JPH0414279A - Semiconductor excitation solid-state laser - Google Patents

Semiconductor excitation solid-state laser

Info

Publication number
JPH0414279A
JPH0414279A JP11718390A JP11718390A JPH0414279A JP H0414279 A JPH0414279 A JP H0414279A JP 11718390 A JP11718390 A JP 11718390A JP 11718390 A JP11718390 A JP 11718390A JP H0414279 A JPH0414279 A JP H0414279A
Authority
JP
Japan
Prior art keywords
laser
light
section
solid
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11718390A
Other languages
Japanese (ja)
Inventor
Ryohei Tanuma
良平 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11718390A priority Critical patent/JPH0414279A/en
Publication of JPH0414279A publication Critical patent/JPH0414279A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To stably oscillate a high-quality laser beam at a high output by fetching the laser beam output from an oscillating section which oscillates laser light by injecting excitation light into a small area in a solid-state laser medium and an amplifying section which amplifies the laser light under a non-oscillating condition by receiving the oscillated laser light by means of another solid-state laser medium and injecting the excitation light from the side. CONSTITUTION:At an oscillating section 10, excitation light EL is injected at a high density into a small area in a solid-state laser medium 11 and, at the same time, laser oscillation can be started highly efficiently at a low threshold level even though the injected amount of the light EL is small, since the injecting direction of the light EL is equal to the direction of laser resonance. Oscillated laser light L is fetched from the section 10 via a partial reflecting mirror 14 and given to an amplifier section 20 below the section 10 via total reflecting mirrors 31 and 32. The laser light L given to the section 20 from the section 10 is reflected between both reflecting mirrors 22 and 23 and fetched as an laser light output Lo after the light L passes through a solid-state laser medium 21 plural times, for example, three times in this example, along an optical path which is shifted at every reflection and is amplified whenever the light L passes through the medium 21.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体レーザ装置により発光された励起光に
よりYAG等の固体レーザ媒質中の活性物質を光励起す
る固体レーザ装置、とくに大出力の基本モードで発振さ
れたレーザ光を取り出すに適するものに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a solid-state laser device that optically excites an active substance in a solid-state laser medium such as YAG using excitation light emitted by a semiconductor laser device, especially a high-output basic device. The present invention relates to a device suitable for extracting laser light oscillated in a mode.

[従来の技術〕 周知のように、Nd等の活性物質を含むYAG等の光学
結晶やガラスをロフトやスラブに形成したレーザ媒質を
用いる固体レーザは光励起するのが一般である。このた
めの励起光源にはタングステンハロゲンランプやクリプ
トン放電灯が用いられることが多いが、これらランプの
紫外から近赤外に亘る広い発光スペクトル中でレーザ媒
質により吸収されレーザ発振に寄与するのはごく狭い波
長範囲に限られるので、レーザの発振効率が低下するだ
けでなく、励起に貢献しない成分光がレーザ媒質内で熱
に変わるので、温度上昇による屈折率変化に基づく熱レ
ンズ効果によりレーザビームの質が低下したり、固体レ
ーザ媒質が熱破壊したりする問題が発生しやすい。
[Prior Art] As is well known, a solid-state laser that uses a laser medium in which a loft or slab is formed of an optical crystal such as YAG or glass containing an active substance such as Nd is generally optically excited. Tungsten halogen lamps and krypton discharge lamps are often used as excitation light sources for this purpose, but within the wide emission spectrum of these lamps ranging from ultraviolet to near-infrared, very little light is absorbed by the laser medium and contributes to laser oscillation. Since it is limited to a narrow wavelength range, not only does the laser oscillation efficiency decrease, but also component light that does not contribute to excitation turns into heat within the laser medium, so the laser beam is Problems such as quality deterioration and thermal destruction of the solid-state laser medium are likely to occur.

これに対し、半導体レーザは発光スペクトルが非常に狭
く、例えばGaAlAs系レーザダイオードはNdを含
むYAGの励起に適する0、811!m付近の発光波長
をもち、しかもAIの混晶比を変えてこの波長を微調整
できる利点がある。
On the other hand, a semiconductor laser has a very narrow emission spectrum. For example, a GaAlAs laser diode is suitable for excitation of YAG containing Nd. It has an emission wavelength around m, and has the advantage that this wavelength can be finely adjusted by changing the mixed crystal ratio of AI.

このため半導体レーザは、発光量が小さいrjIMはあ
るが、固体レーザ媒質の光励起に有利で光源として注目
されている。以下、この半導体レーザを励起光源に用い
た固体レーザ装置を第2図以陵を参照して説明する。
For this reason, semiconductor lasers are attracting attention as light sources because they are advantageous for optical excitation of solid-state laser media, although there are rjIMs that emit a small amount of light. A solid-state laser device using this semiconductor laser as an excitation light source will be described below with reference to FIGS.

第2図はレーザ媒質11をその端面11aから励起する
例である。半導体レーザ12からの励起光ELはコリメ
ータレンズ13aと集光レンズ13bからなる集光手段
13によりレーザ媒質ll内に端面11aから投射され
て焦点Fに集光される。この端面11aには0.81−
の励起光ELには高透過性で1.06−の発振レーザ光
りには高反射性の波長選択性をもつコーティングが施さ
れる。他方の端面11bにはレーザ光りに対して高透過
性のコーティングが施され、これに反射率が例えば0.
95程度の部分反射、1114が対向配置される。レー
ザ共振系はレーザ媒質11の端面11aと部分反射鏡1
4との間に形成され、部分反射鏡12の位置の微調整に
よりレーザ発振と同調される。レーザ光出力しOはもち
ろん部分反射鏡14を介して取り出される。
FIG. 2 shows an example in which the laser medium 11 is excited from its end face 11a. The excitation light EL from the semiconductor laser 12 is projected into the laser medium 11 from the end face 11a and focused at the focal point F by the focusing means 13 consisting of a collimator lens 13a and a focusing lens 13b. This end face 11a has 0.81-
A coating is applied that has high transmittance for the excitation light EL and high reflectivity and wavelength selectivity for the 1.06-wave oscillation laser light. The other end face 11b is coated with a coating that is highly transparent to laser light, and has a reflectance of, for example, 0.
About 95 partial reflections and 1114 are arranged facing each other. The laser resonant system includes the end face 11a of the laser medium 11 and the partial reflecting mirror 1.
4, and is synchronized with the laser oscillation by finely adjusting the position of the partial reflecting mirror 12. Of course, the laser beam output O is taken out via the partial reflecting mirror 14.

この第2図の従来例は励起光ELをレーザ媒質11の端
面11a側から注入するいわば端面励起形で、TEMo
oモードと呼ばれる基本モードの発振にとくに適するに
対して、第3図に示された従来技術はレーザビームの出
力を上げるに通する側面励起形である。
The conventional example shown in FIG. 2 is a so-called end-pumping type in which the excitation light EL is injected from the end surface 11a side of the laser medium 11.
The conventional technique shown in FIG. 3 is of the side-pumping type, which is particularly suitable for oscillation of a fundamental mode called the o-mode, which is used to increase the output of the laser beam.

すなわち、第3図(a)に示すようにレーザ媒質11の
側面に置かれた半導体レーザアレイ24からの励起光E
Lによってこれを側面から励起する。半導体レーザのチ
ップは11立方程度の小さなもので、製作時にはウェハ
からそれが1列に並んだバーの状態を経てチップに分離
する。励起光源としての半導体レーザアレイ24はかか
るバーの状態をそのまま利用するもので、同図(b)の
ようにロッド状のレーザ媒質11の側方にこれを置いて
、励起光εLを周面11cからレンズ効果を利用してレ
ーザ媒質11の内部に注入する。なお、この第3図の従
来例におけるレーザ共振系は、同図(a)のように出力
鏡としての部分反射鏡14とレーザ媒質11の反対側に
置かれた全反射鏡15の間に形成される。
That is, as shown in FIG. 3(a), the excitation light E from the semiconductor laser array 24 placed on the side surface of the laser medium 11
This is excited from the side by L. Semiconductor laser chips are small, about 11 cubic meters in size, and during manufacturing, they are separated into chips from a wafer through bars arranged in a row. The semiconductor laser array 24 as an excitation light source utilizes the bar state as it is, and is placed on the side of the rod-shaped laser medium 11 as shown in FIG. The laser medium 11 is injected into the interior of the laser medium 11 using the lens effect. The laser resonant system in the conventional example shown in FIG. 3 is formed between a partial reflection mirror 14 as an output mirror and a total reflection mirror 15 placed on the opposite side of the laser medium 11, as shown in FIG. 3(a). be done.

二の側面励起形では、レーザ媒1rllO軸方向に沿い
複数個の半導体レーザを配列することにより励起光量を
増して高出力化できるが、励起光ELの注入密度があま
り高くな(基本モードだけの発振が困難なので、発振効
率やレーザビームの品質の点で端面励起形に及ばない。
In the second side pumping type, by arranging multiple semiconductor lasers along the laser medium 1rllO axis direction, the amount of pumping light can be increased and the output can be increased, but the injection density of the pumping light EL is not very high (only the fundamental mode Since oscillation is difficult, it is not as good as the end-pumped type in terms of oscillation efficiency and laser beam quality.

第4図に基本モード発振と高出力発振に適する従来例を
示す。この従来技術ではレーザ媒質16に偏平な方形断
面をもついわゆるスラブ形を用い、その1対の側面16
aに高反射性のコーティングを施して置いて、斜面16
bからレーザ媒質16に出入するレーザ光りを図示のよ
うに両側面16aで反射させながらその内部でジグザグ
状に進行させる。
FIG. 4 shows a conventional example suitable for fundamental mode oscillation and high output oscillation. In this prior art, a so-called slab shape having a flat rectangular cross section is used as the laser medium 16, and a pair of side surfaces 16
a with a highly reflective coating and place it on the slope 16.
The laser beam entering and exiting the laser medium 16 from b is reflected by both side surfaces 16a as shown in the figure, and travels in a zigzag pattern inside the medium.

斜面16bにそれぞれ対向するように部分反射鏡14お
よび全反射鏡15を配置してレーザ共振系を形成させる
。励起光BLは図示しない半導体レーザからそれぞれ光
ファイバ25を介して導かれ、セルフォックスレンズ2
6により集光され、レーザ媒質16に両側面16aのレ
ーザ光りの各反射点からそのごく浅い表面部に高密度で
注入される。
A partial reflection mirror 14 and a total reflection mirror 15 are arranged so as to face the slope 16b, respectively, to form a laser resonant system. The excitation light BL is guided from a semiconductor laser (not shown) through an optical fiber 25, and is connected to a Selfox lens 2.
6, and is injected into the laser medium 16 from each reflection point of the laser beam on both side surfaces 16a into its very shallow surface at high density.

第5図の従来例は第4図の構造を簡単化してその実用性
を高めたものである。レーザ媒質17に上と同様な方形
断面のものを用い、レーザ光りがその両側面で第4図の
場合より鋭角に反射しながら内部をジグザグ状に進行す
るよう、部分反射鏡14と全反射鏡15の位置を設定す
ることにより、その側面17aにおける反射点を互いに
近接させ、この反射点が並んだレーザ媒質17の表面領
域に半導体レーザアレイ24からの励起光ELをシリン
ドリカルレンズ27により集光して注入する。
The conventional example shown in FIG. 5 is a simplified version of the structure shown in FIG. 4 to improve its practicality. The laser medium 17 has a rectangular cross section similar to that shown above, and a partial reflection mirror 14 and a total reflection mirror are used so that the laser beam travels inside in a zigzag shape while being reflected on both sides at a more acute angle than in the case of FIG. 15, the reflection points on the side surface 17a are brought close to each other, and the excitation light EL from the semiconductor laser array 24 is focused by the cylindrical lens 27 on the surface area of the laser medium 17 where these reflection points are lined up. inject.

〔発明が解決しようとする課題] 以上説明したいずれの従来技術においても、半導体レー
ザ光で固体レーザ装置を励起することによる前述の利点
を生かしながら、レーザ発振効率を極力高め、レーザビ
ームをできるだけ高出力化し、かつ基本モードの発振に
よりレーザビームの品質を向上する努力が払われて来た
のであるが、残念ながらいずれにも一長一短があって、
これらの要求を充分にないしは同時に満たし得るものが
少ないのが現状である。
[Problems to be Solved by the Invention] In all of the conventional techniques described above, while taking advantage of the above-mentioned advantages of exciting a solid-state laser device with semiconductor laser light, the laser oscillation efficiency is maximized and the laser beam is as high as possible. Efforts have been made to improve the quality of the laser beam by increasing the output power and oscillating the fundamental mode, but unfortunately each has its advantages and disadvantages.
At present, there are few products that can satisfy these requirements sufficiently or simultaneously.

すなわち、第2図の端面励起形固体レーザ装置では、励
起光ELをレーザ媒質ll内の焦点F付近の小領域に高
密度に集中できるので、発振しきい値が低くかつ発振効
率が高い利点をもつほか、基本モードだけの発振が容易
なので、レーザビームの品質に優れる特長がある。しか
し、レーザ媒[11の狭い端面11aから注入できる励
起光ELの総光量が制約されてしまうので、この端面励
起形の固体レーザ装置は本質的に高出力レーザビームの
発振には不向きな欠点がある。
That is, in the end-pumped solid-state laser device shown in FIG. 2, the excitation light EL can be concentrated in a small region near the focal point F in the laser medium 11, so it has the advantage of a low lasing threshold and high lasing efficiency. In addition, it is easy to oscillate only the fundamental mode, so the quality of the laser beam is excellent. However, since the total amount of excitation light EL that can be injected from the narrow end face 11a of the laser medium [11] is limited, this end-pumped solid-state laser device has the drawback that it is essentially unsuitable for oscillating a high-power laser beam. be.

この点、第3図の側面励起形固体レーザ装置では、前述
のようにレーザ媒質11の軸方向に沿って多数個の半導
体レーザをアレイ24の形に配列して励起光ELの注入
総光量を増加し得るから、高出力レーザビームの発振に
適する本質的な利点はあるものの、レーザ媒質11への
励起光ELの注入密度が端面励起形と比べてかなり低く
、しかも実際には基本モードだけの発振が困難な場合が
多いので、レーザビームの発振効率と品質の点でまだ改
良すべき問題が残っている。
In this regard, in the side-pumped solid-state laser device shown in FIG. 3, a large number of semiconductor lasers are arranged in the form of an array 24 along the axial direction of the laser medium 11, as described above, to control the total amount of pumping light EL. However, the injection density of the pumping light EL into the laser medium 11 is considerably lower than that of the end-pumped type, and in reality, only the fundamental mode Since oscillation is often difficult, there are still problems to be improved in terms of oscillation efficiency and quality of the laser beam.

第4図の従来例は端面励起形や側面励起形がもつかかる
欠点を解消し得るもので、多数の半導体レーザから励起
光ELをレーザ媒質16に注入できるので高出力化が容
易であり、がっレーザ媒質16の側面のレーザ光りの各
反射点に励起光ELを高密度注入できるので、発振効率
が高く基本モードだけの発振に適する利点が得られる。
The conventional example shown in FIG. 4 can overcome the drawbacks of the end-pumped type and the side-pumped type, and can easily achieve high output because the excitation light EL can be injected into the laser medium 16 from a large number of semiconductor lasers. Since the excitation light EL can be injected at high density into each reflection point of the laser beam on the side surface of the laser medium 16, the advantage of high oscillation efficiency and suitability for oscillation in only the fundamental mode can be obtained.

しかし、多数のセルフォックスレンズ26を用いるので
構造が複雑になり、それらの位置や角度を各反射点に合
わせて一々調整する必要があり、運転中に狂いも生じや
すい。このため、原理的には優れていてもその実用性は
あまり高くない。
However, since a large number of SELFOX lenses 26 are used, the structure becomes complicated, and their positions and angles must be adjusted one by one to match each reflection point, which tends to cause errors during operation. Therefore, although it is excellent in principle, its practicality is not very high.

第5図の従来技術ではかかる構造や光学的調整が簡単に
なり、高出力化が可能で、励起光の注入密度もかなり高
くて発振効率が高く、基本モード発振も可能である。し
かし、レーザ媒質17の図の右側面中のレーザ光りの反
射部17aに高反射性のコーティングを施し、その出入
部17bに高透過性の別のコーティングを施さねばなら
ない点が実際面ではまだかなり厄介である。
In the conventional technique shown in FIG. 5, the structure and optical adjustment are simple, high output is possible, the injection density of pumping light is quite high, the oscillation efficiency is high, and fundamental mode oscillation is also possible. However, in practice, it is still quite difficult to apply a highly reflective coating to the laser beam reflecting part 17a on the right side of the laser medium 17 in the figure, and to apply another highly transparent coating to the entrance and exit part 17b. It's troublesome.

また、第4図と第5図のいずれの従来例でも、レーザ媒
質内のレーザ光が側面で反射を繰り返すつど減衰して行
く問題があり、この反射損失を許容限度内に抑え得る良
質な高反射性コーティングをレーザ媒質の側面に施すの
が実際上はかなり困難であり、かつ運転中にかかるコー
ティングの反射特性の劣化が起こりやすい。
In addition, in both the conventional examples shown in Fig. 4 and Fig. 5, there is a problem that the laser light in the laser medium is attenuated each time it is repeatedly reflected on the side surface. Applying reflective coatings to the sides of the laser medium is quite difficult in practice, and the reflective properties of such coatings are susceptible to deterioration during operation.

本発明は従来技術がもつかかる問題点を解決して、高出
力で高品質のレーザビームを安定に発振できる半導体レ
ーザ励起固体レーザ装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art and provide a semiconductor laser pumped solid-state laser device that can stably oscillate a high-output, high-quality laser beam.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によればこの目的は、光共振系内に置かれた固体
レーザ媒質内の小領域に励起光を注入しこれと同方向に
レーザ光を発振させる発振部と、この発振レーザ光を別
の固体レーザ媒質に受けその内部を通過するレーザ光の
光路に対し側方から励起光を注入してレーザ光を非発振
条件で増幅する増幅部とを設け、増幅部からレーザビー
ム出力を取り出すことにより達成される。
According to the present invention, this purpose is to provide an oscillation section that injects excitation light into a small region within a solid-state laser medium placed in an optical resonant system and oscillates a laser beam in the same direction as the oscillation section, and a separate section that separates this oscillation laser beam. an amplifying section that amplifies the laser beam under non-oscillation conditions by injecting excitation light from the side into the optical path of the laser beam received in the solid-state laser medium and passing through the solid-state laser medium, and extracting the laser beam output from the amplifying section. This is achieved by

なお、励起光源用の半導体レーザにはレーザダイオード
が最適であり、発振部にはその単体を増幅部にはそれが
アレイ状に並んだ前述のレーザダイオードバーをそれぞ
れ用いるのがよい。
Note that a laser diode is most suitable as the semiconductor laser for the excitation light source, and it is preferable to use a single laser diode in the oscillation section and the above-mentioned laser diode bars arranged in an array in the amplification section.

発振部のレーザ媒質にはロッド形が適し、この発振部を
端面励起形のレーザ発振器として構成して基本モードで
発振させるのが望ましい。
A rod-shaped laser medium is suitable for the oscillating section, and it is desirable to configure this oscillating section as an end-pumped laser oscillator to oscillate in the fundamental mode.

これに対して、増幅部用の別のレーザ媒質にはスラブ形
が適し、この増幅部をスラブの大面積の側面から励起光
を注入する側面励起形のレーザ光増幅器として構成する
のが望ましい。さらにこの場合、スラブ形のレーザ媒質
内にレーザ光をその光路を順次ずらせながらスラブの軸
方向に複数回通過させ、この各光路に対し半導体レーザ
アレイから励起光をスラブの側面から注入するのが有利
である。なお、このようにレーザ媒質内にレーザ光を複
数回i!1ij4させるには、例えば1対の反射鏡をレ
ーザ媒質と組み合わせればよく、またレーザ光の通路を
順次ずらせるには、両度射鏡の方向を互いにずらせるこ
とでよい。
On the other hand, a slab type is suitable for another laser medium for the amplification section, and it is desirable to configure this amplification section as a side-pumping type laser optical amplifier that injects pumping light from the large-area side surface of the slab. Furthermore, in this case, the laser beam is passed through the slab-shaped laser medium multiple times in the axial direction of the slab while sequentially shifting its optical path, and excitation light is injected from the semiconductor laser array into each optical path from the side of the slab. It's advantageous. In addition, in this way, the laser beam is emitted into the laser medium multiple times i! 1ij4, for example, by combining a pair of reflecting mirrors with a laser medium, and in order to sequentially shift the path of the laser beam, the directions of both reflecting mirrors may be shifted from each other.

〔作用] 本発明では、上記構成中の発振部にはもっばら高品質の
レーザ光を発生する役目を、増幅部にはこのレーザ光を
もっばら高出力のレーザビームに増幅する役目を、いず
れの部分でも半導体レーザによる光励起を利用しながら
、それぞれ機能別に専門に分担させることにより、後者
から取り出すレーザビームに高品質と高出力を兼備させ
る。
[Function] In the present invention, the oscillation section in the above configuration has the role of generating high-quality laser light, and the amplification section has the role of amplifying this laser light into a high-output laser beam. While utilizing optical excitation by a semiconductor laser, the laser beam extracted from the latter is made to have both high quality and high output by assigning specialized functions to each part.

すなわち、レーザビームの品質向上にはこれに基本モー
ドのみを含ませることが望ましく、そのためにはレーザ
光を基本モードで発振させる必要があるが、マルチモー
ドの発生原因であるレーザ共振系を備える発振部では発
振出力を上げない方が基本モード発振に有利である。つ
まり、小出力のレーザ発振ではレーザ媒質の小領域内に
励起光を集光して高密度で注入でき、温度上昇に基づく
熱レンズ効果も最小になるので基本モードのみを容易に
発振でき、励起光をレーザ媒質の複数個所に注入する場
合の構造の複雑化や基本モード発振からのずれも防止で
きる。
In other words, in order to improve the quality of the laser beam, it is desirable to include only the fundamental mode, and for that purpose it is necessary to oscillate the laser beam in the fundamental mode. It is advantageous for fundamental mode oscillation not to increase the oscillation output in the part. In other words, in low-output laser oscillation, the excitation light can be focused and injected into a small region of the laser medium at high density, and the thermal lens effect caused by temperature rise can be minimized, making it easy to oscillate only the fundamental mode and excitation light. Complicated structure and deviation from fundamental mode oscillation when light is injected into multiple locations in the laser medium can also be prevented.

本発明では、このようにして発振させた高品質のレーザ
光を増幅部に与えて高出力レーザビームに増幅させるが
、この増幅部では別の固体レーザ媒質内で上記構成にい
うように非共振条件でこのレーザ光を増幅するので、そ
の基本モードが狂う余地がなく元の良好な性状をそのま
ま保ちながら増幅できる。さらにこの増幅部では、レー
ザ媒質を通過するレーザ光の光路に対し側方から励起光
を注入するので、この光路に沿って多数の半導体レーザ
ないしそのアレイを配列することができ、増幅率を高め
て高出力のレーザビームを得ることができる。
In the present invention, the high-quality laser beam oscillated in this way is given to the amplification section to amplify it into a high-output laser beam, but this amplification section generates a non-resonant laser beam in a separate solid-state laser medium as described above. Since this laser light is amplified under certain conditions, there is no room for its fundamental mode to go out of order, and it can be amplified while maintaining its original good properties. Furthermore, in this amplification section, excitation light is injected from the side into the optical path of the laser beam passing through the laser medium, so a large number of semiconductor lasers or arrays thereof can be arranged along this optical path, increasing the amplification factor. It is possible to obtain a high-power laser beam.

なお、発振部と増幅部とはこのように機能分担が異なる
だけで、両者間の光軸合わせ等の光学的な関係はとくに
厳密を要しない。
It should be noted that the oscillation section and the amplification section only have different functional assignments as described above, and the optical relationship between them, such as optical axis alignment, does not need to be particularly strict.

このように本発明は、発振部と増幅部にそれぞれ得意な
機能を分担して発揮させることにより、前述のレーザビ
ームの高品質化と高出力化の課題を解決し、同時に厳密
な光学的調整を不要にすることに成功したものである。
In this way, the present invention solves the above-mentioned problems of increasing the quality and output of a laser beam by having the oscillation section and the amplification section perform their respective specialized functions. This has succeeded in making it unnecessary.

〔実施例] 以下、第1図を参照して本発明の半導体レーザ励起固体
レーザ装置の実施例を説明する。同図はその構成例を斜
視図で示すものである。
[Example] Hereinafter, an example of the semiconductor laser pumped solid-state laser device of the present invention will be described with reference to FIG. The figure shows an example of the configuration in a perspective view.

図の上部に示されたこの実施例の発振部10は、前に説
明した第2図と同様な端面励起形のレーザ発振装置であ
って、その固体レーザ媒質11にはNdをレーザ活性物
質として含むYAG等の光学結晶の例えば数〜十数−−
径程度のロンドが用いられ、その一方の端面11aには
0.8−の波長の励起光ELに対し高透過性で1.06
−の波長の発振レーザ光りに対し高反射性の波長選択性
コーティングが施され、他方の端面11bには発振レー
ザ光りに対して高透過性のコーティングが施される。
The oscillation unit 10 of this embodiment shown in the upper part of the figure is an end-pumped laser oscillation device similar to that shown in FIG. For example, several to tens of optical crystals such as YAG containing
A rond with a diameter of about
A wavelength-selective coating that is highly reflective to the oscillated laser beam having a wavelength of - is applied, and a coating that is highly transparent to the oscillated laser beam is applied to the other end face 11b.

この他方の端面11bに対向して、出力鏡としてレーザ
光りに対し例えば0.95の反射率をもつ部分反射#L
14が配設され、例えばその位置を微調整することによ
り、この部分反射鏡14とレーザ媒質11の一方の端面
11aの間に発振レーザ光りの波長に対するレーザ共振
系が形成される。
Opposed to this other end surface 11b, a partial reflection #L having a reflectance of, for example, 0.95 with respect to laser light is used as an output mirror.
14 is disposed, and by finely adjusting its position, for example, a laser resonant system for the wavelength of the oscillated laser beam is formed between the partial reflecting mirror 14 and one end surface 11a of the laser medium 11.

図の半導体レーザ12は単一のレーザダイオード等であ
って、これから発光される励起光ELは集光手段13を
介してレーザ媒質11の端面11aに投射され、その内
部の集光手段13の焦点付近の小領域内に高密度で注入
される。なお、集光手段13は前の第2図の場合と同様
に例えばコリメータレンズと集光レンズからなる組み合
わせレンズである。
The semiconductor laser 12 in the figure is a single laser diode or the like, and the excitation light EL emitted from it is projected onto the end face 11a of the laser medium 11 via the condensing means 13, and the focal point of the condensing means 13 inside the laser medium 11 is projected. It is implanted at a high density in a small area nearby. Note that the condensing means 13 is, for example, a combination lens consisting of a collimator lens and a condensing lens, as in the previous case of FIG. 2.

この発振部10では固体レーザ媒質11内の小領域に励
起光ELが上述のように高密度注入され、かつその注入
方向がレーザ共振の方向と同しなので、励起光ELの注
入量がごく僅かでも低しきい値かつ高効率でレーザ発振
を開始できる。また、小励起光量なので固体レーザ媒I
IIの温度上昇、従ってそれに基づく熱レンズ効果がほ
とんどないので、マルチモードの発生が抑えられて、出
力レベルは低いが純粋に基本モードのみの良質なレーザ
光りを容易に発振できる。この発振レーザ光りは通例の
ように部分反射鏡14を介して発振部10から取り出さ
れ、この例では図の全反射鏡31と32を介してその下
側の増幅部20に与えられる。
In this oscillation section 10, the excitation light EL is injected at high density into a small area in the solid-state laser medium 11 as described above, and the injection direction is the same as the laser resonance direction, so the amount of the excitation light EL injected is very small. However, laser oscillation can be started with a low threshold and high efficiency. In addition, since the amount of excitation light is small, the solid-state laser medium I
Since there is almost no temperature rise in II, and therefore almost no thermal lens effect based on it, the generation of multi-modes is suppressed, and although the output level is low, it is possible to easily oscillate high-quality laser light purely in the fundamental mode. This oscillated laser light is extracted from the oscillating section 10 via a partial reflecting mirror 14 as usual, and in this example is applied to the amplifying section 20 below it via total reflecting mirrors 31 and 32 in the figure.

この実施例における増幅部20は、図示のようにYAG
の光学結晶等からなるスラブ形固体レーザ媒質21と、
その端面21a、 21bにそれぞれ対向配置された反
射鏡22.23と、その大面積の側面の下側に配置され
た半導体レーザアレイ24で構成され、レーザ媒質21
の両端面21a、 21bには反射922.23との間
の寄生発振防止と反射損失の最低化のためにレーザ光り
に対して高透過性のコーティングが施され、半導体レー
ザアレイ24との対向面を除く3個の側面に寄生発振防
止のためいわゆる砂ずり処理が施される。さらにこの実
施例では、1対の反射鏡22.23はレーザ媒質21の
両端面21a、21bに対して角度θずつ傾き、従って
両者が互いにその2倍の角度をなすように配置される。
The amplification section 20 in this embodiment is a YAG
A slab-type solid-state laser medium 21 made of an optical crystal or the like;
It is composed of reflecting mirrors 22 and 23 placed opposite to each other on the end faces 21a and 21b, and a semiconductor laser array 24 placed below the large-area side surface of the laser medium 21.
Both end surfaces 21a and 21b are coated with a coating that is highly transparent to laser light in order to prevent parasitic oscillation between reflections 922 and 23 and to minimize reflection loss. A so-called sanding treatment is applied to the three side surfaces except for the 3 sides to prevent parasitic oscillation. Furthermore, in this embodiment, the pair of reflecting mirrors 22, 23 are inclined at an angle θ with respect to both end surfaces 21a, 21b of the laser medium 21, and are therefore arranged so that they form an angle twice that of each other.

これにより、発振部10から増幅部20に与えられるレ
ーザ光りは図示のように両度射鏡22.23間で反射さ
れ、反射のつどずらされる光路に沿い固体レーザ媒質2
1内を複数回1 この例では3回通過しながら、この通
過のつど増幅された後にレーザ光出力しOとして取り出
される。
As a result, the laser light given from the oscillating part 10 to the amplifying part 20 is reflected between the two mirrors 22 and 23 as shown in the figure, and the solid laser medium 2 follows the optical path that is shifted each time it is reflected.
1 multiple times (in this example, 3 times), and after being amplified each time, it is output as a laser beam and taken out as O.

半導体レーザアレイ24はこのようにレーザ光りが通過
する範囲のレーザ媒質21にその増幅のための励起光を
与えるもので、例えば冷却用のベルティエ素子の上に前
述のレーザダイオードが並んだバーを取り付けてなり、
これに対しレーザ媒質21がその下側側面を密着させて
配設される。なお、反射鏡22.23の上述の角度θは
充分小さく設定され、従ってレーザ媒質21内のレーザ
光りの複数個の光路はご(少しずつしかずれないので、
半導体レーザアレイ24を単一のレーザダイオードバー
で済ませても、複数個の光路範囲のレーザ媒質21を光
励起することができる。
The semiconductor laser array 24 thus provides excitation light for amplification to the laser medium 21 within the range through which the laser light passes.For example, a bar in which the aforementioned laser diodes are arranged is attached on top of the Berthier element for cooling. Then,
On the other hand, the laser medium 21 is disposed with its lower side surface in close contact with the laser medium 21 . Note that the above-mentioned angle θ of the reflecting mirrors 22 and 23 is set to be sufficiently small, so that the multiple optical paths of the laser light in the laser medium 21 are shifted only slightly.
Even if the semiconductor laser array 24 is a single laser diode bar, the laser medium 21 in a plurality of optical path ranges can be optically excited.

このように10個程度以上の半導体レーザを並べたアレ
イ24を用いた場合、レーザ媒質21内を通るレーザ光
りを通過のつど数倍に増幅でき、従ってこの例のように
3回程度通過させれば、発振部10から与えられる例え
ば0.1W程度のレーザ光りを数十倍に増幅してレーザ
光出力Loを数Wにすることができ、もちろん通過回数
を増せば出力レベルをさらに上げることができる。
When using the array 24 in which about 10 or more semiconductor lasers are arranged in this way, the laser light passing through the laser medium 21 can be amplified several times each time it passes, so it can be made to pass about three times as in this example. For example, the laser light of about 0.1 W given from the oscillation unit 10 can be amplified several tens of times to increase the laser light output Lo to several W. Of course, the output level can be further increased by increasing the number of passes. can.

またこの増幅部20では、上述のように寄生発振を防止
し、かつレーザ媒質21内のレーザ光光路を通過のつど
にずらせることにより、レーザ光りに対する上述の増幅
作用が非共振条件で行なわれるので、発振部10によっ
て基本モードで発振されたレーザ光に別のモードが加わ
る余地がなく、元の良好な性状をそのまま保ちながら上
述の高出力のレーザ光出力しOに増幅することができる
Furthermore, in this amplification section 20, the above-described amplification effect on the laser light is performed under non-resonant conditions by preventing parasitic oscillation as described above and shifting the laser light optical path in the laser medium 21 each time it passes through. Therefore, there is no room for another mode to be added to the laser light oscillated in the fundamental mode by the oscillation unit 10, and the above-mentioned high-output laser light can be output and amplified to O while maintaining the original good properties.

以上説明した実施例に限らず、本発明は種々の態様で実
施をすることができる0例えば、発振部は端面励起形と
したが、基本モード発振等の良好な性状のレーザ光を発
振できるものであれば適宜にそれで置き換えることがで
きる。増幅部についても、それ用の固体レーザ媒質をス
ラブ形にする必要は必ずしもなく、方形断面をもつレー
ザ媒質等を用いることができる。かかるレーザ媒質内の
レーザ光の光路も実施例よりも単純なジグザグ状等の光
路として通過回数を調節できるようにしてもよく、かか
る光路の指定手段も実施例のような反射鏡に限らないこ
とももちろんである。
The present invention is not limited to the embodiments described above, and can be implemented in various embodiments. For example, although the oscillation section is of an end-pump type, it is possible to oscillate a laser beam with good properties such as fundamental mode oscillation. If so, you can replace it accordingly. As for the amplifying section, the solid-state laser medium therein does not necessarily have to be slab-shaped, and a laser medium with a rectangular cross section or the like can be used. The optical path of the laser beam in the laser medium may also be a simpler zigzag-shaped optical path than in the embodiments so that the number of passes can be adjusted, and the means for specifying such an optical path is not limited to the reflecting mirror as in the embodiments. Of course.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明では、半導体レーザで励起される固
体レーザ装置を高品質のレーザ光の発生に専用の発振部
と、レーザ光の高出力化に専用の増幅部により構成し、
発振部では光共振系内に置かれたレーザ媒質の小間域内
に励起光を注入して注入と同方向にレーザ光を発振させ
、増幅部ではこのレーザ光を別のレーザ媒質に通過させ
てその光路に側方から励起光を注入して非発振条件下で
増幅した上でレーザ光出力として取り出すことにより、
次の効果を得ることができる。
As described above, in the present invention, a solid-state laser device pumped by a semiconductor laser is configured with an oscillation section dedicated to generating high-quality laser light and an amplification section dedicated to increasing the output of the laser light,
In the oscillation section, excitation light is injected into the booth area of a laser medium placed in an optical resonant system to oscillate laser light in the same direction as the injection, and in the amplification section, this laser light is passed through another laser medium and its By injecting excitation light from the side into the optical path, amplifying it under non-oscillation conditions, and then extracting it as laser light output,
You can get the following effects.

(a)レーザビームの品質改善と出力向上との機能を分
離して、それぞれ発振部と増幅部とムこ専門別に受は持
たせ、それらの得意な機能をそれぞれ充分発揮させるこ
とにより、高品質と高出力を兼備したレーザビームを取
り出すことができる。
(a) Separate the functions of improving the quality and output of the laser beam, and assigning separate sections to the oscillation section, amplification section, and laser beam, respectively, and fully utilizing their respective specialized functions to achieve high quality. It is possible to extract a laser beam that has both high power and high power.

(b)発振部でのレーザ発振と増幅部でのレーザ光の増
幅のいずれについても励起光の利用効率を従来より高め
て、固体レーザ装置の発振効率を大幅に向上することが
できる。
(b) The utilization efficiency of excitation light can be increased more than ever for both laser oscillation in the oscillation section and amplification of laser light in the amplification section, and the oscillation efficiency of the solid-state laser device can be significantly improved.

(C)発振部と増幅部間の光軸合わせにとくに@密性を
要せず、光学的調整が容易である。
(C) No particular density is required for optical axis alignment between the oscillation section and the amplification section, and optical adjustment is easy.

このように、本発明は固体レーザ装置の半導体レーザ励
起に関する従来の問題を解決する実用性の高い手段を提
供するもので、その効率と性能の一層の向上に貢献する
ことが期待される。
As described above, the present invention provides a highly practical means for solving the conventional problems related to semiconductor laser excitation of solid-state laser devices, and is expected to contribute to further improvements in efficiency and performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体レーザ励起固体レーザ装置の実
施例の構成を示す斜視図である。第2図以降は従来技術
に関し、第2図は端面励起形固体レーザ装置の構成図、
第3図(a)は側面励起形固体レーザ装置の構成図、同
図(b)はその一部断面図、第4図は励起光をレーザ媒
質の表面の複数個所に注入する固体レーザ装置の構成図
、第5図はそれを改良した固体レーザ装置の構成図であ
る。 10:発振部、11:固体レーザ媒質(ロンド)、12
:半導体レーザ、20:増幅部、21:固体レーザ媒質
(スラブ)、24:半導体レーザアレイ、εL:励起光
、L:発振部により発生されるレーザ光、第21!]
FIG. 1 is a perspective view showing the structure of an embodiment of a semiconductor laser pumped solid-state laser device of the present invention. Figure 2 and subsequent figures relate to the prior art; Figure 2 is a configuration diagram of an end-pumped solid-state laser device;
Figure 3 (a) is a block diagram of a side-pumped solid-state laser device, Figure 3 (b) is a partial cross-sectional view, and Figure 4 is a diagram of a solid-state laser device that injects excitation light into multiple locations on the surface of a laser medium. FIG. 5 is a block diagram of an improved solid-state laser device. 10: Oscillation part, 11: Solid laser medium (Rondo), 12
: semiconductor laser, 20: amplification section, 21: solid laser medium (slab), 24: semiconductor laser array, εL: excitation light, L: laser light generated by oscillation section, 21st! ]

Claims (1)

【特許請求の範囲】[Claims] 半導体レーザを光励起用光源とする固体レーザ装置であ
って、光共振系内に置かれた固体レーザ媒質に対しその
小領域内に励起光を注入してこの注入と同方向にレーザ
光を発振させる発振部と、この発振部からレーザ光を別
の固体レーザ媒質に受けその内部を通過するレーザ光の
光路に側方から励起光を注入してレーザ光を非発振条件
で増幅する増幅部とを備え、レーザ光出力を増幅部から
取り出すようにした半導体レーザ励起固体レーザ装置。
A solid-state laser device that uses a semiconductor laser as a light source for optical excitation, which injects excitation light into a small region of a solid-state laser medium placed in an optical resonant system and oscillates laser light in the same direction as the injection. an oscillating section; and an amplifying section that receives laser light from the oscillating section into another solid-state laser medium and injects excitation light from the side into the optical path of the laser light passing through the solid-state laser medium to amplify the laser light under non-oscillation conditions. A solid-state laser device pumped by a semiconductor laser, in which laser light output is extracted from an amplifying section.
JP11718390A 1990-05-07 1990-05-07 Semiconductor excitation solid-state laser Pending JPH0414279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11718390A JPH0414279A (en) 1990-05-07 1990-05-07 Semiconductor excitation solid-state laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11718390A JPH0414279A (en) 1990-05-07 1990-05-07 Semiconductor excitation solid-state laser

Publications (1)

Publication Number Publication Date
JPH0414279A true JPH0414279A (en) 1992-01-20

Family

ID=14705470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11718390A Pending JPH0414279A (en) 1990-05-07 1990-05-07 Semiconductor excitation solid-state laser

Country Status (1)

Country Link
JP (1) JPH0414279A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188980A (en) * 2006-01-12 2007-07-26 Japan Science & Technology Agency Parasitic oscillation prevention laser equipment
JP2017208393A (en) * 2016-05-17 2017-11-24 オムロンオートモーティブエレクトロニクス株式会社 Solid-state laser device and method for manufacturing solid-state laser device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216588A (en) * 1985-05-24 1987-01-24 アマダ エンジニアリング アンド サ−ビス カンパニ− インコ−ポレ−テツド Laser unit
JPS62189778A (en) * 1986-02-17 1987-08-19 Toshiba Corp Laser oscillator
JPH01122180A (en) * 1987-09-30 1989-05-15 Spectra Physics Inc High efficiency mode harmonic solid state laser utilizing lateral pumping
JPH01220877A (en) * 1988-02-29 1989-09-04 Sony Corp Laser beam source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216588A (en) * 1985-05-24 1987-01-24 アマダ エンジニアリング アンド サ−ビス カンパニ− インコ−ポレ−テツド Laser unit
JPS62189778A (en) * 1986-02-17 1987-08-19 Toshiba Corp Laser oscillator
JPH01122180A (en) * 1987-09-30 1989-05-15 Spectra Physics Inc High efficiency mode harmonic solid state laser utilizing lateral pumping
JPH01220877A (en) * 1988-02-29 1989-09-04 Sony Corp Laser beam source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188980A (en) * 2006-01-12 2007-07-26 Japan Science & Technology Agency Parasitic oscillation prevention laser equipment
JP2017208393A (en) * 2016-05-17 2017-11-24 オムロンオートモーティブエレクトロニクス株式会社 Solid-state laser device and method for manufacturing solid-state laser device

Similar Documents

Publication Publication Date Title
US5271031A (en) High efficiency mode-matched solid-state laser with transverse pumping and cascaded amplifier stages
US4785459A (en) High efficiency mode matched solid state laser with transverse pumping
US4837771A (en) High-efficiency mode-matched solid-state laser with transverse pumping and cascaded amplifier stages
US5181223A (en) High-efficiency mode-matched transversely-pumped solid state laser amplifier
JP2003519902A (en) Optical amplifier device for solid-state laser (Verstaerker-Anordnung)
JPH06505369A (en) External cavity semiconductor laser system
JP2007081415A (en) High power laser devices
US5307365A (en) Cavity pumped, solid state lasers
JPH08181368A (en) Solid state laser amplifier and solid state laser device
US4956843A (en) Simultaneous generation of laser radiation at two different frequencies
JP2006339638A (en) Surface emitting laser coupled together with pump laser on single heat sink
JPH07505979A (en) Method and apparatus for generating and using high-density excited ions in a laser medium
US5696786A (en) Solid-state laser system
US6625194B1 (en) Laser beam generation apparatus
JP3053273B2 (en) Semiconductor pumped solid-state laser
JP2004296671A (en) Solid-state laser device
JPH0414279A (en) Semiconductor excitation solid-state laser
JP3271603B2 (en) LD pumped solid-state laser device
JPH0563264A (en) Semiconductor laser end pumped solid-state laser device
JPH07131092A (en) Solid-state laser equipment
JPH02122581A (en) Laser oscillator
JPH0448664A (en) Array semiconductor laser edge excitation solid state laser
US5838710A (en) Optical amplification device
JPH09270552A (en) Solid-state laser device
JP2000012931A (en) Solid-state laser