JPH0359986A - Heating body with positive resistance temperature coefficient - Google Patents

Heating body with positive resistance temperature coefficient

Info

Publication number
JPH0359986A
JPH0359986A JP19628989A JP19628989A JPH0359986A JP H0359986 A JPH0359986 A JP H0359986A JP 19628989 A JP19628989 A JP 19628989A JP 19628989 A JP19628989 A JP 19628989A JP H0359986 A JPH0359986 A JP H0359986A
Authority
JP
Japan
Prior art keywords
electrode wires
ptc
temperature coefficient
resistance body
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19628989A
Other languages
Japanese (ja)
Inventor
Tadataka Yamazaki
山崎 忠孝
Nobuyuki Hirai
伸幸 平井
Takahito Ishii
隆仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19628989A priority Critical patent/JPH0359986A/en
Publication of JPH0359986A publication Critical patent/JPH0359986A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a crack of interface depending on the thermal expansion difference between the electrode wires and a PTC resistance body by providing a pair of electrode wires opposite each other at the equal intervals wound in a spiral form along the longitudinal direction of the PTC resistance body through high conductive compositions with a conductivity higher than that of the PTC resistance body provided between the PTC resistance body and the electrode wires. CONSTITUTION:This is a (PTC) heating body with a positive resistance temperature coefficient, furnishing a pair of electrode wires 2 and 3 at the equal intervals wound in a spiral form along the longitudinal direction of the resistance body 1. The electrode wires 2 and 3 are covered with high-conductive compositions 4 and 5 respectively, and furthermore, the whole body is covered with an insulator 6. Consequently, a deterioration of the interfaces between the electrode wires 2 and 3, and the PTC resistance body 1, resulting from the thermal expansion difference by the heating when the current is applied, can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は採暖器具及び一般の加熱装置として利用される
正抵抗温度係数をもつ発熱体に関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a heating element with a positive temperature coefficient of resistance that is used as a heating appliance and a general heating device.

従来の技術 従来のチューブ状の正抵抗温度係数をもつ(以下PTC
と称す)発熱体は、一対の電極線間に設けたPTC抵抗
体のPTC特性により適宜な温良に自己制御されている
。しかし、特に大きな電力密度が要求される場合におい
ては、発熱体の温度分布を一様にするため、一対の電極
線間方向の温度分布を良好にすることが不可欠であり、
その解決策として、一対の電極線間の距離を互いに接近
させて構成する方法が講じられてきた。
Conventional technology Conventional tube-shaped positive resistance temperature coefficient (hereinafter referred to as PTC)
The heating element is self-controlled to have an appropriate temperature by the PTC characteristics of a PTC resistor provided between a pair of electrode wires. However, when particularly high power density is required, it is essential to improve the temperature distribution in the direction between the pair of electrode wires in order to make the temperature distribution of the heating element uniform.
As a solution to this problem, a method has been taken in which the distance between a pair of electrode wires is made closer to each other.

第3図において、電極線7及び電極線9は互いに接近し
て設けられた平行線状の金属電極であり、この間にPT
C抵抗体8を配することにより、高出力のPTC発熱体
を現出している。
In FIG. 3, the electrode wire 7 and the electrode wire 9 are parallel linear metal electrodes provided close to each other, and between them, the PT
By arranging the C resistor 8, a high output PTC heating element appears.

発明が解決しようとする課題 一般にこうしたPTC発熱体は、長期的な使用により主
としてPTC抵抗体と電極線との界面に形成される電気
的絶縁層によってヒータ全体が高抵抗化して発熱温度が
低下するという欠点を有していた。特に高分子組成物が
架橋物であって、細粉化した導電性粉末を混合したタイ
プのPTC抵抗体は導電性粉末とバインダーとしての高
分子との間で海島構造を有しているため安全性と加工安
定性に優れている反面、発熱分布の均一性が得にくいた
め、上記のような傾向が顕著にみられた。
Problems to be Solved by the Invention In general, with long-term use of such PTC heating elements, the electrical insulating layer formed mainly at the interface between the PTC resistor and the electrode wires increases the resistance of the entire heater and lowers the heat generation temperature. It had the following drawback. In particular, PTC resistors whose polymer composition is cross-linked and mixed with finely ground conductive powder are safe because they have a sea-island structure between the conductive powder and the polymer as a binder. Although it has excellent properties in terms of hardness and processing stability, it is difficult to obtain a uniform heat generation distribution, so the above-mentioned tendency was noticeable.

本発明の目的は上記問題点を改善するもので、安全で且
つ長期使用に耐えるPTC発熱体を提供しようとするも
のである。
An object of the present invention is to improve the above-mentioned problems and to provide a PTC heating element that is safe and durable for long-term use.

課題を解決するための手段 本発明は上記目的を連成するため、結晶性l”+’+1
分子組成物中に導電性微粉末を分散させてなる導電性組
成物を主成分とする長尺のチューブ状の正抵抗温度係数
をもつ抵抗体と、この抵抗体より高い導電性を有する高
導電性組成物を介して前記抵抗体の長平方向に沿ってス
パイラル状に巻かれた一対の等間隔の相対峙する電極線
と、この電極線を外装する電気絶縁体とを備えた正抵抗
温度係数をもつ発熱体とした。
Means for Solving the Problems In order to couple the above objects, the present invention provides crystalline l''+'+1
A long tube-shaped resistor with a positive temperature coefficient of resistance whose main component is a conductive composition made by dispersing conductive fine powder in a molecular composition, and a highly conductive material with higher conductivity than this resistor. A positive temperature coefficient of resistance comprising a pair of electrode wires facing each other at equal intervals, which are spirally wound along the longitudinal direction of the resistor through a magnetic composition, and an electrical insulator sheathing the electrode wires. A heating element with

作用 本発明では上記のようにPTC抵抗体と電極線との間に
、PTC抵抗体より高い導電性を有する高導電性組成物
を介して前記PTC抵抗体の長手方向に沿ってスパイラ
ル状に巻かれた一対の等間隔の相対的する電極線を6己
するようにしたことにより、電極線とPTC抵抗体の熱
膨張差に基づく界面割れを防止し、熱膨張差を緩和でき
、さらに電気導通路を確保する機構が形成できる。また
電極線との界面近傍の電離反応で消失するカーボン等の
粒子状導電性組成物を補給することが可能となるので、
発熱体の通電による高抵抗化が改善できる。
Function In the present invention, as described above, a highly conductive composition having higher conductivity than the PTC resistor is interposed between the PTC resistor and the electrode wire, and the wire is wound spirally along the longitudinal direction of the PTC resistor. By arranging a pair of equally spaced opposing electrode wires, it is possible to prevent interface cracking due to the difference in thermal expansion between the electrode wire and the PTC resistor, alleviate the difference in thermal expansion, and further improve electrical conductivity. A mechanism that secures the passage can be formed. In addition, it is possible to replenish particulate conductive composition such as carbon that disappears due to ionization reaction near the interface with the electrode wire.
The high resistance caused by energization of the heating element can be improved.

実施例 以下、本発明の一実施例として示したPTC発熱体を図
面に基づいて説明する。
EXAMPLE Hereinafter, a PTC heating element shown as an example of the present invention will be explained based on the drawings.

第1図において、長尺のチューブ状のPTC抵抗体1と
この抵抗体1の長平方向に沿ってスパイラル状に巻かれ
た一対の等間隔の電極線2(外径0.1mmの銅線を1
6本撚りしたもの)と電極線3(前記電極線2と同一の
構成)とがあり、それぞれ高導電性組成物4及び5で被
覆されている。
In FIG. 1, a long tubular PTC resistor 1 and a pair of equally spaced electrode wires 2 (copper wires with an outer diameter of 0.1 mm) are spirally wound along the longitudinal direction of the resistor 1. 1
There are 6 wires twisted) and an electrode wire 3 (same configuration as the electrode wire 2), which are coated with highly conductive compositions 4 and 5, respectively.

即ち、第2図のA−A線による断面図で示すように電極
線3の周囲を高導電性組成物5により被覆している。
That is, as shown in the cross-sectional view taken along the line AA in FIG. 2, the periphery of the electrode wire 3 is coated with the highly conductive composition 5.

さらに、前記全体を絶縁体6(ポリ塩化ビニル)で被覆
してPTC発熱体としている。
Further, the entire body is covered with an insulator 6 (polyvinyl chloride) to form a PTC heating element.

なお、前記実施例では、PTC抵抗体lは下記組成物か
ら成る。結晶性高分子組成物としてポリエチレンを用い
、導電性微粉末として、40重量%のファーネスブラッ
クを含む低密度ポリエチレン混練物100重量部に架橋
剤としてジクミルパーオキサイドを3.5重量部配合し
たものを180℃で1時間熱処理を施すことにより得た
架橋物を冷凍粉砕によって平均粒子径60μmの粒子状
導電性組成物を作成した。その後、この粒子状導電性組
成物を結晶性高分子組成物としての(Ia)を低密度ポ
リエチレン中に導電性微粉末としてのカーボンブラック
を組成比28重量%混練したものを用いた。なお、この
正抵抗温度係数をもつ抵抗体は3.2X10’Ω−cm
の体積固有抵抗値を示した。
Incidentally, in the above embodiment, the PTC resistor l is made of the following composition. Using polyethylene as a crystalline polymer composition, 3.5 parts by weight of dicumyl peroxide as a crosslinking agent was blended with 100 parts by weight of a kneaded low-density polyethylene containing 40% by weight of furnace black as a conductive fine powder. A particulate conductive composition having an average particle size of 60 μm was prepared by freeze-pulverizing the crosslinked product obtained by heat-treating it at 180° C. for 1 hour. Thereafter, this particulate conductive composition was prepared by kneading (Ia) as a crystalline polymer composition into low density polyethylene and carbon black as a conductive fine powder at a composition ratio of 28% by weight. Note that the resistor with this positive temperature coefficient of resistance is 3.2X10'Ω-cm
The volume resistivity value was shown as follows.

さらに高導電性組成物には50重量%のカーボンブラッ
クを含む5〜10Ω−cmの体積固有抵抗値を示す低密
度ポリエチレン組成物を用いた。
Further, as the highly conductive composition, a low density polyethylene composition containing 50% by weight of carbon black and exhibiting a volume resistivity of 5 to 10 Ω-cm was used.

上記の導電性組成物を用いた本発明の実施例と、このよ
うな尚導電性組成物を用いないサンプルとの対比のため
、雰囲気温度100℃、印加電圧200Vの通電耐久試
験を行った。抵抗値変化率が50%に達する時間として
、後者は6500時間であったが、前記の実施例では2
1.000時間経過するも未だ到達していないことから
通電耐久性の優れている。
In order to compare the examples of the present invention using the above conductive composition with samples not using such a conductive composition, an electric current durability test was conducted at an ambient temperature of 100° C. and an applied voltage of 200 V. The time required for the rate of change in resistance value to reach 50% was 6500 hours in the latter case, but in the above example it was 2 hours.
Even after 1,000 hours have passed, it has not yet reached this point, indicating excellent current-carrying durability.

尚、前記実施例ではベースとしての結晶性高分子組成物
として低密度ポリエチレンを示したが、ポリアミド、エ
チレン−酢酸ビニル共重合体、アクリル酸やマレイン酸
等のグラフト重合体、あるいはスチレン−ブタジェンブ
ロック共重合体等の熱可塑性エラストマー等であっても
よい。
In the above examples, low density polyethylene was shown as the base crystalline polymer composition, but polyamide, ethylene-vinyl acetate copolymer, graft polymers such as acrylic acid and maleic acid, or styrene-butadiene may also be used. It may also be a thermoplastic elastomer such as a block copolymer.

発明の効果 上記のように本発明の正抵抗温度係数をもつ発熱体によ
れば、電極線とPTC抵抗体との間に、高導電性組成物
を介して電気的接続がなされているために、通電時の発
熱による熱膨張差に起因する電極線とPTC抵抗体との
界面の劣化が防止でき、極めて長寿命の発熱体が実現で
きる。また、抵抗4+’i変化串が従来例と比較して大
きく向上され、極めて高信頼度のある安全な自己温BL
;Ir+J御作用を有する発熱体を実現することができ
る等の効果がある。
Effects of the Invention As described above, according to the heating element having a positive temperature coefficient of resistance of the present invention, electrical connection is made between the electrode wire and the PTC resistor through the highly conductive composition. Therefore, it is possible to prevent deterioration of the interface between the electrode wire and the PTC resistor due to the difference in thermal expansion due to heat generation during energization, and it is possible to realize a heating element with an extremely long life. In addition, the resistance 4+'i change skewer has been greatly improved compared to the conventional example, resulting in extremely reliable and safe self-temperature BL.
; There are effects such as being able to realize a heating element having Ir+J action.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示ずPTC光熱体の絶縁体
を切開いて内部を示した側面図、第2図は第1図の八−
へ線による断面図、第3図は従来のp −r c発熱体
の絶縁体を切開いて内部を示した側面図である。
Fig. 1 is a side view showing an embodiment of the present invention, with the insulator of the PTC photothermal body cut open to show the inside, and Fig. 2 is a side view showing the inside of the PTC photothermal body.
FIG. 3 is a side view showing the inside of a conventional P-RC heating element by cutting through the insulator thereof.

Claims (1)

【特許請求の範囲】[Claims] (1)結晶性高分子組成物中に導電性微粉末を分散させ
てなる導電性組成物を主成分とする長尺のチューブ状の
正抵抗温度係数をもつ抵抗体と、この抵抗体より高い導
電性を有する高導電性組成物を介して前記抵抗体の長手
方向に沿ってスパイラル状に巻かれた一対の等間隔の相
対峙する電極線と、この電極線を外装する電気絶縁体と
を備えたことを特徴とする正抵抗温度係数をもつ発熱体
(1) A long tube-shaped resistor having a positive temperature coefficient of resistance higher than that of the long tube-shaped resistor whose main component is a conductive composition made by dispersing conductive fine powder in a crystalline polymer composition. A pair of electrode wires facing each other at equal intervals are spirally wound along the longitudinal direction of the resistor through a highly conductive composition having electrical conductivity, and an electrical insulator sheathing the electrode wires. A heating element having a positive temperature coefficient of resistance.
JP19628989A 1989-07-27 1989-07-27 Heating body with positive resistance temperature coefficient Pending JPH0359986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19628989A JPH0359986A (en) 1989-07-27 1989-07-27 Heating body with positive resistance temperature coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19628989A JPH0359986A (en) 1989-07-27 1989-07-27 Heating body with positive resistance temperature coefficient

Publications (1)

Publication Number Publication Date
JPH0359986A true JPH0359986A (en) 1991-03-14

Family

ID=16355327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19628989A Pending JPH0359986A (en) 1989-07-27 1989-07-27 Heating body with positive resistance temperature coefficient

Country Status (1)

Country Link
JP (1) JPH0359986A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345785A (en) * 1991-05-22 1992-12-01 Matsushita Electric Ind Co Ltd Manufacture of resistor with positive resistance temperature coefficient and heating element employing it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345785A (en) * 1991-05-22 1992-12-01 Matsushita Electric Ind Co Ltd Manufacture of resistor with positive resistance temperature coefficient and heating element employing it

Similar Documents

Publication Publication Date Title
US4910389A (en) Conductive polymer compositions
US4246468A (en) Electrical devices containing PTC elements
US4591700A (en) PTC compositions
JPH0777161B2 (en) PTC composition, method for producing the same and PTC element
EP0123540A2 (en) Conductive polymers and devices containing them
GB2106920A (en) Conductive polymer compositions based on polyvinylidene fluoride
JPH0359986A (en) Heating body with positive resistance temperature coefficient
JP3140054B2 (en) Conductive polymer device
JPH0359985A (en) Heating body with positive resistance temperature coefficient
JPH0359984A (en) Heating body with positive resistance temperature coefficient
JP2936788B2 (en) Method for manufacturing resistor having positive temperature coefficient of resistance and heating element using the resistor
JP2734250B2 (en) Positive resistance temperature coefficient heating element
KR0153409B1 (en) Polymer composition having positive temperature coefficient characteristics
JP2734253B2 (en) Positive resistance temperature coefficient heating element
JPH0439885A (en) Heating body having positive resistance temperature coefficient
JPS59226493A (en) Self-temperature controllable heater
JPH0359983A (en) Heating body with positive resistance temperature coefficient
JPH0443587A (en) Heater having positive resistance temperature coefficient
JPH04144089A (en) Heat emitting element having positive resistance temperature coefficient
JPH03176982A (en) Heating element with positive resistance temperature coefficient
JP2638862B2 (en) Positive low temperature coefficient heating element
JPH0439884A (en) Heating body having positive resistance temperature coefficient
JPS61198590A (en) Self-temperature controlling heater
JP2734251B2 (en) Positive resistance temperature coefficient heating element
JPH03176981A (en) Heating element with positive resistance temperature coefficient