JPH0414260B2 - - Google Patents

Info

Publication number
JPH0414260B2
JPH0414260B2 JP61046517A JP4651786A JPH0414260B2 JP H0414260 B2 JPH0414260 B2 JP H0414260B2 JP 61046517 A JP61046517 A JP 61046517A JP 4651786 A JP4651786 A JP 4651786A JP H0414260 B2 JPH0414260 B2 JP H0414260B2
Authority
JP
Japan
Prior art keywords
metal hydride
hydrogen
temperature
gas
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61046517A
Other languages
Japanese (ja)
Other versions
JPS62202971A (en
Inventor
Takashi Inami
Isao Takeshita
Tsutomu Harada
Minoru Tagashira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61046517A priority Critical patent/JPS62202971A/en
Publication of JPS62202971A publication Critical patent/JPS62202971A/en
Publication of JPH0414260B2 publication Critical patent/JPH0414260B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は工場廃熱等によつて駆動される間欠作
動式ヒートポンプ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an intermittent heat pump device driven by factory waste heat or the like.

従来の技術 一般に間欠作動式ヒートポンプ用作動物質とし
てゼオライトあるいは金属水素化物等が用いら
れ、これらの作動物質と反応する作動気体は前者
に対しては水、後者に対しては水素が相当する。
ここでは金属水素化物を用いた間欠作動式ヒート
ポンプ装置の従来例について説明する。
2. Description of the Related Art Generally, zeolite or metal hydride is used as a working substance for an intermittent heat pump, and the working gas that reacts with these working substances is water for the former and hydrogen for the latter.
Here, a conventional example of an intermittent operation type heat pump device using a metal hydride will be explained.

TiMn系合金に代表される金属水素化物はある
温度圧力条件のもとで水素ガスを吸蔵して発熱反
応を行ない、別の温度、圧力条件のもとでは水素
ガスを放出して吸熱反応を行なう。金属水素化物
の上記の特性を利用して金属水素化物が水素と反
応する際の反応熱を適当な熱媒により熱交換する
ことによつて外部に取り出し、温熱発生時には暖
房給湯用として、冷熱発生時には冷房用として利
用することができる。駆動用熱源として高温の工
場廃ガスを用いた間欠作動式ヒートポンプ装置の
従来の構成例を第2図に示す。
Metal hydrides, such as TiMn alloys, absorb hydrogen gas and perform an exothermic reaction under certain temperature and pressure conditions, and release hydrogen gas and perform an endothermic reaction under other temperature and pressure conditions. . Utilizing the above-mentioned properties of metal hydrides, the reaction heat when metal hydrides react with hydrogen is extracted to the outside by heat exchange with an appropriate heating medium, and when hot heat is generated, it is used for heating and hot water supply, and cold heat is generated. Sometimes it can be used for cooling purposes. FIG. 2 shows an example of a conventional configuration of an intermittent-operating heat pump device that uses high-temperature factory waste gas as a driving heat source.

2つの異なる水素吸蔵平衡圧を有する金属水素
化物1(MH1と呼ぶ)及び金属水素化物2
(MH2)は第2図に示すように金属水素化物収容
容器3および4内に充てんされており、特に金属
水素化物収容容器3は複数の管状の容器に分割さ
れている。金属水素化物1および2は水素導管5
によつて連通しており、前記導管5の途中にバル
ブ6が設けられている。複数に分割された金属水
素化物収容容器3は高温ガス通路7内に設置され
ており高温ガス8により加熱されるようになつて
いる。金属水素化物収容容器4には熱媒体流路9
が設けられ金属水素化物が水素を吸蔵解離する際
の反応熱を熱交換により熱媒体に伝達するように
構成されている。
Metal hydride 1 (referred to as MH 1 ) and metal hydride 2 with two different hydrogen storage equilibrium pressures
(MH 2 ) is filled in the metal hydride containers 3 and 4 as shown in FIG. 2, and in particular, the metal hydride container 3 is divided into a plurality of tubular containers. Metal hydrides 1 and 2 are in hydrogen conduit 5
A valve 6 is provided in the middle of the conduit 5. The metal hydride storage container 3, which is divided into a plurality of parts, is installed in a high-temperature gas passage 7 and is heated by a high-temperature gas 8. A heat medium flow path 9 is provided in the metal hydride storage container 4.
is provided so that the reaction heat generated when the metal hydride absorbs and dissociates hydrogen is transferred to the heat medium through heat exchange.

今、MH1からMH2へ水素を移動させる場合を
考える。水素移動開始前にはMH1はMH2よりも
水素の吸蔵量が多い状態にある。高温ガス8によ
りMH1は高温に加熱され水素平衡圧力が一方の
MH2より高くなりバルブ6を開けることによつ
て水素はMH1からMH2へ移動する。このとき、
MH2は水素を吸蔵するため発熱反応を起こし発
生した熱は熱媒体により外部へ取りだされる。こ
こで金属水素化物収容容器3が高温ガス8より加
熱される際高温ガス8に最も近接した最前列の
MH1の温度が最も高く、高温ガス8の流動方向
に従つてMH1との熱交換により高温ガス8の温
度が低下するとともに、また温度の低下により高
温ガスの流速が減少するため熱伝達率も低下する
ため後列にいくに従つてMH1の加熱される温度
は低くなる。このようにMH1の温度に均一性が
得られず、温度分布を有するときには水素解離平
衡圧にも高低差が生じ、バルブ6をあけてMH1
からMH2へ水素を移動させた場合、水素の移動
は圧力差で起こるため、水素解離平衡圧の高い部
分(温度の高い部分)のMH1からの水素移動量
が最も多く、水素解離平衡圧の低い部分(温度の
低い部分)のMH1からの水素移動量が最も少な
くなる。つまり、分割された金属水素化物収容容
器3にMH1を等分に充てんしても、加熱温度の
不均一性により水素移動量が異なり、合金の利用
度に差が生じて温度の低い部分のMH1は利用度
が悪いという欠点があつた。
Now, consider the case of transferring hydrogen from MH 1 to MH 2 . Before the start of hydrogen transfer, MH 1 is in a state where it stores more hydrogen than MH 2 . MH 1 is heated to a high temperature by high temperature gas 8, and the hydrogen equilibrium pressure is on one side.
When the temperature becomes higher than MH 2 and valve 6 is opened, hydrogen moves from MH 1 to MH 2 . At this time,
Since MH 2 absorbs hydrogen, it causes an exothermic reaction and the generated heat is extracted to the outside by a heat medium. Here, when the metal hydride storage container 3 is heated by the high temperature gas 8, the first row closest to the high temperature gas 8 is heated.
The temperature of MH 1 is the highest, and according to the flow direction of high temperature gas 8, the temperature of high temperature gas 8 decreases due to heat exchange with MH 1 , and the flow rate of high temperature gas decreases due to the decrease in temperature, so the heat transfer coefficient decreases. As the temperature decreases, the temperature at which MH 1 is heated becomes lower as one goes to the back row. In this way, when the temperature of MH 1 is not uniform and has a temperature distribution, the hydrogen dissociation equilibrium pressure also varies in height, and when the valve 6 is opened, MH 1
When hydrogen is transferred from MH 2 to MH 2, hydrogen transfer occurs due to pressure difference, so the amount of hydrogen transferred from MH 1 is largest in the area where the hydrogen dissociation equilibrium pressure is high (the area where the temperature is high), and the hydrogen dissociation equilibrium pressure The amount of hydrogen transferred from MH 1 is the lowest in the low temperature area (low temperature area). In other words, even if the divided metal hydride storage container 3 is filled with MH 1 in equal parts, the amount of hydrogen transferred will differ due to the non-uniformity of the heating temperature, resulting in a difference in the degree of utilization of the alloy, resulting in lower temperature parts. MH 1 had the disadvantage of being poorly utilized.

この欠点は他の作動物質、例えばゼオライトに
おいても同様である。
This drawback also applies to other working materials, such as zeolites.

発明が解決しようとする問題点 以上述べたように高温ガスによつて複数に分割
された作動物質収容容器を加熱するとき、作動物
質の各収容容器間に温度分布が生じる。温度が低
い部分の作動物質はその作動気体に対する解離平
衡圧が低くなり、対になつた他の収容容器へ作動
気体を移動させる場合、作動気体の移動量は温度
の高い部分の作動気体に較べて少なくなり、作動
気体としての利用度が悪くなるという欠点があつ
た。
Problems to be Solved by the Invention As described above, when a plurality of divided working substance containers are heated with high-temperature gas, a temperature distribution occurs between the working substance containers. The dissociation equilibrium pressure of the working substance in the lower temperature area with respect to the working gas is lower, and when the working gas is transferred to the other paired container, the amount of working gas transferred is smaller than that of the working gas in the higher temperature area. This has the disadvantage that the amount of gas decreases, making it less useful as a working gas.

問題点を解決するための手段 本発明は以上のように、作動物質あるいは作動
気体を収容した複数の容器を互いに連通させ、相
互に作動気体の移動を行なわせて作動物質が作動
気体と反応する際の反応熱を暖房給湯あるいは冷
房に利用する間欠作動式ヒートポンプ装置の少く
とも一方の作動物質収容容器が複数の容器に分割
されて、高温ガスの通路内に設置され、高温ガス
により加熱されて作動気体を放出する際に、作動
物質収容容器の配列が高温ガスの流動方向に従つ
てたとえば、ごばん目配列から千鳥配列へ移行す
ること等により、前記容器の配列を不均一にする
ことにより解決しようとするものである。
Means for Solving the Problems As described above, the present invention allows a plurality of containers containing a working substance or a working gas to communicate with each other so that the working gas is mutually transferred so that the working substance reacts with the working gas. At least one of the working substance storage containers of an intermittent-operating heat pump device that uses the reaction heat from the reaction for heating, hot water supply, or cooling is divided into multiple containers, installed in a high-temperature gas passage, and heated by the high-temperature gas. When releasing the working gas, by making the arrangement of the working substance storage containers non-uniform, for example, by shifting from a zigzag arrangement to a staggered arrangement according to the flow direction of the hot gas. This is what we are trying to solve.

作 用 本発明は上記した構成により高温ガスによつて
複数に分割された作動物質収容容器を加熱して、
作動気体を放出させる際、各収容容器の温度分布
を均一にして作動気体放出量を一定にすることが
でき、作動物質の利用率の均一化が図れる。
Effect The present invention heats the working substance storage container divided into a plurality of parts using high-temperature gas with the above-described configuration, and
When the working gas is released, the temperature distribution of each container can be made uniform to make the amount of working gas released constant, and the utilization rate of the working substance can be made uniform.

実施例 以下本発明の一実施例を添付図面にもとづいて
説明する。第1図は本発明の一実施例の金属水素
化物を用いた間欠作動式ヒートポンプ装置の構成
図である。
Embodiment An embodiment of the present invention will be described below based on the accompanying drawings. FIG. 1 is a block diagram of an intermittent operation type heat pump device using a metal hydride according to an embodiment of the present invention.

金属水素化物1(MH1)は多数に分割された
管状の金属水素化物収容容器3に等量づつ充てん
されている。金属水素化物2(MH2)は金属水
素化物収容容器4に充てんされている。管状の金
属水素化物収容容器3の端部にはそれぞれ水素ガ
スが流出入するための配管が接続されており、そ
れらが集合して、最終的に一本の水素導管5を形
成している。金属水素化物収容容器4は水素導管
5によつて金属水素化物収容容器3と連通してい
る。水素導管5の途中にはバルブ6が設けられて
いる。多数の管状の金属水素化物収容容器3は、
高温ガス通路7に設置され、高温気体ガス8より
加熱されるように構成されている。金属水素化物
収容容器3の配列は、高温気体ガスの流動する方
向に従つてごばん目配列から千鳥配列へ連続的に
移行している。
The metal hydride 1 (MH 1 ) is filled into a plurality of divided tubular metal hydride storage containers 3 in equal amounts. A metal hydride storage container 4 is filled with metal hydride 2 (MH 2 ). Piping for hydrogen gas to flow in and out is connected to each end of the tubular metal hydride storage container 3, and these pipes are assembled to finally form one hydrogen conduit 5. The metal hydride container 4 communicates with the metal hydride container 3 via a hydrogen conduit 5 . A valve 6 is provided in the middle of the hydrogen conduit 5. A large number of tubular metal hydride storage containers 3 are
It is installed in the high temperature gas passage 7 and is configured to be heated by the high temperature gas 8. The arrangement of the metal hydride containers 3 continuously changes from a diagonal arrangement to a staggered arrangement according to the direction in which the high-temperature gas flows.

金属水素化物収容容器4には、熱媒体流路9が
設けられ、金属水素化物2が水素を吸蔵あるいは
解離する際の反応熱を熱媒体に伝達し外部に取り
出せるように構成されている。
The metal hydride storage container 4 is provided with a heat medium flow path 9, and is configured so that the heat of reaction when the metal hydride 2 absorbs or dissociates hydrogen is transferred to the heat medium and taken out to the outside.

上記した構成の間欠作動式ヒートポンプ装置に
おいて金属水素化物1(MH1)から金属水素化
物2(MH2)へ水素を移動させてMH2が水素を
吸蔵する際の反応熱を熱媒体流路9内の熱媒体に
伝達し外部に取り出して暖房あるいは給湯として
利用しようとする場合を考える。
In the intermittent operation heat pump device having the above configuration, hydrogen is transferred from metal hydride 1 (MH 1 ) to metal hydride 2 (MH 2 ), and the reaction heat when MH 2 absorbs hydrogen is transferred to the heat medium flow path 9. Consider the case where the heat is transferred to a heat medium inside and taken out to be used for space heating or hot water supply.

金属水素化物1より水素を放出させるために、
多数に分割された金属水素化物収容容器3は高温
ガス8により加熱されるが、金属水素化物収容容
器3の高温ガス8の流入側の部分は後列の容器が
前列の容器の影になるためにガス側熱伝達率が悪
いごばん目配列になつており、高温ガス8の温度
は高いものの金属水素化物1の温度はあまりあが
らない。ところが、高温ガスが流出側に向かうに
従つて収容容器3の配列は千鳥配列となりガス側
熱伝達率が高くなるため、前列までの熱伝達によ
つて高温ガス8の温度は下がつているものの、金
属水素化物1の温度は前列までのものとかわら
ず、全体的に金属水素化物1の温度は均一に加熱
されることになる。
In order to release hydrogen from metal hydride 1,
The metal hydride storage container 3, which is divided into many parts, is heated by the high-temperature gas 8, but the portion of the metal hydride storage container 3 on the inflow side of the high-temperature gas 8 is heated because the containers in the rear row are in the shadow of the containers in the front row. The gas-side heat transfer coefficient is poor in the grid arrangement, and although the temperature of the high-temperature gas 8 is high, the temperature of the metal hydride 1 does not rise much. However, as the high-temperature gas moves toward the outflow side, the storage containers 3 are arranged in a staggered manner, and the heat transfer coefficient on the gas side increases. The temperature of the metal hydride 1 does not change from that up to the front row, and the temperature of the metal hydride 1 is uniformly heated as a whole.

従つてバルブ6を開けて水素ガスを金属水素化
物2へ向かつて放出させる場合、多数に分割され
た金属水素化物1の温度が均一であるため水素平
衡圧力も均一となり、全ての分割された金属水素
化物収容容器3からほぼ等量ずつの水素が放出さ
れることになる。つまり分割された金属水素化物
収容容器3の各分割要素において内部に充てんさ
れた金属水素化物1の水素吸蔵放出能力を均一に
利用することができるのである。
Therefore, when the valve 6 is opened to release hydrogen gas toward the metal hydride 2, the temperature of the metal hydride 1 divided into many parts is uniform, so the hydrogen equilibrium pressure is also uniform, and all the divided metal hydrides are Almost equal amounts of hydrogen are released from the hydride storage container 3. In other words, it is possible to uniformly utilize the hydrogen storage and release ability of the metal hydride 1 filled inside each divided element of the divided metal hydride storage container 3.

以上、金属水素化物を用いた間欠作動式ヒート
ポンプ装置についてその実施例を説明したが、他
の作動物質、例えばゼオライト等に対しても同様
に実施できる。
Although the embodiments have been described above regarding an intermittent operation type heat pump device using a metal hydride, the same can be applied to other operating substances such as zeolite.

発明の効果 以上のように本発明は、高温ガス流中に配した
分割された作動物質の温度を均一に上昇させるこ
とができる。
Effects of the Invention As described above, the present invention can uniformly increase the temperature of the divided working substance placed in a high-temperature gas flow.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における金属水素化
物利用間欠作動式ヒートポンプ装置の原理図、第
2図は従来の間欠作動式ヒートポンプ装置の原理
図である。 1,2……金属水素化物、3,4……金属水素
化物収容容器、5……水素導管、7……高温ガス
通路、8……高温ガス、9……熱媒体流路。
FIG. 1 is a principle diagram of an intermittent operation type heat pump device using metal hydride in an embodiment of the present invention, and FIG. 2 is a principle diagram of a conventional intermittent operation type heat pump device. 1, 2... Metal hydride, 3, 4... Metal hydride storage container, 5... Hydrogen conduit, 7... High temperature gas passage, 8... High temperature gas, 9... Heat medium flow path.

Claims (1)

【特許請求の範囲】[Claims] 1 作動物質または前記作動物質と反応する作動
気体を収容した複数の容器を互いに連通させ、相
互に作動気体の移動を行わせて作動物質が作動気
体と反応する際の反応熱を暖房給湯または冷房に
利用する間欠作動式ヒートポンプ装置の少なくと
も一方の作動物質収容容器が複数の容器に分割さ
れて高温ガスの通路内に設置され、前記高温ガス
の加熱を受ける場合に、高温ガスの流動方向に従
つて、作動物質収容容器の配列がごばん目配列か
ら千鳥配列へ移行する間欠作動式ヒートポンプ装
置。
1 A plurality of containers containing a working substance or a working gas that reacts with the working substance are communicated with each other, and the working gas is transferred between them, so that the reaction heat when the working substance reacts with the working gas is used for heating water supply or cooling. When at least one of the working substance storage containers of an intermittent-operating heat pump device used for the This is an intermittent-operating heat pump device in which the arrangement of working substance storage containers changes from a staggered arrangement to a staggered arrangement.
JP61046517A 1986-03-04 1986-03-04 Intermittent operation type heat pump device Granted JPS62202971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61046517A JPS62202971A (en) 1986-03-04 1986-03-04 Intermittent operation type heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61046517A JPS62202971A (en) 1986-03-04 1986-03-04 Intermittent operation type heat pump device

Publications (2)

Publication Number Publication Date
JPS62202971A JPS62202971A (en) 1987-09-07
JPH0414260B2 true JPH0414260B2 (en) 1992-03-12

Family

ID=12749463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61046517A Granted JPS62202971A (en) 1986-03-04 1986-03-04 Intermittent operation type heat pump device

Country Status (1)

Country Link
JP (1) JPS62202971A (en)

Also Published As

Publication number Publication date
JPS62202971A (en) 1987-09-07

Similar Documents

Publication Publication Date Title
US4422500A (en) Metal hydride heat pump
JPS5712294A (en) Heat exchanger utilizing hydrogen occluding material
GB2303860A (en) Methanol reforming
JPH0414260B2 (en)
US2224014A (en) Method for control of catalytic processes
JPH0414261B2 (en)
JPH0361106B2 (en)
JPH0414259B2 (en)
JPS62288495A (en) Heat exchanger
JPH0646154B2 (en) Cooling and heating water heater using metal hydride
JPS6249163A (en) Metallic-hydride utilizing air-conditioning hot-water supplydevice
JPH0481710B2 (en)
JPH0481711B2 (en)
JPS6329182B2 (en)
JPH0311392B2 (en)
JPH0429949B2 (en)
JPS6126718Y2 (en)
JPS6231238B2 (en)
JPS5822892A (en) Heat exchange method and device
JPH0228797B2 (en)
JPS62217096A (en) Continuous operation system of heat storage type heat exchanger
JPH0524438B2 (en)
JPS63161368A (en) Thermal converter
JPS591947B2 (en) Heat exchange system using hydrogen storage metal and its operation method
JPH0355749B2 (en)