JPH04143945A - Magneto-optical recording medium and its manufacture - Google Patents
Magneto-optical recording medium and its manufactureInfo
- Publication number
- JPH04143945A JPH04143945A JP26555090A JP26555090A JPH04143945A JP H04143945 A JPH04143945 A JP H04143945A JP 26555090 A JP26555090 A JP 26555090A JP 26555090 A JP26555090 A JP 26555090A JP H04143945 A JPH04143945 A JP H04143945A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magneto
- optical recording
- recording layer
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000010410 layer Substances 0.000 claims abstract description 124
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 239000011261 inert gas Substances 0.000 claims abstract description 23
- 239000011241 protective layer Substances 0.000 claims abstract description 21
- 239000010409 thin film Substances 0.000 claims abstract description 17
- 239000000696 magnetic material Substances 0.000 claims abstract description 8
- 238000004544 sputter deposition Methods 0.000 claims description 32
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 9
- 150000002910 rare earth metals Chemical class 0.000 claims description 9
- 229910052723 transition metal Inorganic materials 0.000 claims description 8
- 150000003624 transition metals Chemical class 0.000 claims description 7
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 15
- 230000003287 optical effect Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 13
- 239000000203 mixture Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 229910001868 water Inorganic materials 0.000 description 7
- 229910052786 argon Inorganic materials 0.000 description 6
- 238000000151 deposition Methods 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910002546 FeCo Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910018054 Ni-Cu Inorganic materials 0.000 description 1
- 229910018481 Ni—Cu Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、光磁気記録媒体に関するものであり特にバイ
アス磁場特性に優れ、かつ消去−記録−再生の繰り返し
使用耐久性に優れた光磁気記録媒体及びその製造方法に
関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a magneto-optical recording medium, and in particular, a magneto-optical recording medium which has excellent bias magnetic field characteristics and excellent durability against repeated use of erasing, recording and reproducing. The present invention relates to media and methods for producing the same.
近年、光磁気記録媒体はレーザー光による書き込み読み
出しが可能な光磁気ディスクとして、大容量のデータフ
ァイルなどに広く利用されている。In recent years, magneto-optical recording media have been widely used for large-capacity data files as magneto-optical disks that can be written and read using laser light.
この光磁気記録媒体は、ガスラ、プラスチ7クなどの透
明基板上に、スパッタ法によって、少なくともTbFe
Co、GdTbFeCo等の遷移金属及び希土類金属を
主体とする記録層を有する光磁気記録層が形成されてい
る。そして、通常はこの記録層と透明基板の間に干渉層
として513N= 、S i Oxあるいは5iA42
N等の第1誘電体層が設けられ、更に保護層もかねて特
性を改善するために記録層の上にも第2誘電体層が設け
られることが多い。また更にその上には、C/Nを高め
るためにAi!、AN−Ti、Aj2−Ta等の金属反
射層の薄膜を積層して3層構成もしくは4層構成の光磁
気記録層を有する光磁気記録媒体が広く使用されている
。This magneto-optical recording medium is made by depositing at least TbFe onto a transparent substrate such as glass or plastic by sputtering.
A magneto-optical recording layer is formed which has a recording layer mainly composed of transition metals such as Co, GdTbFeCo, and rare earth metals. Usually, 513N=, S i Ox or 5iA42 is used as an interference layer between this recording layer and the transparent substrate.
A first dielectric layer made of N or the like is provided, and a second dielectric layer is often provided on the recording layer to improve the characteristics of the protective layer as well. Furthermore, in order to increase the C/N, Ai! , AN-Ti, Aj2-Ta, and the like are widely used. Magneto-optical recording media have magneto-optical recording layers with a three-layer or four-layer structure formed by laminating thin films of metal reflective layers such as , AN-Ti, and Aj2-Ta.
その他、記録層としては遷移金属と希土類金属を生体と
する合金の単一層もしくは遷移金属を主体とする薄膜と
希土類金属を生体とする薄膜をそれぞれ数人乃至数10
人の厚さで交互に少なくとも2層以上積層したいわゆる
交互積層膜の光磁気記録層を有する光磁気記録媒体があ
る。In addition, the recording layer may be a single layer of an alloy made of transition metals and rare earth metals, or a thin film mainly made of transition metals and a thin film made of rare earth metals.
There is a magneto-optical recording medium having a magneto-optical recording layer of so-called alternately laminated films in which at least two or more layers are alternately laminated to a thickness of about 100 yen.
透明基板の片面に光磁気記録層を有する2枚の媒体を光
磁気記録層がある面を内側に向けて貼り合わせた両面記
録型の貼合わせタイプの光磁気記録媒体もある。There is also a double-sided recording type bonded magneto-optical recording medium in which two media having a magneto-optical recording layer on one side of a transparent substrate are bonded together with the side with the magneto-optical recording layer facing inward.
そして、前記光磁気記録層を構成している各層は、通常
、各層の構成金属をターゲットとして使用し、低圧のア
ルゴン、ヘリウム、ネオン等の不活性ガス雰囲気下でス
パッタリング法により成膜される数100人から数千人
の厚さの薄膜である。Each layer constituting the magneto-optical recording layer is usually formed by sputtering in a low-pressure inert gas atmosphere such as argon, helium, or neon, using the constituent metal of each layer as a target. It is a thin film with a thickness of 100 to several thousand people.
光磁気記録媒体への情報の記録に際しては、まず媒体に
消去用のバイアス磁場を印加しつつレーザービームを一
様に照射して、記録層のキュリー温度まで加熱してすで
に書き込まれ記録情報を消去し、外部からバイアス磁場
を印加して記録層を一定の方向に磁化し、ついで、書き
込み用のバイアス磁場を印加しつつレーザービームによ
る記録情報の書き込みが行われる。When recording information on a magneto-optical recording medium, first, a bias magnetic field for erasing is applied to the medium and a laser beam is uniformly irradiated to heat the recording layer to its Curie temperature, erasing the recorded information that has already been written. Then, a bias magnetic field is applied from the outside to magnetize the recording layer in a certain direction, and then recording information is written using a laser beam while applying a bias magnetic field for writing.
C/Nと前記バイアス磁場(Hb)との関係は、一般に
バイアス磁場に比例してC/Nは大きくなか、C/Nの
変化が飽和する飽和バイアス磁場(Hbs)が媒体面を
の特性として存在する。そして、この飽和バイアス磁場
を小さくすることは、すなわち前記の消去、書き込み時
に必要なバイアス磁場を小さくできることであり、また
同時に同しバイアス磁場を印加したとしても飽和バイア
ス磁場が小さい媒体を使用した方がC/Nを向上させる
上で有利となる。The relationship between the C/N and the bias magnetic field (Hb) is that, although the C/N is generally large in proportion to the bias magnetic field, the saturation bias magnetic field (Hbs) where the change in C/N is saturated is the characteristic of the medium surface. exist. Reducing this saturation bias magnetic field means that the bias magnetic field necessary for erasing and writing can be reduced, and at the same time, even if the same bias magnetic field is applied, it is better to use a medium with a smaller saturation bias magnetic field. is advantageous in improving C/N.
消去及び書き込み時に必要な前記バイアス磁場(Hb)
を小さくすることは、バイアス磁場印加用磁石を小さく
できることになるので、ドライフの小型化にとっても有
利となる。The bias magnetic field (Hb) required during erasing and writing
Reducing the size allows the bias magnetic field applying magnet to be made smaller, which is also advantageous for downsizing the dryer.
また、最近、光磁気記録媒体の使用形態が多様化してお
り、オーバーライド記録の要求が強いが、その際もバイ
アス磁場(Hb)を小さくすることは、装置の小型化、
アクセスタイムの短縮に必須の要件となることが予想さ
れる。In addition, recently, the usage patterns of magneto-optical recording media have been diversifying, and there is a strong demand for override recording.
It is expected that this will become an essential requirement for shortening access time.
しかし、バイアス磁場に対して以上のような要求がある
にもかかわらず、実際には、消去、記録に必要なバイア
ス磁場が安定している光磁気記録媒体を得ることが難し
く、100乃至7000eの範囲でばらつきがあった。However, despite the above-mentioned requirements for the bias magnetic field, it is difficult to obtain a magneto-optical recording medium in which the bias magnetic field necessary for erasing and recording is stable, There was variation within the range.
バイアス磁場は、実用上100乃至7000e、望まし
くは200乃至3000e程度を安定して得られること
が望まれるのであるが、実際には、従来の製造方法では
そのばらつきが大きく、バイアス特性の優れた光磁気記
録媒体を安定して得るのが難しかった。In practice, it is desirable to stably obtain a bias magnetic field of about 100 to 7000 e, preferably about 200 to 3000 e, but in reality, conventional manufacturing methods have large variations in the bias magnetic field, and it is difficult to obtain a bias magnetic field with excellent bias characteristics. It was difficult to obtain magnetic recording media stably.
バイアス特性を制御−する方法として、遷移金属希土類
金属を記録層とする場合、その組成比を変えたりまた他
の金属を添加する方法が、MAG87−177、J、A
ppl、 Phys、61(7)(1987)、 J、
Appl。As a method of controlling bias characteristics, when a transition metal and rare earth metal is used as a recording layer, methods of changing the composition ratio or adding other metals are known as MAG87-177, J, A.
ppl, Phys, 61(7) (1987), J.
Appl.
Phys、26(2)(1987)、 J、Appl、
Phys、61(8)(1987)等に開示されてい
るが、やはりばらつきが大きくIoo乃至7000eの
間でかなりばらついてしまった。Phys, 26(2) (1987), J. Appl.
Phys, 61(8) (1987), etc., but the variation is large and varies considerably between Ioo and 7000e.
光磁気記録媒体に要求される実用上の特性として、前記
のバイアス特性の他に重要なものとして、消去−記録−
再生の繰り返し耐久性(以下EWR耐久性と称す。)が
ある。In addition to the above-mentioned bias characteristics, important practical characteristics required for magneto-optical recording media include erasing, recording, and
It has durability against repeated reproduction (hereinafter referred to as EWR durability).
すなわち、光磁気記録媒体を何万回と繰り返し使用して
もその特性が劣化しないことが望まれている。そして実
際には、媒体の光磁気記録層の同一部分に消去−記録−
再生を繰り返し行ったときのC/Nの低下の度合いで評
価され、−射的には、10万回の繰り返しでC/Nの低
下が6dB以内にあることが望まれている。In other words, it is desired that the characteristics of the magneto-optical recording medium do not deteriorate even after repeated use tens of thousands of times. In reality, erasing and recording are performed on the same part of the magneto-optical recording layer of the medium.
It is evaluated by the degree of C/N drop when reproduction is repeated, and it is desirable that the C/N drop is within 6 dB after 100,000 repetitions.
このEWR耐久性を改良するために例えば前記の交互積
層膜の光磁気記録層の場合、その積層周期を小さくする
ことも、ある程度は効果があった。In order to improve this EWR durability, for example, in the case of the above-mentioned magneto-optical recording layer of alternately laminated films, reducing the lamination period has been effective to some extent.
しかしその方法でも充分ではなく、しばしばIO万回も
走行を続けるとC/Nの劣化が6dB以上になることが
あった。However, even that method was not sufficient, and often after running 10,000 times, the C/N deterioration could reach 6 dB or more.
更に、EWR耐久性を改良するために前記4層構成の光
磁気記録層にあって最上層の金属反射層の層厚を大きく
する方法も考えられるが、感度の低下を招くので好まし
くない。Furthermore, in order to improve the EWR durability, it is possible to increase the thickness of the uppermost metal reflective layer in the magneto-optical recording layer of the four-layer structure, but this is not preferred because it causes a decrease in sensitivity.
又記録層として希土類金属−遷移金属の合金を使用する
場合、希土類金属中のTbの含有量を多くする方法も提
案されているが、C/Nの劣化を伴うので問題である。Furthermore, when a rare earth metal-transition metal alloy is used as the recording layer, a method has been proposed in which the content of Tb in the rare earth metal is increased, but this is problematic because it involves deterioration of the C/N ratio.
また、このEWR耐久性にあっても、前記のバイアス磁
場の場合と同様、実際には同一組成で作られているにも
かかわらず、特性のばらつきがかなりあった。Furthermore, in terms of EWR durability, as in the case of the bias magnetic field described above, there were considerable variations in characteristics even though they were actually made with the same composition.
〔発明が解決しようとする問題点]
本発明は、前記従来技術の問題点に鑑みなされたもので
あり、バイアス特性及びEWR耐久性の優れた光磁気記
録媒体を提供することを目的としており、そしてバイア
ス特性及びEWR耐久性のばらつきの少ない光磁気記録
媒体の製造方法を提供することを目的としている。[Problems to be Solved by the Invention] The present invention has been made in view of the problems of the prior art, and aims to provide a magneto-optical recording medium with excellent bias characteristics and EWR durability. Another object of the present invention is to provide a method for manufacturing a magneto-optical recording medium with less variation in bias characteristics and EWR durability.
発明者は、透明基板上にスパッタ法で光磁気記録層を形
成する際の成膜条件に着目して鋭意検討を重ねた結果、
磁性体ターゲットに電力を印加して磁性体をスパッタす
るときのスパッタ室内の残留ガスの存在量が前記本発明
の目的を達成する上で重要であることを突き止め、本発
明に至った。As a result of intensive study, the inventor focused on the film formation conditions when forming a magneto-optical recording layer on a transparent substrate by sputtering.
The inventors have found that the amount of residual gas in the sputtering chamber when sputtering a magnetic material by applying electric power to a magnetic target is important in achieving the object of the present invention, and has thus arrived at the present invention.
すなわち、前記本発明の目的は、低圧不活性ガス雰囲気
中の水分の残留量を前記低圧不活性ガス分圧に対して1
10000pp以下に保持しつつ磁性体ターゲットから
磁性体を透明基板上にスパッタリングして記録層を形成
する光磁気記録媒体の製造方法及び透明基板上に第1誘
電体保護層、記録層、第2誘電体保護層の少なくとも3
層がこの順で積層されている光磁気記録層を有する光磁
気記録媒体において、前記各層は低圧不活性ガス中でス
パッタリング法により成膜された薄膜であり、かつ前記
記録層は低圧不活性ガス雰囲気中の残留水分の残留量を
前記低圧不活性ガス分圧に対して110000pp以下
に保持しつつ磁性体ターゲットからスパッタリングして
形成された薄膜であることを特徴とする光磁気記録媒体
により達成される。That is, the object of the present invention is to reduce the residual amount of moisture in the low-pressure inert gas atmosphere by 1 with respect to the partial pressure of the low-pressure inert gas.
A method for producing a magneto-optical recording medium in which a recording layer is formed by sputtering a magnetic material from a magnetic material target onto a transparent substrate while maintaining the magnetic material at 10,000 pp or less, and a first dielectric protective layer, a recording layer, and a second dielectric material on the transparent substrate. At least 3 layers of body protection
In a magneto-optical recording medium having a magneto-optical recording layer in which layers are laminated in this order, each layer is a thin film formed by a sputtering method in a low-pressure inert gas, and the recording layer is in a low-pressure inert gas. This is achieved by a magneto-optical recording medium characterized in that it is a thin film formed by sputtering from a magnetic target while maintaining the amount of residual moisture in the atmosphere at 110,000 pp or less with respect to the partial pressure of the low-pressure inert gas. Ru.
本発明の光磁気記録媒体の光磁気記録層の成膜はスパタ
リング法で行われる。成膜の際はスパッタ室内に低圧の
不活性ガスを導入する。前記不活性ガスとしては、Ar
、He、Kr、’ Neなどが使用できるが、中でもA
rが価格及び成膜速度の面から最も望ましい。The magneto-optical recording layer of the magneto-optical recording medium of the present invention is formed by a sputtering method. During film formation, low-pressure inert gas is introduced into the sputtering chamber. As the inert gas, Ar
, He, Kr, 'Ne, etc. can be used, but among them A
r is the most desirable in terms of cost and film formation speed.
本発明の光磁気記録媒体の光磁気記録層の成膜は、スパ
ッタリング法で行われる。通常、成膜はlXl0−’乃
至20 X 10−”Torrの低圧のAr、He、N
e等の不活性ガス条件下でなされるが、その真空層内に
は、不活性ガス以外の種々のガスが残留している。例え
ば、窒素、水、水素、酸素とかそのほかCHlOH等の
原子団の形でも残留している。The magneto-optical recording layer of the magneto-optical recording medium of the present invention is formed by a sputtering method. Usually, film formation is carried out using Ar, He, N
This is done under inert gas conditions such as e.g., but various gases other than the inert gas remain in the vacuum layer. For example, nitrogen, water, hydrogen, oxygen, and others remain in the form of atomic groups such as CHlOH.
磁性体ターゲットに所定電力を印加してスパッタリング
により記録層を形成する際には、前記不活性ガス中に残
存する水分の残存量を少なくすることが光磁気記録媒体
のバイアス特性及びEWR耐久性を良好な状態で安定に
得るために重要である。また、この本発明の効果は、最
上層に金属反射層がある4層構成の光磁気記録層を有す
る光磁気記録媒体の場合特にその効果は大きい。When forming a recording layer by sputtering by applying a predetermined power to a magnetic target, reducing the amount of moisture remaining in the inert gas improves the bias characteristics and EWR durability of the magneto-optical recording medium. This is important in order to obtain it stably in good condition. Further, the effect of the present invention is particularly great in the case of a magneto-optical recording medium having a four-layer magneto-optical recording layer with a metal reflective layer as the top layer.
従って、本発明の光磁気記録媒体の記録層の成膜にあた
っては、低圧不活性ガス雰囲気中の水分の残留量を前記
低圧不活性ガス分圧に対して1重量%以下に保持しつつ
磁性体ターゲットから磁性体を透明基板上にスパッタリ
ングすることが本発明を達成する上で必要となる。Therefore, when forming the recording layer of the magneto-optical recording medium of the present invention, it is necessary to maintain the residual amount of moisture in the low-pressure inert gas atmosphere at 1% by weight or less with respect to the partial pressure of the low-pressure inert gas, and to Sputtering a magnetic material from a target onto a transparent substrate is necessary to achieve the present invention.
前記水分は、不活性ガス中に含有されていたもの、真空
槽内に残存していたもの、各配管から混入したもの基板
中に含まれていたもの等その由来は様々である。The sources of the moisture are various, such as those contained in the inert gas, those remaining in the vacuum chamber, those mixed in from various piping, and those contained in the substrate.
記録層のスパッタによる成膜の際の雰囲気中の残存量が
光磁気記録媒体の特性の改良にどのように影響している
のか明瞭ではないが、スパッタリングにより記録層が成
長する際に、前記残存水分が膜の表面拡散の進行を妨げ
て成膜された記録層の膜質に大きく影響するものと推定
される。It is not clear how the residual amount in the atmosphere during the deposition of the recording layer by sputtering affects the improvement of the characteristics of the magneto-optical recording medium, but when the recording layer is grown by sputtering, the residual amount It is presumed that water impedes the progress of surface diffusion of the film and greatly affects the film quality of the deposited recording layer.
前記の水分の記録層成膜時の低圧ガス雰囲気中における
残存量は、不活性ガスに対して1000o ppm以下
、好ましくは1000p1以下、更に好ましくは110
0pp以下である。The residual amount of moisture in the low-pressure gas atmosphere at the time of forming the recording layer is 1000 ppm or less, preferably 1000 ppm or less, more preferably 110 ppm or less, relative to the inert gas.
It is 0 pp or less.
本発明の光磁気記録媒体及びその製造方法において、記
録層を成膜する際の残存水分の量を低圧不活性ガスに対
して110000pp以下に制御する種々の方法がある
。In the magneto-optical recording medium and its manufacturing method of the present invention, there are various methods for controlling the amount of residual moisture when forming the recording layer to 110,000 pp or less with respect to the low-pressure inert gas.
例えば、真空槽及び基板を充分に排気処理する方法、更
に基板の排気処理の場合基板が熱変形を起こさない程度
の温度で熱処理して脱ガスする方法、また真空槽中で基
板の加熱処理を行う方法がある。スパッタ室の場合も排
気を充分に行えば良いのだが、基板の場合と同様外部か
らもしくは内部から加熱処理を行うことが効果的である
。このようにして主にスパッタ室及び基板を充分に脱ガ
スした上、記録層をスパッタにより成膜している間は、
差動排気を行う拡散ポンプ、クライオポンプ、ターボポ
ンプ等の排気装置の能力とオリフィス制御装置とを作動
させて水分残存量を調節することができる。For example, there is a method for sufficiently exhausting the vacuum chamber and the substrate, a method for degassing the substrate by heat treatment at a temperature that does not cause thermal deformation in the case of exhaust treatment for the substrate, and a method for heating the substrate in the vacuum chamber. There is a way to do it. In the case of a sputtering chamber, it is sufficient to sufficiently exhaust the air, but as in the case of the substrate, it is effective to perform heat treatment from the outside or from the inside. In this way, the sputtering chamber and the substrate are sufficiently degassed, and while the recording layer is being formed by sputtering,
The residual amount of water can be adjusted by operating the capacity of an evacuation device such as a diffusion pump, cryopump, or turbo pump that performs differential evacuation and an orifice control device.
残留水分濃度を調節する方法は他にも考えられ、以上の
方法はその1例であることは言うまでもない。It goes without saying that there are other methods of adjusting the residual water concentration, and the above method is one example thereof.
本発明では、記録層の成膜中は水分の残存量を前記の範
囲にすることによって、消去や記録時に必要なバイアス
磁場を7000e以下にすることができ、そのばらつき
もかなり小さくすることが出来る。In the present invention, by keeping the amount of residual moisture within the above range during the formation of the recording layer, the bias magnetic field required during erasing and recording can be made 7000e or less, and the variation thereof can be considerably reduced. .
すなわち、水分成分の残存量を限定しない従来の方法で
は100乃至7000eもばらつきがあったものが本発
明の方法では、その残留量を小さく抑えることによって
、100乃至3000e程度にすることができた。In other words, in the conventional method that does not limit the residual amount of water components, there was a variation of 100 to 7,000 e, but with the method of the present invention, by keeping the residual amount small, it was possible to reduce the amount to about 100 to 3,000 e.
そして、さらにEWR耐久性がかなり改良される。Furthermore, EWR durability is considerably improved.
本発明の光磁気記録媒体及びその製造方法において、前
記記録層の組成としては、遷移金属及び希土類金属の合
金が挙げられる。前記遷移金属としては、例えばFe、
Co、Nj等を、前記希土類金属としては、Tb、Gd
、Dy、Sm、Nd等を使用することが出来る。そして
、前記記録層の組成の具体例としては、GdCo、Gd
Fe。In the magneto-optical recording medium and its manufacturing method of the present invention, the composition of the recording layer includes an alloy of a transition metal and a rare earth metal. Examples of the transition metal include Fe,
Co, Nj, etc., as the rare earth metals, Tb, Gd, etc.
, Dy, Sm, Nd, etc. can be used. Specific examples of the composition of the recording layer include GdCo, Gd
Fe.
TbFe、、DyFe、GdFeTb、TbFeCo、
DyFeCo5TbFeNi、GdFeCo、NdDF
FeCo等が挙げられる。中でも、TbFeCoが製造
上の許容度が大きいため最も好ましく、更にその組成中
にCr、Ti、Ta、Nb、pt等が0.5乃至10a
t%、望ましくは3乃至8at%含有された組成である
ことが、実用上充分な耐腐食性を有する上で好ましい。TbFe, , DyFe, GdFeTb, TbFeCo,
DyFeCo5TbFeNi, GdFeCo, NdDF
Examples include FeCo. Among them, TbFeCo is most preferable because it has a large manufacturing tolerance, and furthermore, Cr, Ti, Ta, Nb, pt, etc. are contained in the composition from 0.5 to 10A.
A composition containing t%, preferably 3 to 8 at%, is preferable in terms of practically sufficient corrosion resistance.
さらにptCo系の合金も記録層の組成として好ましい
3前記記録層の膜厚は、光磁気記録層が4層構成の場合
は、200乃至300人の膜厚が望ましく、光磁気記録
層が3N構成の場合は、500乃至2000人が望まし
い。Furthermore, a ptCo-based alloy is also preferable as a composition of the recording layer.3 When the magneto-optical recording layer has a four-layer structure, the film thickness of the recording layer is desirably 200 to 300 mm, and the magneto-optical recording layer has a 3N structure. In this case, 500 to 2000 people is desirable.
前記記録層の膜厚が余り小さいと4層構成の場合、感度
、反射率の面から望ましいC/Nが取れず、又3層構成
の場合、感度、C/Hの点から好ましくない。If the thickness of the recording layer is too small, a desirable C/N cannot be obtained in terms of sensitivity and reflectance in the case of a four-layer structure, and it is not preferable in terms of sensitivity and C/H in the case of a three-layer structure.
本発明の光磁気記録媒体の光磁気記録層の透明基板と記
録層との間には、通常誘電体の薄膜からなる第1誘電体
保護層が設けられる。A first dielectric protective layer usually made of a dielectric thin film is provided between the transparent substrate and the recording layer of the magneto-optical recording layer of the magneto-optical recording medium of the present invention.
また更に、記録再生特性を改良するために光磁気記録層
の最上層には金属反射層の薄膜が形成される。Furthermore, a thin film of a metal reflective layer is formed on the top layer of the magneto-optical recording layer in order to improve the recording and reproducing characteristics.
そして前記光磁気記録層が3層構成である場合、透明基
板上に第1誘電体保護層、記録層及び前記金属反射層を
この順でスパッタリング法で順次成膜された積層膜が形
成される。光磁気記録層が4層構成である場合には、前
記記録層と前記金属反射層の間に第2誘電体保護層が設
けられる。When the magneto-optical recording layer has a three-layer structure, a laminated film is formed by sequentially depositing a first dielectric protective layer, a recording layer, and the metal reflective layer on a transparent substrate by sputtering in this order. . When the magneto-optical recording layer has a four-layer structure, a second dielectric protective layer is provided between the recording layer and the metal reflective layer.
前記第1誘電体保護層は誘電体からなる層であって前記
透明基板上に800乃至1300人の厚さで成膜される
。The first dielectric protection layer is a dielectric layer formed on the transparent substrate to a thickness of 800 to 1300 nm.
前記第1誘電体保護層の材料としては、例えばSiOx
、5jNx、Ta0x= A1.Nx、5iA2及びZ
nS等の酸化物、窒化物及び硫化物などの誘電体が使用
される。中でも、光学的特性、保II!能の面から、S
iの窒化物、Alの窒化物もしくはそれらの混合物、5
iAffi等が好ましい。As the material of the first dielectric protective layer, for example, SiOx
, 5jNx, Ta0x=A1. Nx, 5iA2 and Z
Dielectrics such as oxides such as nS, nitrides and sulfides are used. Among them, optical properties, preservation II! From the Noh aspect, S.
i nitride, Al nitride or mixture thereof, 5
iAffi etc. are preferred.
第2誘電体保護層は、前記第1誘電体保護層と同じく通
常、誘電体の薄膜である。その膜厚としては、200乃
至500人であることが望ましい。The second dielectric protective layer is usually a dielectric thin film, like the first dielectric protective layer. The film thickness is preferably 200 to 500 people.
前記金属反射層の材料としては、各種の金属単体及び合
金を使用することが出来る。例えば、Al2.Al2−
Cu、、A’i!−Ti%A1.−Ta。As the material of the metal reflective layer, various metals and alloys can be used. For example, Al2. Al2-
Cu,, A'i! -Ti%A1. -Ta.
Ni、Ni−Cu、Au、Cu5Cu−Zn、AQ−C
r、PL等の金属をスパッタリング法により、第2誘電
体保護層上に成膜した薄膜が使用できる。中でも単体の
AlもしくはAlの合金が本発明の目的を達成する−1
で好適である。Ni, Ni-Cu, Au, Cu5Cu-Zn, AQ-C
A thin film formed by sputtering a metal such as r, PL, etc. on the second dielectric protective layer can be used. Among them, single Al or an alloy of Al achieves the object of the present invention-1
It is suitable for
本発明の光磁気記録媒体の前記金属反射層の膜厚は30
0乃至1000人、更に400乃至80O人であること
が望ましい。The thickness of the metal reflective layer of the magneto-optical recording medium of the present invention is 30
0 to 1000 people, more preferably 400 to 800 people.
前記金属反射層の膜厚が300人未満であると光が透過
し易くなり、C/Nが低下してしまう。If the thickness of the metal reflective layer is less than 300 mm, light will easily pass through and the C/N will decrease.
1000Å以上であると熱容量が大きくなる、結果感度
が低下するので好ましくない。If it is 1000 Å or more, the heat capacity increases, resulting in a decrease in sensitivity, which is not preferable.
尚、金属反射層を成膜する際のスパッタ室の残留水素ガ
ス及び窒素ガスを少なくすることによりさらに本発明の
効果を高めることもできる。Note that the effects of the present invention can be further enhanced by reducing residual hydrogen gas and nitrogen gas in the sputtering chamber when forming the metal reflective layer.
本発明の光磁気記録媒体の前記透明基板は、高速回転に
おいても記録消去が効果的になされるように、その機械
特性、特に面振れ加速度や面振れが少な(することが望
ましい。The transparent substrate of the magneto-optical recording medium of the present invention preferably has mechanical properties, particularly low surface runout acceleration and low surface runout, so that recording and erasing can be performed effectively even during high-speed rotation.
前記透明基板の材質としては、ポリカーボネート、ポリ
メチルメタクリレート、エポキシ樹脂、ガラス等が使用
される。中でも、ポリカーボネート、ポリメチルメタク
リレート、エポキシ樹脂等の樹脂基板がコスト的に好ま
しく、特にポリカーボネートは、吸水率が比較的小さく
、ガラス転移温度が高いなどの利点を有しているので特
に好ましい。As the material of the transparent substrate, polycarbonate, polymethyl methacrylate, epoxy resin, glass, etc. are used. Among these, resin substrates such as polycarbonate, polymethyl methacrylate, and epoxy resin are preferred in terms of cost, and polycarbonate is particularly preferred since it has advantages such as relatively low water absorption and high glass transition temperature.
本発明における光磁気記録媒体は、前記のように基板上
に各層を成膜して光磁気記録層が形成され、さらにその
上面及び側面を紫外線硬化樹脂等の有機樹脂保護層で被
覆することにより、また基板の記録層を設けた側とは反
対の面にも紫外線硬化樹脂等の層を設けることによって
光磁気記録媒体の保存安定性を更に高めるこもできる。In the magneto-optical recording medium of the present invention, a magneto-optical recording layer is formed by forming each layer on a substrate as described above, and the top and side surfaces of the layer are further coated with an organic resin protective layer such as an ultraviolet curing resin. Furthermore, the storage stability of the magneto-optical recording medium can be further improved by providing a layer of ultraviolet curing resin or the like on the opposite side of the substrate to the side on which the recording layer is provided.
また、ホットメルト接着剤やエポキシ系接着剤等より成
る接着剤層を介して、基板の光磁気記録層の内面を外側
に向けて、貼合わせることにより機械特性の優れた両面
記録型の光磁気記録媒体とすることもできる。In addition, by bonding the magneto-optical recording layer of the substrate with the inner surface facing outward through an adhesive layer made of hot melt adhesive or epoxy adhesive, we have developed a double-sided recording type magneto-optical recording layer with excellent mechanical properties. It can also be used as a recording medium.
本発明の新規な特徴を以下の実施例及び比較例によって
具体的に説明する。The novel features of the present invention will be specifically explained by the following Examples and Comparative Examples.
(実施例)
1、 6μmピッチの案内溝がある径130■、厚さ1
. 2閣のポリカーボネート基板をスパッタ装置の回転
基板ホルダー上にセットして、スパッタ室内にアルゴン
ガスを導入して、ガス圧を1乃至5sTorrの範囲内
になるように調節した。(Example) 1. Diameter 130cm, thickness 1 with guide grooves at 6μm pitch
.. A two-piece polycarbonate substrate was set on a rotating substrate holder of a sputtering device, and argon gas was introduced into the sputtering chamber, and the gas pressure was adjusted to within a range of 1 to 5 sTorr.
そして、マグ2トロンスパツタ法によりまず第1誘電体
保護層として、1100人の厚さのSiNxの薄膜を成
膜した。Then, a thin film of SiNx having a thickness of 1,100 wafers was formed as a first dielectric protective layer using a mag-two-tron sputtering method.
ついで、スパッタ室に取り付けた残留ガス測定装置でス
パッタ室の残存水分量をクライオポンプの排気能力をポ
ンプ容量及びオリフィスの開口度で調整することにより
変化させた。Next, the amount of residual moisture in the sputtering chamber was changed using a residual gas measuring device attached to the sputtering chamber by adjusting the exhaust capacity of the cryopump by adjusting the pump capacity and the opening degree of the orifice.
そして各条件下でFeCoCr合金のターゲット及びT
bのターゲットに電力を印加して、二元同時スパッタに
より、前記第1誘電体保護層上にT b +++F e
b*c OllCr h成る組成の記録層を250人
の厚さで成膜した。And under each condition, FeCoCr alloy target and T
By applying electric power to the target of b, T b +++F e is formed on the first dielectric protective layer by dual simultaneous sputtering.
A recording layer having a composition of b*c OllCr h was formed to a thickness of 250 nm.
しかる後、前記記録層の上に第2誘電体保護層として、
S i nNxの1膜を450人の厚さで成膜した。After that, a second dielectric protective layer is formed on the recording layer,
One film of Si nNx was deposited to a thickness of 450 people.
ついで、前記第2誘電体保護層の上に金属反射層として
、Alの薄膜を500人の膜厚で成膜して、前記基板上
に第1誘電体保護層、記録層、第2誘電体保護層及び金
属反射層より成る4層構成の光磁気記録層を有する光磁
気記録媒体の試料を各条件下で100枚ずつ作成した。Next, a thin film of Al is formed as a metal reflective layer on the second dielectric protective layer to a thickness of 500 mm, and the first dielectric protective layer, the recording layer, and the second dielectric layer are formed on the substrate. One hundred samples of magneto-optical recording media having a four-layer magneto-optical recording layer consisting of a protective layer and a metal reflective layer were prepared under each condition.
前記記録層の成膜時の水分のアルゴンに対する残留量の
制御幅は、分圧濃度をppmで表して第1表のように変
化させた。The control width of the residual amount of moisture relative to argon during film formation of the recording layer was varied as shown in Table 1, with partial pressure concentration expressed in ppm.
そして、ガスの残留量の測定は、4電極質量分析計に差
動排気装置を取り付けて行った。その方法は、まず分析
管内を作動排気してイオンを生成し前記4重極電極を通
して質量を分離して2次電子倍増管で増幅して検出した
。この時の作動排気の減圧比はI X 10−’Tor
rとなるようにした。The residual amount of gas was measured by attaching a differential pump to a four-electrode mass spectrometer. In this method, the inside of the analysis tube is evacuated to generate ions, the mass of the ions is separated through the quadrupole electrode, and the ions are amplified and detected using a secondary electron multiplier. The pressure reduction ratio of the working exhaust at this time is I x 10-'Tor
It was made to be r.
方スパッタリング成膜で使用するアルゴンガスをバラト
ロン真空計でモニターしつつその値がデイスプレー上で
I X I O−”Torr減圧された値となるように
エミツシヨンの電圧を決めた。測定値の算出に当たって
は、各検出元素固有の補正係数で補正したこと、分析チ
ャンバー内の排気を充分に行って各残留ガス成分の分圧
が5X10−”τorr以下になるまで充分に排気を行
ったこと、分析装置の構造を工夫してI X 10−’
Torr程度の微量ガスまで検出できるようにしたなど
の配慮をした。While monitoring the argon gas used in sputtering film formation with a Baratron vacuum gauge, the emission voltage was determined so that the value would be the value reduced by I X I O-'' Torr on the display. Calculation of the measured value. For the analysis, the analysis chamber was sufficiently evacuated until the partial pressure of each residual gas component was below 5X10-"τorr, By devising the structure of the device, I x 10-'
Considerations were taken to make it possible to detect trace amounts of gas down to Torr levels.
以上のようにして得た光磁性記録媒体の試料のバイアス
磁場特性及びEWR耐久性を以下の方法で評価した。The bias magnetic field characteristics and EWR durability of the sample of the magneto-optical recording medium obtained as described above were evaluated by the following method.
EWR耐久性の評価:NA=0.55のピックアップ及
び波長830n■の半導体レーザーを装備したドライブ
で回転数を2400回転にしてサーボをかけながらピン
クアップを追従させて記録再生を行った。基板には1.
6μmピッチの予め形成されていて、サーボを掛けなが
らピックアップを追従させて記録再生を行った。記録条
件としては、8−のレーザーパワー及び3000eの印
加磁場で消去し、5.51のレーザーパワー及び300
0eの印加磁場の条件で記・縁周波数4.93MHz。Evaluation of EWR durability: Recording and reproduction were performed using a drive equipped with a pickup with NA=0.55 and a semiconductor laser with a wavelength of 830 nm at a rotation speed of 2400 rpm and tracking pink-up while applying servo. The board has 1.
A 6 μm pitch was formed in advance, and recording and reproduction were performed by following the pickup while applying a servo. The recording conditions include erasing with a laser power of 8 - and an applied magnetic field of 3000 e, and erasing with a laser power of 5.51 and an applied magnetic field of 300 e.
The edge frequency was 4.93 MHz under the condition of an applied magnetic field of 0e.
0.75μmのピントを記録した。ついで1.5−のレ
ーザーパワーでスペクトル・アナライザーでC/Nを読
み取った。この消去−記録−再生のサイクルを同一トラ
ック位置で10万回繰り返し、10万回目のC/Nと初
期のC/Nとの差を求めてその劣化の度合いを評価した
。A focus of 0.75 μm was recorded. The C/N was then read using a spectrum analyzer with a laser power of 1.5-. This erasing-recording-reproducing cycle was repeated 100,000 times at the same track position, and the degree of deterioration was evaluated by determining the difference between the 100,000th C/N and the initial C/N.
得られた結果を第1表に示す。The results obtained are shown in Table 1.
第1表
(比較例)
前記実施例において、クライオポンプの排気能力をポン
プ容量、オリフィス開口度を調整することによって、記
録層成膜時の残留水分ガス濃度を第2表のようにEから
G迄の3種の条件に変化させた以外は、実施例と同一の
条件で各条件下で100枚づつの光磁気記録媒体の試料
を作成した。Table 1 (Comparative Example) In the above example, by adjusting the exhaust capacity of the cryopump, the pump capacity, and the orifice opening degree, the residual water gas concentration during recording layer deposition was varied from E to G as shown in Table 2. Samples of 100 magneto-optical recording media were prepared under each condition under the same conditions as in the example except that the conditions were changed to the three types described above.
第2表
〔発明の効果〕
透明基板上に光磁気記録層をスパッタ法で形成する際に
、記録層の成膜するときの低圧ガス雰囲気中における残
留水分の量を低圧ガスに対して110000pp以下と
特定量より少なくすることにより、得られる光磁気記録
媒体のバイアス特性及びEWR耐久性を改良することが
出来る。Table 2 [Effects of the Invention] When forming a magneto-optical recording layer on a transparent substrate by sputtering, the amount of residual moisture in the low-pressure gas atmosphere when forming the recording layer is 110,000 pp or less relative to the low-pressure gas. By making the amount smaller than a specific amount, it is possible to improve the bias characteristics and EWR durability of the resulting magneto-optical recording medium.
Claims (4)
圧不活性ガス分圧に対して10000ppm以下に保持
しつつ磁性体ターゲットから磁性体を透明基板上にスパ
ッタリングして記録層を形成する光磁気記録媒体の製造
方法。(1) A recording layer is formed by sputtering a magnetic material from a magnetic target onto a transparent substrate while maintaining the residual amount of moisture in a low-pressure inert gas atmosphere at 10,000 ppm or less with respect to the partial pressure of the low-pressure inert gas. A method for manufacturing a magneto-optical recording medium.
電体保護層の少なくとも3層がこの順で積層されている
光磁気記録層を有する光磁気記録媒体において、前記各
層は低圧不活性ガス中でスパッタリング法により成膜さ
れた薄膜であり、かつ前記記録層は低圧不活性ガス雰囲
気中の残留水分の残留量を前記低圧不活性ガス分圧に対
して10000ppm以下に保持しつつ磁性体ターゲッ
トからスパッタリングして形成された薄膜であることを
特徴とする光磁気記録媒体。(2) In a magneto-optical recording medium having a magneto-optical recording layer in which at least three layers, a first dielectric protective layer, a recording layer, and a second dielectric protective layer are laminated in this order on a transparent substrate, each of the layers is The recording layer is a thin film formed by sputtering in a low-pressure inert gas atmosphere, and the recording layer maintains the amount of residual moisture in the low-pressure inert gas atmosphere at 10,000 ppm or less with respect to the partial pressure of the low-pressure inert gas. 1. A magneto-optical recording medium characterized in that it is a thin film formed by sputtering from a magnetic target.
る非晶質合金を主体とする薄膜である請求項2記載の光
磁気記録媒体。(3) The magneto-optical recording medium according to claim 2, wherein the recording layer is a thin film mainly composed of an amorphous alloy mainly composed of a transition metal and a rare earth metal.
請求項2もしくは請求項3記載の光磁気記録媒体。(4) The magneto-optical recording medium according to claim 2 or 3, wherein the uppermost layer of the magneto-optical recording layer has a metal reflective layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26555090A JPH04143945A (en) | 1990-10-03 | 1990-10-03 | Magneto-optical recording medium and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26555090A JPH04143945A (en) | 1990-10-03 | 1990-10-03 | Magneto-optical recording medium and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04143945A true JPH04143945A (en) | 1992-05-18 |
Family
ID=17418671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26555090A Pending JPH04143945A (en) | 1990-10-03 | 1990-10-03 | Magneto-optical recording medium and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04143945A (en) |
-
1990
- 1990-10-03 JP JP26555090A patent/JPH04143945A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10275369A (en) | Manufacture of information recording medium and information recording medium made by the same | |
JPH0559569B2 (en) | ||
US5593789A (en) | Magneto-optical recording medium | |
US5476713A (en) | Magneto-optical recording medium | |
JPH0325737A (en) | Magneto-optical recording medium | |
JPH04143945A (en) | Magneto-optical recording medium and its manufacture | |
JP2631024B2 (en) | Method for manufacturing magneto-optical recording medium | |
US5698312A (en) | Magneto-optical recording medium and method for making the same | |
JP2631023B2 (en) | Method for manufacturing magneto-optical recording medium | |
JP2631022B2 (en) | Method for manufacturing magneto-optical recording medium | |
JPH01173455A (en) | Magneto-optical recording medium | |
US20090103401A1 (en) | Magnetic recording medium, production method for the same, and recording/reproducing method for magnetic medium | |
JP3882483B2 (en) | Manufacturing method of optical recording medium | |
JPS60231935A (en) | Photomagnetic recording medium | |
JPH03156753A (en) | Optical recording medium | |
JP2655587B2 (en) | Magneto-optical recording medium and method of manufacturing the same | |
JPH04134651A (en) | Magneto-optical recording medium and production thereof | |
JP2754658B2 (en) | Magneto-optical recording medium | |
JP2663881B2 (en) | Magneto-optical recording medium and method of manufacturing the same | |
JPH0695403B2 (en) | Optical information recording medium | |
JPH0695402B2 (en) | Optical information recording medium | |
JP2987301B2 (en) | Magneto-optical recording medium | |
JPS63291234A (en) | Magneto-optical recording medium | |
JP2000231749A (en) | Magneto-optical recording medium and its production | |
JPH02254647A (en) | Magneto-optical recording medium |