JPH04143218A - Production of high mn nonmagnetic steel excellent in local deformability - Google Patents

Production of high mn nonmagnetic steel excellent in local deformability

Info

Publication number
JPH04143218A
JPH04143218A JP2268718A JP26871890A JPH04143218A JP H04143218 A JPH04143218 A JP H04143218A JP 2268718 A JP2268718 A JP 2268718A JP 26871890 A JP26871890 A JP 26871890A JP H04143218 A JPH04143218 A JP H04143218A
Authority
JP
Japan
Prior art keywords
steel
present
nonmagnetic
local deformability
nonmagnetic steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2268718A
Other languages
Japanese (ja)
Other versions
JPH0717949B2 (en
Inventor
Shoji Tone
登根 正二
Soichi Ikeda
池田 惣一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2268718A priority Critical patent/JPH0717949B2/en
Publication of JPH04143218A publication Critical patent/JPH04143218A/en
Publication of JPH0717949B2 publication Critical patent/JPH0717949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce a high Mn nonmagnetic steel material excellent in local deformability by subjecting an ingot, etc., of a low- or medium-carbon high-Mn steel having a specific composition minimal in nonmetallic inclusion content to hot rolling under specific finishing temp. conditions. CONSTITUTION:A slab of a high Mn steel having a composition which contains, by weight, 0.15-0.70% C, 0.10-3.00% Si, and 12-30% Mn or further contains at least one kind among 0.05-3.00% Ni, 0.05-3.00% Cr, and 0.05-3.00% Mo and in which the relationship between Mn and C contents satisfies 60X[C%]+[Mn%]>=36% and cleanliness by nonmetallic inclusions is regulated to <=0.03% is heated to 1050-1250 deg.C, hot-rolled at >=900 deg.C finishing temp., and worked into a plate, etc. By this method, the high Mn nonmagnetic steel excellent in local deformability and suitable for nonmagnetic structural member to be subjected to spreading, deep drawing, and severe bending can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、穴拡げ加工、深絞り加工や、厳しい曲げ加工
か施される非磁性構造部材に好適な局部変形能に優れた
高Mn非磁性鋼の製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a high-Mn non-magnetic material with excellent local deformability suitable for non-magnetic structural members subjected to hole-expanding, deep-drawing, and severe bending. The present invention relates to a method for manufacturing magnetic steel.

(従来の技術) 各種発電機や、変圧器、ガスしゃ断器なとの重電機器用
非磁性構造材料として、5US304に代表されるオー
ステナイト系ステンレス鋼か多く使用されてきたか、こ
の鋼は、穴拡げ加工、深絞り加工なとの厳しい冷間加工
か施されると、加工誘起のαマルテンサイトか生成して
透磁率を劣化させるという欠点か有る。従って、これら
の加工においては、加工誘起αマルテンサイトの発生を
防止するため、温間加工や熱間加工か行われたり、ある
いは冷間加工後に溶体化熱処理を施して、組織をオース
テナイト単相にして磁気特性を向上させるなとの方法か
採られているか、これらの方法ては工期の延長や製造コ
ストの上昇等を招く等の問題かあった。
(Prior art) Austenitic stainless steel, such as 5US304, has been widely used as a non-magnetic structural material for heavy electrical equipment such as various generators, transformers, and gas circuit breakers. If severe cold working such as processing or deep drawing is performed, processing-induced alpha martensite is generated, which deteriorates magnetic permeability. Therefore, in these processes, in order to prevent the generation of deformation-induced α-martensite, warm working or hot working is performed, or solution heat treatment is performed after cold working to change the structure to a single austenite phase. However, there have been problems with these methods, such as prolonging the construction period and increasing manufacturing costs.

一方、高Aln非磁性鋼はオーステナイト系ステンレス
鋼に比へ、高強度で磁気特性にも優れ、かつ紙庫である
ことから、最近では、オーステナイト系ステンレス鋼に
代わりその使用量か年々増大してきている。
On the other hand, high Aln non-magnetic steel has higher strength and superior magnetic properties than austenitic stainless steel, and because it is used for paper storage, its usage has been increasing year by year in place of austenitic stainless steel. There is.

しかしなから高Mn非磁性鋼は、強度か高いこと、さら
には、加工硬化性か大きいために、前記した穴拡げ加工
や深絞り加工か施されると、加工割れか発生し易いのが
難点てあって、その改善か強く望まれていた。
However, because high Mn non-magnetic steel has high strength and high work hardening properties, it is difficult to easily cause work cracks when subjected to the hole expansion process or deep drawing process described above. Improvements were strongly desired.

以上説明した現状の問題点に鑑みて、本発明は高Mn非
磁性鋼か有する基本的特性を損なうことなく、苛酷な冷
間加工か施されても割れの発生や、磁気特性の劣化のな
い高Mn非磁性鋼を製造し得る方法を提供することを目
的とするものである。
In view of the current problems explained above, the present invention has been developed to prevent the occurrence of cracks and deterioration of magnetic properties even when subjected to severe cold working without impairing the basic properties of high Mn nonmagnetic steel. It is an object of the present invention to provide a method for producing high Mn nonmagnetic steel.

(問題点を解決するための手段) しかして本発明は上記目的を達成せしめるために、高M
n非磁性鋼の化学成分、非金属介在物量及び熱間圧延時
の仕上温度の影響について鋭意研究を重ね、実験を繰り
返した結果、ここに発明を完成するに至ったものである
(Means for solving the problem) In order to achieve the above object, the present invention provides a high M
As a result of extensive research and repeated experiments on the chemical composition of non-magnetic steel, the amount of non-metallic inclusions, and the effects of finishing temperature during hot rolling, the present invention has been completed.

すなわち、本発明に係る局部変形能に優れた高Mn非磁
性鋼の製造方法は、C:0.15〜0.70%、sl・
0.10〜3.00%、Mn:12〜30%を含有し、
残部か鉄及び不可避不純物からなる鋼塊又は鋼片を10
50〜1250″Cに加熱して熱間圧延を行い高Mn非
磁性鋼を製造するに際し、鋼塊又は鋼片に関しCとMn
の含有量は60X[C%]+[Mn%]≧36%、非金
属介在物量は清浄度0.03%以下をいずれも満足させ
るとともに、熱間圧延のときの仕上温度を900 ’C
以上に定めることを特徴とする。
That is, the method for manufacturing high Mn nonmagnetic steel with excellent local deformability according to the present invention includes C: 0.15 to 0.70%, sl.
Contains 0.10 to 3.00%, Mn: 12 to 30%,
10 steel ingots or pieces consisting of iron and unavoidable impurities
When producing high Mn nonmagnetic steel by heating to 50 to 1250"C and hot rolling, C and Mn are added to the steel ingot or billet.
The content of 60X [C%] + [Mn%] ≧ 36%, the amount of nonmetallic inclusions satisfies the cleanliness of 0.03% or less, and the finishing temperature during hot rolling is 900'C.
It is characterized by the above.

本発明はさらに、鋼塊又は鋼片か、さらにNi0.05
〜3.00%、Cr: 0.05〜8.00%、Mo 
:0.05〜3.00%のうちの少なくとも1種を含有
している化学成分であることか好ましい懸様である。
The present invention further provides a steel ingot or a steel billet, furthermore, Ni0.05
~3.00%, Cr: 0.05~8.00%, Mo
It is preferable that the chemical component contains at least one of: 0.05 to 3.00%.

(作 用) 本発明に係る非磁性鋼を製造する場合、成分中のCはオ
ーステナイトの安定化と強度の向上に育効な元素である
か、0,15%未満てはオーステナイトの安定化や強度
確保のため、Mn、 Ni、 Cr、 Moなとの元素
を多量に添加する必要かあり、経済性を損なうことにな
る。一方、0,70%を越えて含有すると熱間加工性、
機械加工性か劣化する。以上の点か実験結果から明らか
であるのてCの含有量は0.15〜0.70%の範囲と
するのが好ましい。
(Function) When manufacturing the non-magnetic steel according to the present invention, C in the composition is an element that is effective for stabilizing austenite and improving strength, or if it is less than 0.15%, it is effective for stabilizing austenite and improving strength. In order to ensure strength, it is necessary to add large amounts of elements such as Mn, Ni, Cr, and Mo, which impairs economic efficiency. On the other hand, if the content exceeds 0.70%, hot workability
Machinability deteriorates. Since the above points are clear from the experimental results, the C content is preferably in the range of 0.15 to 0.70%.

次にSlは、鋼溶製時の脱酸作用を有し、かつ、強度の
向上に育効であることか判っているので、0.10%以
上を添加する。しかし、3.00%を越えて添加すると
熱間加工性を損なうことも明らかであることから、Si
含有量は0.1θ〜3.00%の範囲か好ましい。
Next, 0.10% or more of Sl is added because it is known to have a deoxidizing effect during steel melting and to have a growth effect in improving strength. However, it is clear that adding more than 3.00% impairs hot workability;
The content is preferably in the range of 0.1θ to 3.00%.

またMnは、本発明方法においてCと共に重要なオース
テナイト形成元素であり、非磁性を安定化させるために
12%以上の添加か必要である。しかしなから、30%
を越えて含有すると熱間加工性か著しく劣化することか
明らかであり、従ってMn含有量は12〜30%の範囲
か適正である。
Furthermore, Mn is an important austenite-forming element along with C in the method of the present invention, and must be added in an amount of 12% or more in order to stabilize nonmagnetism. However, 30%
It is clear that if the Mn content exceeds 10%, the hot workability will be significantly deteriorated, so the Mn content should be appropriately within the range of 12 to 30%.

しかして本発明においては、基本的にはCとMnてオー
ステナイトを安定化し、非磁性を確保しているか、C,
Mnともに前述した規定の成分範囲の下限近傍になると
オーステナイトが不安定になる。
However, in the present invention, basically C and Mn are used to stabilize austenite and ensure non-magnetism, or C,
When both Mn and Mn are near the lower limits of the prescribed component ranges mentioned above, austenite becomes unstable.

これを防ぐ手段としていずれか〜方の含有量が少ないと
他方を多くすることによって解決をはかった点に本発明
の特徴の一つが存するものであり、C,Mnの含有量に
は、60×C%+Mn≧36%を満足する量とする必要
性かあることを見出した。
One of the features of the present invention is that as a means to prevent this, if the content of one of ~ is low, the content of the other is increased, and the content of C and Mn is 60× It has been found that there is a need to set the amount to satisfy C%+Mn≧36%.

次いで清浄度の条件を限定した理由を説明すると、第1
図を参照するに、これは0.25C−0,30S i−
24,8Mn0鋼をベースにして鋼中の非金属介在物の
清浄度を変化させ、切欠伸びに及ぼす影響を示したもの
であって、この場合、清浄度d(%)はJISGO55
5により測定した。そして局部変形能を切欠引張試験に
おける切欠伸びて評価している。
Next, to explain the reason for limiting the cleanliness conditions, the first
Referring to the figure, this is 0.25C-0,30S i-
Based on 24,8Mn0 steel, the cleanliness of non-metallic inclusions in the steel is changed and the effect on notch elongation is shown. In this case, the cleanliness d (%) is JISGO55
5. Then, the local deformability was evaluated by notch elongation in a notch tensile test.

図から明らかなように、清浄度か高くなるにつれて切欠
伸びは向上し、特に清浄度が0.03%以下になると急
激に上昇する結果を示している。従って非金属介在物の
清浄度は0.03%以下に限定する。
As is clear from the figure, the notch elongation improves as the cleanliness level increases, and in particular, the notch elongation increases rapidly when the cleanliness level becomes 0.03% or less. Therefore, the cleanliness of nonmetallic inclusions is limited to 0.03% or less.

ここでこの清浄度を達成するためには、鋼中元素のうち
、特にS、0含有量を極カ低く抑える必要があり、S+
oの総量で0.0060%以下にすることか望ましい。
In order to achieve this level of cleanliness, it is necessary to keep the content of S and 0, in particular, extremely low among the elements in the steel.
It is desirable that the total amount of o be 0.0060% or less.

一方、本発明方法に関して上述したような成分の鋼塊又
は鋼片を熱間圧延するに当たって、その均熱及び加熱温
度について十分注意を払う必要かあることは既に知られ
ている。
On the other hand, it is already known that when hot rolling a steel ingot or billet having the above-mentioned composition in connection with the method of the present invention, it is necessary to pay sufficient attention to soaking and heating temperature.

すなわち、第2図は90キロ高周波炉で溶製した0、 
24 C−0,35S i −25,5M口の化学成分
を有する鋼を用いて高温高速引張(グリ−プル)試験を
行った結果を示すものであるか、同図から明らかな如く
、加熱温度か1250℃を越えると絞り値か著しく低下
し熱間割れか発生しやすくなる。他方、加熱温度か10
50℃未満ては、鋼片内部に析出している炭窒化物の固
溶か十分てなく、製品での靭性劣化を招くことになる上
、本発明か要件とする仕上温度を確保することか難しく
なる。従って、加熱温度は+050−1250℃の範囲
か好ましく、この条件については既に知られている。
In other words, Figure 2 shows 0, which was melted in a 90km high-frequency furnace.
24 C-0,35S i -25,5M This shows the results of a high-temperature, high-speed tensile (greeple) test using steel with a chemical composition of 25,5M.As is clear from the figure, the heating temperature When the temperature exceeds 1250°C, the reduction of area decreases significantly and hot cracking becomes more likely to occur. On the other hand, the heating temperature is 10
If the temperature is less than 50°C, the carbonitrides precipitated inside the steel slab will not dissolve sufficiently, leading to deterioration of the toughness of the product, and it is difficult to ensure the finishing temperature required by the present invention. It becomes difficult. Therefore, the heating temperature is preferably in the range of +050-1250°C, and this condition is already known.

この温度条件下での熱間圧延時における仕上温度か切欠
伸びに及はす影響について調へてみたところ第3図の如
き結果か得られた。第3図は90キロ高周波炉で溶製し
た0、24C−0,32Si−25,3M口の化学成分
を育する鋼を用いて切欠引張試験を行った結果を示して
おり、図から明らかなように圧延仕上温度か低くなるに
つれて切欠伸びか低下しており、特に圧延仕上温度か9
00℃未満では急激に切欠伸びか低下している。従って
、本発明においては熱間圧延時の仕上温度を900℃以
上と特定した。
When we investigated the effect of finishing temperature on notch elongation during hot rolling under these temperature conditions, we obtained the results shown in Figure 3. Figure 3 shows the results of a notched tensile test using steel with a chemical composition of 0,24C-0,32Si-25,3M melted in a 90km high-frequency furnace. As shown, the notch elongation decreases as the finishing rolling temperature decreases, especially as the finishing rolling temperature decreases.
Below 00°C, the notch elongation decreases rapidly. Therefore, in the present invention, the finishing temperature during hot rolling is specified as 900°C or higher.

ところで本発明に係る高Mn非磁性鋼において、成分で
あるNi、 CrlMoはオーステナイトの安定化の点
て好ましいものであって、Niは靭性の向上にも有効で
ある点から必要に応して添加されるか、0.05%未満
の添加てはこの効果は少な(、また、3.00%を越え
ると経済性を損なうために、Ni含有量は0.05〜3
.00%の範囲とすることか好ましい。
By the way, in the high Mn nonmagnetic steel according to the present invention, the components Ni and CrlMo are preferable in terms of stabilizing austenite, and Ni is added as necessary since it is also effective in improving toughness. However, if the Ni content is less than 0.05%, this effect will be small.
.. It is preferable to set it in the range of 00%.

Crはオーステナイトの安定化のほか、高強度化にも有
効な成分であり必要に応して添加される。
Cr is an effective component not only for stabilizing austenite but also for increasing strength, and is added as necessary.

しかし、0.05%未満の添加ではこの効果は少なく、
また、8.00%を越えるとδフエライメか生成し易く
なり靭性と磁気特性を劣化させることになる。従って、
Cr含有量は0.05〜8.00%の範囲とすることか
望ましい。
However, this effect is small when less than 0.05% is added.
Moreover, if it exceeds 8.00%, δ ferrite tends to form, resulting in deterioration of toughness and magnetic properties. Therefore,
It is desirable that the Cr content be in the range of 0.05 to 8.00%.

一方、Moは、C「同様オーステナイトの安定化、高強
度化に有効であるか、0.05%未満の添加ではこの効
果は少なく、また、3.00%を越えると経済性に問題
かあり、従って、Mo含有量は0.05〜300%の範
囲か好ましい。
On the other hand, Mo is effective in stabilizing and increasing the strength of austenite like C. If it is added less than 0.05%, this effect is small, and if it exceeds 3.00%, there may be a problem in economic efficiency. Therefore, the Mo content is preferably in the range of 0.05 to 300%.

上記本発明の方法で製造した高Mn非磁性鋼は、切欠感
受性か低く、換言するなれば局部変形能に優れていると
言えるものである。
The high Mn nonmagnetic steel produced by the method of the present invention has low notch sensitivity, in other words, it can be said to have excellent local deformability.

(実施例) 以下、本発明の実施例を示すか、勿論、本発明はそれ等
実施例に限定されるものてはなく、特許請求の範囲に記
載の要件を満足する限り、他の変形例も本発明に包含さ
れることは言うまでもない。
(Examples) Hereinafter, examples of the present invention will be shown, or, of course, the present invention is not limited to these examples, and other modifications can be made as long as the requirements described in the claims are satisfied. Needless to say, these are also included in the present invention.

第1表に示した化学成分を有する複数の高Mn非磁性鋼
を90キロ高周波炉て溶製し、得られた各鋼塊を、同し
く第1表右側欄に示す如き製造条件で板厚6Mの鋼板に
熱間圧延するとともに、清浄度の測定を行った。さらに
、それ等の鋼板について、引張試験(洛サブサイズ試験
片の2mmVシャルビ衝撃試験)、透磁率測定、切欠引
張試験、切欠曲げ試験をそれぞれ実施した。それ等の結
果は第2表に示す通りであった。
A plurality of high Mn non-magnetic steels having the chemical composition shown in Table 1 are melted in a 90 kg high frequency furnace, and each steel ingot obtained has a plate thickness under the manufacturing conditions also shown in the right column of Table 1. It was hot rolled into a 6M steel plate and its cleanliness was measured. Furthermore, the steel plates were subjected to a tensile test (2 mm V Charvi impact test using a Raku sub-size specimen), magnetic permeability measurement, notched tensile test, and notched bending test. The results were as shown in Table 2.

調香Aにおける比較方法で製造したl[A4は、熱間圧
延時の仕上温度か低く、本発明方法の条件から外れてい
るところから、本発明方法に係る鋼A1、A2、A3に
比較して切欠伸びか低く、また切欠曲ず試験においても
割れか発生している。
L [A4 produced by the comparative method in perfumery A] has a low finishing temperature during hot rolling, which deviates from the conditions of the method of the present invention. The notch elongation was low, and cracking also occurred in the notch bending test.

調香Bにおける比較方法で製造した鋼Bl、 B2は、
熱間圧延時の仕上温度か900℃以上あるものの、清浄
度か0.070%と悪いために、切欠伸びか低く、また
、切欠曲げ試験においても割れか発生している。
Steel B1 and B2 manufactured by the comparative method in perfumery B are:
Although the finishing temperature during hot rolling was over 900°C, the notch elongation was low due to the poor cleanliness of 0.070%, and cracks also occurred in the notch bending test.

一方、調香Cにおける比較方法で製造した鋼C3は、熱
間圧延時の仕上温度か低く、本発明方法の条件から外れ
ていることによって、本発明方法に係る鋼CI C2に
比へて切欠伸びか低く、また、切欠曲げ試験においても
割れか発生している。
On the other hand, the steel C3 manufactured by the comparative method in perfumery C has a lower finishing temperature during hot rolling, which is outside the conditions of the method of the present invention, and therefore the steel C3 produced by the method of the present invention has a lower notch than the steel CI C2 produced by the method of the present invention. The elongation was low, and cracks also occurred in the notch bending test.

次に、調香りにおいて比較方法に係る鋼目は、清浄度、
圧延仕上温度ともに本発明方法の範囲内第 表 (以下余白 ) であるか、化学成分において60×C%+Mn%の値か
31、1%と低くて、本発明方法の条件から外れている
ために透磁率か悪く、非磁性鋼としては使用できない結
果か出ている。
Next, the steel grains related to the comparison method in fragrance preparation are cleanliness,
Either the rolling finishing temperature is within the range of the method of the present invention (table below), or the value of the chemical composition of 60 × C% + Mn% is as low as 31.1%, which is outside the conditions of the method of the present invention. However, it has poor magnetic permeability and cannot be used as a non-magnetic steel.

また、調香Eにおいて比較方法に係る鋼E2は、熱間圧
延時の仕上温度か低く、本発明方法の条件から外れてい
るため、本発明方法に係る鋼E1に比べて切欠伸びか低
く、また、切欠曲げ試験においても割れか発生している
In addition, in perfume E, steel E2 according to the comparative method has a low finishing temperature during hot rolling, which deviates from the conditions of the method of the present invention, so the notch elongation is lower than that of steel E1 according to the method of the present invention. Cracks also occurred in the notch bending test.

以上の実施例から明らかなように、本発明方法の実施に
より得られた高Mn非磁性鋼は、 1.002以下の優
れた透磁率を示すとともに、切欠伸びも15%以上を有
し、かつ切欠曲げ試験においても割れの発生は認められ
なくて、良好な品質を備えていることか明示されている
As is clear from the above examples, the high Mn nonmagnetic steel obtained by implementing the method of the present invention exhibits an excellent magnetic permeability of 1.002 or less, and has a notch elongation of 15% or more, and No cracking was observed in the notch bending test, clearly indicating that it has good quality.

(発明の効果) 以上の説明によって明らかなように、本発明方法によれ
ば高Mn非磁性鋼か有する基本的特性を損なうことなく
、局部変形能か著しく改善された高Mn非磁性鋼を得る
ことかできるという優れた効果を存するものである。
(Effects of the Invention) As is clear from the above explanation, according to the method of the present invention, a high Mn nonmagnetic steel with significantly improved local deformability can be obtained without impairing the basic properties of a high Mn nonmagnetic steel. It has the excellent effect of being able to do a lot of things.

従って本発明方法は、穴拡げ加工、深絞り加工や、苛酷
な曲げ加工か施される非磁性構造部材の製造方法として
好適であり、しかも、製造時におけるエネルギー消費量
を最小限に抑えて経済性にも優れている。
Therefore, the method of the present invention is suitable as a method for manufacturing non-magnetic structural members that are subjected to hole expansion, deep drawing, or severe bending, and is economical by minimizing energy consumption during manufacturing. It is also excellent in sex.

【図面の簡単な説明】[Brief explanation of the drawing]

各図は高Mn非磁性鋼の特性を示す図であって、第1図
は切欠伸びに及はす非金属介在物の清浄度の影響を示す
図、第2図は高温高速引張試験による引張温度と絞りの
関係を示す図、第3図は切欠伸びに及はす熱間圧延時の
仕上温度の影響を示す図である。
Each figure shows the characteristics of high-Mn nonmagnetic steel. Figure 1 shows the effect of cleanliness of nonmetallic inclusions on notch elongation, and Figure 2 shows the tensile strength obtained by high-temperature and high-speed tensile tests. FIG. 3 is a diagram showing the relationship between temperature and reduction of area, and is a diagram showing the influence of finishing temperature during hot rolling on notch elongation.

Claims (2)

【特許請求の範囲】[Claims] (1) C:0.15〜0.70、Si:0.10〜3
.00%、Mn:12〜30%を含有し、残部か鉄及び
不可避不純物からなる鋼塊又は鋼片を、1050〜12
50℃に加熱して熱間圧延を行い高Mn非磁性鋼を製造
するに際し、鋼塊又は鋼片に関しCとMnの含有量は6
0×[C%]+[Mn%]≧36%、非金属介在物量は
清浄度0.03%以下をいずれも満足させるとともに、
熱間圧延のときの仕上温度を900℃以上に定めること
を特徴とする局部変形能に優れた高Mn非磁性鋼の製造
方法。
(1) C: 0.15-0.70, Si: 0.10-3
.. 00%, Mn: 12 to 30%, with the balance consisting of iron and unavoidable impurities.
When manufacturing high Mn nonmagnetic steel by heating to 50°C and hot rolling, the content of C and Mn in the steel ingot or slab is 6.
0×[C%]+[Mn%]≧36%, the amount of nonmetallic inclusions satisfies the cleanliness level of 0.03% or less, and
A method for manufacturing high Mn nonmagnetic steel with excellent local deformability, characterized by setting the finishing temperature at 900° C. or higher during hot rolling.
(2) 鋼塊又は鋼片か、さらにNi:0.05〜3.
00%、Cr:0.05〜8.00%、Mo:0.05
〜3.00%のうちの少くとも1種を含有している特許
請求の範囲第1項記載の局部変形能に優れた高Mn非磁
性鋼の製造方法。
(2) Steel ingot or billet, and further Ni: 0.05 to 3.
00%, Cr: 0.05-8.00%, Mo: 0.05
3.00% of a high Mn nonmagnetic steel having excellent local deformability according to claim 1.
JP2268718A 1990-10-05 1990-10-05 Method for producing high Mn non-magnetic steel excellent in local deformability Expired - Fee Related JPH0717949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2268718A JPH0717949B2 (en) 1990-10-05 1990-10-05 Method for producing high Mn non-magnetic steel excellent in local deformability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2268718A JPH0717949B2 (en) 1990-10-05 1990-10-05 Method for producing high Mn non-magnetic steel excellent in local deformability

Publications (2)

Publication Number Publication Date
JPH04143218A true JPH04143218A (en) 1992-05-18
JPH0717949B2 JPH0717949B2 (en) 1995-03-01

Family

ID=17462389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2268718A Expired - Fee Related JPH0717949B2 (en) 1990-10-05 1990-10-05 Method for producing high Mn non-magnetic steel excellent in local deformability

Country Status (1)

Country Link
JP (1) JPH0717949B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878257A1 (en) * 2004-11-24 2006-05-26 Usinor Sa PROCESS FOR MANUFACTURING AUSTENITIC STEEL SHEET, FER-CARBON-MANGANIZED WITH VERY HIGH RESISTANCE AND ELONGATION CHARACTERISTICS, AND EXCELLENT HOMOGENEITY
EP2796585A4 (en) * 2011-12-23 2016-02-24 Posco Non-magnetic high manganese steel sheet with high strength and manufacturing method thereof
WO2016052554A1 (en) * 2014-09-30 2016-04-07 公益財団法人 電磁材料研究所 Fe-Mn CONSTANT MODULUS/MAGNETO-INSENSITIVE ALLOY AND MANUFACTURING METHOD THEREFOR

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878257A1 (en) * 2004-11-24 2006-05-26 Usinor Sa PROCESS FOR MANUFACTURING AUSTENITIC STEEL SHEET, FER-CARBON-MANGANIZED WITH VERY HIGH RESISTANCE AND ELONGATION CHARACTERISTICS, AND EXCELLENT HOMOGENEITY
WO2006056670A2 (en) * 2004-11-24 2006-06-01 Arcelor France Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
WO2006056670A3 (en) * 2004-11-24 2007-07-05 Arcelor France Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
US7794552B2 (en) 2004-11-24 2010-09-14 Arcelor France Method of producing austenitic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
EP2796585A4 (en) * 2011-12-23 2016-02-24 Posco Non-magnetic high manganese steel sheet with high strength and manufacturing method thereof
WO2016052554A1 (en) * 2014-09-30 2016-04-07 公益財団法人 電磁材料研究所 Fe-Mn CONSTANT MODULUS/MAGNETO-INSENSITIVE ALLOY AND MANUFACTURING METHOD THEREFOR
JPWO2016052554A1 (en) * 2014-09-30 2017-08-03 公益財団法人電磁材料研究所 Fe-Mn-based constant elastic / insensitive magnetic alloy and method for producing the same

Also Published As

Publication number Publication date
JPH0717949B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
CA2599868C (en) Steel for oil well pipe having excellent sulfide stress cracking resistance and method for manufacturing seamless steel pipe for oil well
KR101594664B1 (en) High carbon steel sheet and method for manufacturing the same
JP2015143391A (en) Rolled steel material for high-strength spring and wire for high-strength spring using the same
JPS6013022A (en) Production of nonmagnetic steel plate
JP4687554B2 (en) Steel plate for quenched member, quenched member and method for producing the same
JPS626730B2 (en)
JPH02236223A (en) Production of high strength steel excellent in delayed fracture characteristic
JPH0320408A (en) Production of high tensile steel stock excellent in toughness at low temperature
JPH04143218A (en) Production of high mn nonmagnetic steel excellent in local deformability
JPS5976861A (en) Steel plate for precision blanking
JPS63166931A (en) Manufacture of high tension hot rolled steel sheet having high magnetic flux density
JP3533655B2 (en) Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy
KR100328037B1 (en) A Method for Manufacturing High Strength Hot Rolled steel Sheet Having Low Yield Ration
JPH08319537A (en) High damping alloy with high strength and high toughness and its production
JPS63161117A (en) Production of hot rolled steel products having high strength and high toughness
JPH04272130A (en) Production of high mn nonmagnetic steel having superior drillability
JPH1192860A (en) Steel having ultrafine ferritic structure
JP2587520B2 (en) High Mn nonmagnetic steel with excellent local deformability for gas circuit breakers
JPH04143213A (en) Production of high mn nonmagnetic steel excellent in local deformability
CN108929993A (en) A kind of the nonmagnetic steel plate and its manufacturing method of micro-alloying high-ductility
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JPH07233449A (en) Ferritic stainless steel sheet and its production
KR100401167B1 (en) Bainite-based high strength steel with excellent weld toughness and manufacturing method
JPS61281814A (en) Production of high-strength hot rolled steel sheet having low sensitivity to bauschinger effect
JPS6130650A (en) High-strength spring steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees