coefficient
WO2021168656A1 (en) Pptc heater and material having stable power and self-limiting behavior
JPH083017B2 (en) Method for producing heating element composition
JP2936788B2 (en) Method for manufacturing resistor having positive temperature coefficient of resistance and heating element using the resistor
JP2734253B2 (en) Positive resistance temperature coefficient heating element
JPH0359983A (en) Heating body with positive resistance temperature coefficient
JPH0439885A (en) Heating body having positive resistance temperature coefficient
JP2734250B2 (en) Positive resistance temperature coefficient heating element
JPS59226493A (en) Self-temperature controllable heater
KR0153409B1 (en) Polymer composition having positive temperature coefficient characteristics
JPH0443587A (en) Heater having positive resistance temperature coefficient
JPH0439884A (en) Heating body having positive resistance temperature coefficient
JPH04144089A (en) Heat emitting element having positive resistance temperature coefficient
JPH04144090A (en) Heat emitting element having positive resistance temperature coefficient
JP2734251B2 (en) Positive resistance temperature coefficient heating element
JP2638862B2 (en) Positive low temperature coefficient heating element
JPH03176982A (en) Heating element with positive resistance temperature coefficient
JPH05135854A (en) Heating unit with positive resistance temperature coefficient