JPH04142734A - Fine processing device and method - Google Patents

Fine processing device and method

Info

Publication number
JPH04142734A
JPH04142734A JP2263872A JP26387290A JPH04142734A JP H04142734 A JPH04142734 A JP H04142734A JP 2263872 A JP2263872 A JP 2263872A JP 26387290 A JP26387290 A JP 26387290A JP H04142734 A JPH04142734 A JP H04142734A
Authority
JP
Japan
Prior art keywords
stage
vacuum chamber
magnetic field
counter electrode
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2263872A
Other languages
Japanese (ja)
Inventor
Masahiro Yoneda
昌弘 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2263872A priority Critical patent/JPH04142734A/en
Priority to KR1019910017093A priority patent/KR940010505B1/en
Priority to DE4132730A priority patent/DE4132730C2/en
Priority to US07/865,648 priority patent/US5228940A/en
Publication of JPH04142734A publication Critical patent/JPH04142734A/en
Priority to US08/044,009 priority patent/US5292401A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/3255Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To enable the excellent processing characteristics to be displayed in the fine processing of various materials by a method wherein at least a part of stage is composed of a magnetic body while this stage is impressed with magnetic field so that the dust raising may be prevented as well as changing the intervals between electrodes in no contact with each other. CONSTITUTION:A magnetic body 9 is buried in a stage 4A which is also filling the role of an electrode while a semiconductor substrate 2 is mounted on the stage 4A. On the other hand, outer magnetic field coils 10 as magnetic field generating means are arranged outside a vacuum chamber 1 so as to magnetically float the stage 4A by the magnetic field generated by this outer magnetic field coils 10. Next, the semiconductor substrate 2 as a work is mounted on the stage 4A. Next, the vacuum chamber 1 is exhausted from an exhaust port 7 while an etching material gas as a reactive gas is led into the vacuum chamber 1 from a reactive gas feed port 12 through the intermediary of a gas nozzle 5. Furthermore, the space between the stage 4A and an opposite electrode 6 is impressed with high-frequency voltage from a high-frequency power supply 3.

Description

【発明の詳細な説明】 「産業上の利用分野コ この発明は、基板又は基板上に形成された薄膜を微細加
工する装置及び方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus and method for microfabrication of a substrate or a thin film formed on a substrate.

[従来の技術] 第3図は従来の微細加工装置例えばプラズマエツチング
装置の概略断面図である。図において、真空チャンバー
(1)内には微細加工される試料例えば半導体基板(2
)が配置されている。この半導体基板(2)は、例えば
多結晶シリコン薄膜が表面に形成されかつ耐エツチング
マスクであるフォトレジストパターンが多結晶シリコン
薄膜上に形成されたものである。この半導体基板(2)
は、高周波電源(3)に接続され高周波電力を供給する
電極の役割を兼ね備えたステージ(4)上に載置されて
いる。半導体基板(2)に対向した位置には、反応性ガ
スであるエツチング材料ガス例えば塩素ガスを半導体基
板(2)に向けて均一に供給するためのガスノズル(5
)が設けられた対向電極(6)が配置されている。なお
、真空チャンバー(1)には、真空チャンバー(1)内
を排気するための排気口(7)及びエツチング材料ガス
を真空チャンバ(1)内に供給する反応性ガス供給口(
図示しない)が設けられている。さらに、対向電極(6
)の取り付は部分には、ステージ(4)と対向電極(6
)とを所定の間隔とするために、ねじ等からなる対向電
極(6)の移動手段(8)が設けられている。
[Prior Art] FIG. 3 is a schematic cross-sectional view of a conventional microfabrication apparatus, such as a plasma etching apparatus. In the figure, a sample to be microfabricated, such as a semiconductor substrate (2), is in a vacuum chamber (1).
) are placed. This semiconductor substrate (2) has, for example, a polycrystalline silicon thin film formed on its surface and a photoresist pattern serving as an etching-resistant mask formed on the polycrystalline silicon thin film. This semiconductor substrate (2)
is mounted on a stage (4) which is connected to a high frequency power source (3) and also serves as an electrode for supplying high frequency power. At a position facing the semiconductor substrate (2), there is a gas nozzle (5) for uniformly supplying a reactive etching material gas such as chlorine gas toward the semiconductor substrate (2).
) is provided with a counter electrode (6). The vacuum chamber (1) has an exhaust port (7) for evacuating the inside of the vacuum chamber (1) and a reactive gas supply port (7) for supplying etching material gas into the vacuum chamber (1).
(not shown) is provided. Furthermore, the counter electrode (6
) is attached to the stage (4) and counter electrode (6).
) is provided with a means (8) for moving the counter electrode (6), such as a screw, in order to maintain a predetermined distance between the two electrodes.

従来の微細加工装置は上述したように構成され、微細加
工を行うには、まず、排気手段(図示しない)により真
空チャンバ(1)内を排気口(7)により排気しながら
、反応性ガス供給口(図示しない)からガスノズル(5
)を介してエツチング材料ガスを真空チャンバー(1)
内に導入する。次に、高周波電源〈3)によりステージ
(4)及び対向電極(6)間に高周波電圧を印加してグ
ロー放電を生じさせる。これにより、真空チャンバー(
1)内に導入されたエツチング材料ガスが活性化されて
プラズマ(A)を生じ、活性な中性分子、中性原子、イ
オンを発生させることなる。これらの分子、原子、イオ
ンによって半導体基板(2)のエツチングが進行し、微
細加工が行われる。
The conventional microfabrication apparatus is configured as described above, and in order to perform microfabrication, first, a reactive gas is supplied while the inside of the vacuum chamber (1) is evacuated through the exhaust port (7) by an exhaust means (not shown). Gas nozzle (5
) to transfer the etching material gas to the vacuum chamber (1)
to be introduced within. Next, a high frequency voltage is applied between the stage (4) and the counter electrode (6) using a high frequency power source (3) to generate a glow discharge. This allows the vacuum chamber (
1) The etching material gas introduced into the etching chamber is activated to generate plasma (A), which generates active neutral molecules, neutral atoms, and ions. Etching of the semiconductor substrate (2) progresses by these molecules, atoms, and ions, and microfabrication is performed.

[発明が解決しようとする課題] 上述したような従来の微細加工技術には、以下のような
問題点がある。
[Problems to be Solved by the Invention] The conventional microfabrication techniques described above have the following problems.

(1)エツチング速度の均一性 従来の技術では、電極間隔を固定又は機械的に移動させ
て変化させるものであるため、エツチングの均一性に大
きく影響する電極間隔の最適化が難しく、エツチングに
寄与する活性化されたハロゲンガス又はイオン等の空間
分布が生じるために、特に大口径化されたエツチング試
料に対してエツチング速度の面内分布が生じ、この面内
分布を低減するためにエツチングチャンバーの大型化が
必要であるという問題点があった。
(1) Uniformity of etching speed In conventional technology, the electrode spacing is either fixed or changed by mechanically moving it, which makes it difficult to optimize the electrode spacing, which greatly affects the uniformity of etching. Due to the spatial distribution of activated halogen gas or ions, an in-plane distribution of the etching rate occurs, especially for large-diameter etching samples.In order to reduce this in-plane distribution, the etching chamber is There was a problem in that it needed to be larger.

(2)従来の技術では、ステージ(4)が移動できる構
造となっていても、機械的な移動であったため移動に伴
う発塵を防止することができず、この発塵が試料を微細
加工する上で大きな性能低下を生じさせており、頻繁に
チャンバー(1)内のクリニングを行わなければならな
いという問題点があった。すなわち、エツチング材料ガ
スにより副生成物が生じこれ自体が発塵の原因となるが
、特に、この副生成物が対向電極(6)の移動手段(8
)に付着し、半導体基板(2)をステージ(4)に載置
、除去する際に、副生成物が移動手段(8)から剥がれ
落ちて発塵の原因となっていた。
(2) In conventional technology, even if the stage (4) is movable, it is not possible to prevent the generation of dust due to movement because the movement is mechanical, and this dust generation can cause the sample to be fine-processed. However, there was a problem in that the inside of the chamber (1) had to be cleaned frequently. That is, by-products are generated by the etching material gas and are themselves a cause of dust generation. In particular, these by-products are caused by the moving means (8) of the counter electrode (6).
), and when the semiconductor substrate (2) is placed on the stage (4) and removed, the by-products peel off from the moving means (8), causing dust generation.

この発明は、このような問題点を解決するためになされ
たもので、発塵を防止できると共に、電極間隔を無接触
で変化させることによって、種々の微細加工法における
種々の材料の微細加工において、良好な加工特性が得ら
れる微細加工装置及び方法を得ることを目的とする。
This invention was made to solve these problems, and it can prevent dust generation and change the electrode spacing without contact, making it suitable for micromachining of various materials in various microfabrication methods. The object of the present invention is to obtain a microfabrication device and method that provide good machining characteristics.

[課題を解決するための手段] この発明の請求項(1)に係る微細加工装置は、ステー
ジの少なくとも一部を磁性体で構成し、このステージに
磁場を印加することによって、ステージに対向する対向
電極との間隔を所定の値に保持して微細加工を行うもの
である。
[Means for Solving the Problems] A microfabrication device according to claim (1) of the present invention includes at least a portion of the stage made of a magnetic material, and by applying a magnetic field to the stage, the microfabrication device faces the stage. Microfabrication is performed while maintaining the distance between the counter electrode and the counter electrode at a predetermined value.

また、この発明の請求項(2)に係る微細加工装置は、
対向電極の少なくとも一部を磁性体で構成し、この対向
電極に磁場を印加することによって、これに対向するス
テージとの間隔を所定の値に保持して微細加工を行うも
のである。
Further, the microfabrication device according to claim (2) of the present invention includes:
At least a portion of the counter electrode is made of a magnetic material, and by applying a magnetic field to the counter electrode, microfabrication is performed while maintaining the distance between the opposing electrode and the stage at a predetermined value.

さらに、この発明の請求項(3)に係る微細加工方法は
、ステージ又は対向電極の少なくとも一部を磁性体で構
成し、このステージ又は対向電極に磁場を印加すること
によって、これに対向する対向電極又はステージとの間
隔を所定の値に保持して微細加工を行うものである。
Furthermore, in the microfabrication method according to claim (3) of the present invention, at least a part of the stage or the counter electrode is made of a magnetic material, and by applying a magnetic field to the stage or the counter electrode, Microfabrication is performed by maintaining the distance between the electrode or the stage at a predetermined value.

[作 用] この発明による微細加工装置及び方法においては、試料
(被加工物質)が設置されるステージ又は対向電極を磁
気浮上により無接触で移動させ又は電極間隔の調整を行
うものである。
[Function] In the microfabrication apparatus and method according to the present invention, the stage on which the sample (material to be processed) is placed or the counter electrode is moved without contact by magnetic levitation, or the electrode spacing is adjusted.

[実施例] 第1図はこの発明の一実施例による微細加工装置例えば
プラズマエツチング装置を示す概略図であり、(1)〜
(3)、(5)及び(7)は上述した従来の微細加工装
置におけるものと全く同一である。
[Embodiment] FIG. 1 is a schematic diagram showing a microfabrication apparatus, such as a plasma etching apparatus, according to an embodiment of the present invention.
(3), (5), and (7) are exactly the same as those in the conventional microfabrication apparatus described above.

この発明においては、ステージ(4A)に磁性体(9)
が埋め込まれおり、このステージ(4A)は電極の役目
もすると共に、その上に半導体基板(2)を載置する。
In this invention, the stage (4A) is provided with a magnetic material (9).
is embedded, and this stage (4A) also serves as an electrode, and the semiconductor substrate (2) is placed thereon.

真空チャンバ(1)の外部には、磁場発生手段である外
部磁場コイル(10)が配置されており、この外部磁場
コイル(10)により発生した磁界によってステージ(
4A)を磁気浮上させる。
An external magnetic field coil (10), which is a magnetic field generating means, is arranged outside the vacuum chamber (1), and the stage (
4A) magnetically levitate.

なお、ステージ(4A)は、可撓性の電線(11)等に
より高周波電源(3)に接続されている。
Note that the stage (4A) is connected to a high frequency power source (3) through a flexible electric wire (11) or the like.

上述したように構成された微細加工装置を用いる微細加
工方法では、まず、被加工物である半導体基板(2〉を
ステージ(4A)上に載置する。次に、排気口(7)よ
り真空チャンバ(1)内を排気し、反応性ガス供給口(
12)からガスノズル(5)を介して反応性ガスである
エツチング材料ガスを真空チャンバ(1)内に導入する
。さらに、高周波電源(3)によりステージ(4A)及
び対向電極(6)間に高周波電圧を印加することにより
グロー放電を生じ、真空チャンバ(1)内に導入された
エツチング材料ガスは活性化されてプラズマ化し、活性
な中性分子、中性原子、イオンを発生させることなる。
In a microfabrication method using a microfabrication device configured as described above, first, a semiconductor substrate (2) as a workpiece is placed on a stage (4A).Next, a vacuum is applied from an exhaust port (7). Evacuate the chamber (1) and open the reactive gas supply port (
12), a reactive etching material gas is introduced into the vacuum chamber (1) through the gas nozzle (5). Further, by applying a high frequency voltage between the stage (4A) and the counter electrode (6) by the high frequency power source (3), a glow discharge is generated, and the etching material gas introduced into the vacuum chamber (1) is activated. It turns into plasma and generates active neutral molecules, neutral atoms, and ions.

これらの分子、原子、イオンによって半導体基板(2)
のエツチングが進行し微細加工が行われる。
These molecules, atoms, and ions form a semiconductor substrate (2)
Etching progresses and microfabrication is performed.

この時さらに、外部磁場コイル(10)により磁場を発
生させ、半導体基板(2)が載置されているステージ(
4A)を磁場の反発力により所定の電極間隔になるよう
にする。このように、電極間隔を最適な値に維持するこ
とによって、エツチング特性を向上させることができる
。また、ステージ(4A)中の磁性体(9)からの磁場
の作用によって、電極周辺に形成されるイオンシース領
域での電界が緩和されイオンの衝突エネルギーが小さく
なることにより、加工時のプラズマによる被加工物質の
照射損傷を少なくすることができる。さらに、磁界によ
りプラズマ中の電離イオンの密度が上がり、エツチング
速度を向上させることができ、良好な微細加工が可能と
なる。
At this time, a magnetic field is further generated by the external magnetic field coil (10), and the stage (2) on which the semiconductor substrate (2) is placed is generated.
4A) is made to have a predetermined electrode spacing by the repulsive force of the magnetic field. In this way, by maintaining the electrode spacing at an optimum value, etching characteristics can be improved. In addition, due to the action of the magnetic field from the magnetic material (9) in the stage (4A), the electric field in the ion sheath region formed around the electrode is relaxed, and the collision energy of ions is reduced, which is caused by plasma during processing. Irradiation damage to the material to be processed can be reduced. Furthermore, the magnetic field increases the density of ionized ions in the plasma, making it possible to improve the etching rate and making it possible to perform fine microfabrication.

なお、上述した実施例では、ステージ(4A)を磁気浮
上させる場合について説明したが、第2図に示すように
、ステージ(4)を固定し、対向電極(6A)の例えば
全体を強磁性体により構成してこれを磁気浮上させるこ
とにより!極間の間隔を最適にしてもよい。なおこの場
合、反応性ガス供給口(12)と対向電極(6A)とは
、可撓性のパイプ(13)等により接続する。
In the above-mentioned embodiment, the case where the stage (4A) is magnetically levitated was explained, but as shown in FIG. By constructing this and making it magnetically levitate! The spacing between the poles may be optimized. In this case, the reactive gas supply port (12) and the counter electrode (6A) are connected by a flexible pipe (13) or the like.

なお、上述した実施例では、微細加工方法としてプラズ
マエツチング法について説明したが、反応性イオンエツ
チング法、磁場支援型反応性イオンエツチング法、電子
サイクロトロンプラズマエツチング法、中性ビームエツ
チング法、光励起エツチング法、光支援型エツチング法
又は物理的イオンエツチング法にも同様に適用できる。
In the above embodiments, plasma etching was explained as a microfabrication method, but reactive ion etching, magnetic field assisted reactive ion etching, electron cyclotron plasma etching, neutral beam etching, and photoexcitation etching may also be used. , photo-assisted etching or physical ion etching.

また、被微細加工膜として多結晶シリコン薄膜が表面に
形成された半導体基板(2)を用いたが、シリコン酸化
膜、シリコン窒化膜、シリコン酸化窒化膜であってもよ
く、単結晶シリコン膜を用いてもよい。
Further, although a semiconductor substrate (2) having a polycrystalline silicon thin film formed on its surface was used as the film to be microfabricated, it may also be a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a single crystal silicon film. May be used.

さらに、被微細加工膜は、タングステン、タンタル、モ
リブデン、ジルコニウム、チタン、ハフニウム、クロム
、白金、鉄、亜鉛又はスズ、及びこれらのケイ化物もし
くは窒化物もしくは炭化物;アルミニウム、銅、金、銀
、及びこれらを主成分とする合金;ノボラック系樹脂、
ポリイミドなどの有機高分子材料のいずれの膜であって
もよい。
Further, the film to be microfabricated may include tungsten, tantalum, molybdenum, zirconium, titanium, hafnium, chromium, platinum, iron, zinc, or tin, and their silicides, nitrides, or carbides; aluminum, copper, gold, silver, and Alloys containing these as main components; novolak resin,
It may be any film made of an organic polymer material such as polyimide.

また、被微細加工膜は、PZT (鉛・亜鉛・スズ)な
どの強誘電体、酸化物超電導体を含む超電導体、又は強
磁性体であってもよい。
Further, the film to be microfabricated may be a ferroelectric material such as PZT (lead, zinc, tin), a superconductor including an oxide superconductor, or a ferromagnetic material.

上述した実施例では、試料すなわち被加工物質として、
半導体集積回路製造過程にある半導体基板(2)上に形
成されている薄膜について説明したが、磁気記憶装置に
おいて用いられる磁気テープ、磁気ディスク等の記憶素
子形成過程の基材、光応用記憶装置において用いられる
光ディスク等の記憶素子形成過程の基材、金属整形物も
しくはその表面に微細加工形成された薄膜、又はネジ等
の機械要素もしくは加工用工具であってもよい。
In the embodiments described above, the sample, that is, the material to be processed,
Although we have explained the thin film formed on the semiconductor substrate (2) in the manufacturing process of semiconductor integrated circuits, it is also used as a base material in the process of forming storage elements such as magnetic tapes and magnetic disks used in magnetic storage devices, and in optical storage devices. It may be a base material used in the process of forming a storage element such as an optical disk, a formed metal object or a thin film microfabricated on the surface thereof, or a mechanical element such as a screw or a processing tool.

[発明の効果] この発明による微細加工装置及び方法は、以上説明した
とおり、試料が設置されるステージ又は対向電極を磁気
浮上により無接触で移動させ又は電極間隔の調整を行う
ので、発塵を伴わず、エツチングの最適条件(エツチン
グ均一性、エツチング速度、エツチング方向性)で処理
することができ、プラズマによる照射損傷が少なく、か
つ高速のエツチングが実現でき、良好な微細加工が可能
であるという効果を奏する。
[Effects of the Invention] As explained above, the microfabrication apparatus and method according to the present invention move the stage on which the sample is placed or the opposing electrode without contact by magnetic levitation, or adjust the electrode spacing, thereby reducing dust generation. The etching process can be performed under the optimum etching conditions (etching uniformity, etching speed, etching directionality) without the need for etching, and it is possible to achieve high-speed etching with little damage caused by plasma irradiation, making it possible to achieve good microfabrication. be effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるプラズマエツチング
装置を示す概略断面図、第2図はこの発明の他の実施例
によるプラズマエツチング装置を示す概略断面図、第3
図は従来のプラズマエツチング装置を示す概略断面図で
ある。 図において、(1)は真空チャンバ、(2)は半導体基
板、く3)は高周波電源、(4)、(4A)はステージ
、(5)はガスノズル、(6)、(6A)は対向電極、
(7)は排気口、くっ)は磁性体、(10)は外部磁場
コイル、(11)はt、i、(12)は反応性ガス供給
口、(13)はパイプである。 なお、各図中、同一符号は同一または相当部分を示す。 代 理 人 曾 我 道 昭 兜1図 2−・・、U芯・注力゛、ス柔片諌片口六 手 続 補 正 嘗 l。 事件の表示 平成2年特許願第263872号 2゜ 発明の名称 微細加工装置及び方法 3゜ 補正をする者 名 称(601)三菱電機株式会社 代表者  志 岐 守 哉 4゜ 代 理 人 住 所 東京都千代田区丸の内3丁目1番1号 国際ビルディング8# 5゜ 補正の対象 (1)明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書第10頁第6行「接続する。Jの後に次の
記載を加入する。 「また、対向電極(6A)内に磁性体(図示しない)を
埋め込んでもよい。」 以上
FIG. 1 is a schematic sectional view showing a plasma etching apparatus according to one embodiment of the present invention, FIG. 2 is a schematic sectional view showing a plasma etching apparatus according to another embodiment of the invention, and FIG.
The figure is a schematic sectional view showing a conventional plasma etching apparatus. In the figure, (1) is a vacuum chamber, (2) is a semiconductor substrate, 3) is a high-frequency power source, (4) and (4A) are a stage, (5) is a gas nozzle, and (6) and (6A) are counter electrodes. ,
(7) is an exhaust port, (k) is a magnetic material, (10) is an external magnetic field coil, (11) is t, i, (12) is a reactive gas supply port, and (13) is a pipe. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Soga Michiaki Kabuto 1 Figure 2-..., U core/focus ゛, soft piece, Katakuchi, 6 procedure amendments. Display of the case 1990 Patent Application No. 263872 2゜Name of the invention Microfabrication device and method 3゜Name of the person making the amendment (601) Mitsubishi Electric Corporation Representative Moriya Shiki 4゜Agent address Chiyoda-ku, Tokyo Marunouchi 3-1-1 Kokusai Building 8#5゜Subject of amendment (1) Column 6 of detailed explanation of the invention in the specification, contents of amendment (1) Page 10 of the specification, line 6 “Connect.J” Add the following statement after: "Furthermore, a magnetic material (not shown) may be embedded in the counter electrode (6A)."

Claims (3)

【特許請求の範囲】[Claims] (1)真空チャンバと、 この真空チャンバ内に反応性ガスを供給する反応性ガス
供給手段と、 上記真空チャンバ内に配置され試料を載置すると共に電
極となり、少なくとも一部が磁性体で構成されたステー
ジと、 上記試料を載置したステージに対向して設けられた対向
電極と、 上記ステージと上記対向電極との間を所定の間隔に保つ
ために上記ステージを磁気浮上させる磁場発生手段と、 上記真空チャンバ内を排気する排気手段とを備えたこと
を特徴とする微細加工装置。
(1) a vacuum chamber; a reactive gas supply means for supplying a reactive gas into the vacuum chamber; and a reactive gas supply means disposed within the vacuum chamber for placing a sample and acting as an electrode, at least a portion of which is made of a magnetic material. a stage on which the sample is placed; a counter electrode provided opposite to the stage on which the sample is placed; a magnetic field generating means for magnetically levitating the stage to maintain a predetermined distance between the stage and the counter electrode; A microfabrication device comprising: an exhaust means for exhausting the inside of the vacuum chamber.
(2)真空チャンバと、 この真空チャンバ内に反応性ガスを供給する反応性ガス
供給手段と、 上記真空チャンバ内に配置され試料を載置すると共に電
極となるステージと、 上記試料を載置したステージに対向して設けられ、少な
くとも一部が磁性体で構成された対向電極と、 上記ステージと上記対向電極との間を所定の間隔に保つ
ために上記対向電極を磁気浮上させる磁場発生手段と、 上記真空チャンバ内を排気する排気手段とを備えたこと
を特徴とする微細加工装置。
(2) a vacuum chamber; a reactive gas supply means for supplying a reactive gas into the vacuum chamber; a stage disposed within the vacuum chamber on which a sample is placed and which serves as an electrode; and a stage on which the sample is placed. a counter electrode provided opposite to the stage and at least partially made of a magnetic material; and a magnetic field generating means for magnetically levitating the counter electrode in order to maintain a predetermined distance between the stage and the counter electrode. A microfabrication apparatus comprising: an exhaust means for evacuating the inside of the vacuum chamber.
(3)微細加工される試料を真空チャンバ内のステージ
上に載置し、 上記真空チャンバ内を所定の真空度まで排気し、上記真
空チャンバ内に反応性ガスを供給し、上記ステージ又は
このステージに対向して設けられた対向電極に磁場発生
手段により磁場を印加して浮上させ、ステージと対向電
極とを所定の間隔に保ち、 次いで、上記ステージ及び上記対向電極により上記反応
性ガスのプラズマを上記真空チャンバ内に発生させ、上
記試料の微細加工を行うことを特徴とする微細加工方法
(3) Place the sample to be microfabricated on a stage in a vacuum chamber, evacuate the vacuum chamber to a predetermined degree of vacuum, supply a reactive gas into the vacuum chamber, and place the sample on the stage or this stage. A magnetic field is applied to a counter electrode provided opposite to the stage by a magnetic field generating means to levitate the stage, and the stage and the counter electrode are maintained at a predetermined distance, and then the plasma of the reactive gas is generated by the stage and the counter electrode. A microfabrication method characterized in that the sample is generated in the vacuum chamber and the sample is microfabricated.
JP2263872A 1990-10-03 1990-10-03 Fine processing device and method Pending JPH04142734A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2263872A JPH04142734A (en) 1990-10-03 1990-10-03 Fine processing device and method
KR1019910017093A KR940010505B1 (en) 1990-10-03 1991-09-30 Fine processing method and device thereby
DE4132730A DE4132730C2 (en) 1990-10-03 1991-10-01 Method and manufacture of fine structures and device for carrying out the method and use of the device
US07/865,648 US5228940A (en) 1990-10-03 1992-04-10 Fine pattern forming apparatus
US08/044,009 US5292401A (en) 1990-10-03 1993-04-08 Method of forming a fine pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2263872A JPH04142734A (en) 1990-10-03 1990-10-03 Fine processing device and method

Publications (1)

Publication Number Publication Date
JPH04142734A true JPH04142734A (en) 1992-05-15

Family

ID=17395417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2263872A Pending JPH04142734A (en) 1990-10-03 1990-10-03 Fine processing device and method

Country Status (3)

Country Link
JP (1) JPH04142734A (en)
KR (1) KR940010505B1 (en)
DE (1) DE4132730C2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2501948B2 (en) * 1990-10-26 1996-05-29 三菱電機株式会社 Plasma processing method and plasma processing apparatus
KR101510269B1 (en) * 2008-07-28 2015-04-14 주성엔지니어링(주) Substrate processing equipment and method for forming thin film using the same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589465A (en) * 1978-12-27 1980-07-07 Hitachi Ltd Surface treatment device
JPS5715424A (en) * 1980-07-01 1982-01-26 Matsushita Electric Ind Co Ltd Dry etching method
JPS5723226A (en) * 1980-07-17 1982-02-06 Nippon Telegr & Teleph Corp <Ntt> Plasma etching device
JPS58139439A (en) * 1982-02-15 1983-08-18 Nippon Telegr & Teleph Corp <Ntt> Feeding device for wafer
JPS58200529A (en) * 1982-05-19 1983-11-22 Hitachi Ltd Plasma processing apparatus
JPS6036222A (en) * 1983-08-05 1985-02-25 Irie Koken Kk Article conveying device under high-vaccum
JPS60100687A (en) * 1983-11-04 1985-06-04 Hitachi Ltd Vacuum treatment device
JPS60103620A (en) * 1983-11-11 1985-06-07 Hitachi Ltd Plasma treatment device
JPS60248518A (en) * 1984-05-23 1985-12-09 Seiko Epson Corp Conveyor
JPS63173307A (en) * 1987-01-13 1988-07-16 Yuugou Giken:Kk Magnetic levitation carrying system in ultra-high vacuum vessel made of ceramic
JPS6471120A (en) * 1987-09-10 1989-03-16 Mitsubishi Electric Corp Heating equipment
JPH01205438A (en) * 1988-10-12 1989-08-17 Hitachi Ltd Magnetic-levitation-type transfer apparatus
JPH01302820A (en) * 1988-05-31 1989-12-06 Fujitsu Ltd Control device for dry etching device
JPH01312072A (en) * 1988-06-13 1989-12-15 Asahi Glass Co Ltd Vacuum treatment equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3914065A1 (en) * 1989-04-28 1990-10-31 Leybold Ag DEVICE FOR CARRYING OUT PLASMA ETCHING PROCESSES
DE3935189A1 (en) * 1989-10-23 1991-05-08 Leybold Ag Ionic etching substrates of silicon di:oxide coated - with poly-silicon or silicide layers-using etching gas of chlorine, silicon chloride and nitrogen
JPH04111312A (en) * 1990-08-31 1992-04-13 Mitsubishi Electric Corp Method and apparatus for fine processing
JPH04111313A (en) * 1990-08-31 1992-04-13 Mitsubishi Electric Corp Method and apparatus for fine processing

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589465A (en) * 1978-12-27 1980-07-07 Hitachi Ltd Surface treatment device
JPS5715424A (en) * 1980-07-01 1982-01-26 Matsushita Electric Ind Co Ltd Dry etching method
JPS5723226A (en) * 1980-07-17 1982-02-06 Nippon Telegr & Teleph Corp <Ntt> Plasma etching device
JPS58139439A (en) * 1982-02-15 1983-08-18 Nippon Telegr & Teleph Corp <Ntt> Feeding device for wafer
JPS58200529A (en) * 1982-05-19 1983-11-22 Hitachi Ltd Plasma processing apparatus
JPS6036222A (en) * 1983-08-05 1985-02-25 Irie Koken Kk Article conveying device under high-vaccum
JPS60100687A (en) * 1983-11-04 1985-06-04 Hitachi Ltd Vacuum treatment device
JPS60103620A (en) * 1983-11-11 1985-06-07 Hitachi Ltd Plasma treatment device
JPS60248518A (en) * 1984-05-23 1985-12-09 Seiko Epson Corp Conveyor
JPS63173307A (en) * 1987-01-13 1988-07-16 Yuugou Giken:Kk Magnetic levitation carrying system in ultra-high vacuum vessel made of ceramic
JPS6471120A (en) * 1987-09-10 1989-03-16 Mitsubishi Electric Corp Heating equipment
JPH01302820A (en) * 1988-05-31 1989-12-06 Fujitsu Ltd Control device for dry etching device
JPH01312072A (en) * 1988-06-13 1989-12-15 Asahi Glass Co Ltd Vacuum treatment equipment
JPH01205438A (en) * 1988-10-12 1989-08-17 Hitachi Ltd Magnetic-levitation-type transfer apparatus

Also Published As

Publication number Publication date
KR940010505B1 (en) 1994-10-24
KR920008864A (en) 1992-05-28
DE4132730C2 (en) 1994-11-10
DE4132730A1 (en) 1992-04-09

Similar Documents

Publication Publication Date Title
JP2501948B2 (en) Plasma processing method and plasma processing apparatus
US5246532A (en) Plasma processing apparatus
JP5219479B2 (en) Uniformity control method and system in ballistic electron beam enhanced plasma processing system
JP3920015B2 (en) Si substrate processing method
JP2016082019A (en) Method for etching multilayered film
JPH065567A (en) Method and apparatus for removing damage beneath surface of semiconductor material by plasma etching
JPS62195122A (en) Plasma processing apparatus with magnified magnetic field
JP2898635B2 (en) Method and apparatus for reducing sputtering of a second electrode
JPS5915982B2 (en) Electric discharge chemical reaction device
US5228940A (en) Fine pattern forming apparatus
JP3524763B2 (en) Etching method
JPH09115887A (en) Plasma etching method and apparatus therefor
JPH088235B2 (en) Plasma reactor
JPH04142734A (en) Fine processing device and method
TWI278953B (en) Apparatus for manufacturing semiconductor device
JPH03263827A (en) Digital etching apparatus
JPH0311542B2 (en)
JPS6139521A (en) Plasma surface treatment device
JP4865951B2 (en) Plasma etching method
JP3445657B2 (en) ECR plasma etching method for diamond thin film
JPS607132A (en) Dry etching device
JPH02110925A (en) Vacuum processing and device therefor
JPS60200956A (en) Discharge reaction device
JPH0578171B2 (en)
JP3321584B2 (en) Plasma processing method