JPH0524438B2 - - Google Patents

Info

Publication number
JPH0524438B2
JPH0524438B2 JP61037234A JP3723486A JPH0524438B2 JP H0524438 B2 JPH0524438 B2 JP H0524438B2 JP 61037234 A JP61037234 A JP 61037234A JP 3723486 A JP3723486 A JP 3723486A JP H0524438 B2 JPH0524438 B2 JP H0524438B2
Authority
JP
Japan
Prior art keywords
heat
heat utilization
metal hydride
temperature
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61037234A
Other languages
Japanese (ja)
Other versions
JPS62196597A (en
Inventor
Ikuro Yonezu
Kenji Nasako
Naojiro Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61037234A priority Critical patent/JPS62196597A/en
Publication of JPS62196597A publication Critical patent/JPS62196597A/en
Publication of JPH0524438B2 publication Critical patent/JPH0524438B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、金属水素化物を使用した熱利用シス
テムに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a heat utilization system using metal hydrides.

(ロ) 従来の技術 従来から、集熱器より熱負荷へ熱媒を循環供給
することにより、太陽熱、工場廃熱、廃棄物焼却
熱等を有効利用する熱利用ユニツトが知られてい
る。また、このような熱利用ユニツトを複数台設
置する場合があるが、従来は、各ユニツト間で熱
利用温度レベルが異なると熱媒を一緒に出来ない
ことから各熱利用ユニツトはそれぞれ独立に設置
していた。
(b) Conventional technology Heat utilization units have been known that effectively utilize solar heat, factory waste heat, waste incineration heat, etc. by circulating and supplying a heat medium from a heat collector to a heat load. In addition, there are cases in which multiple such heat utilization units are installed, but in the past, each heat utilization unit was installed independently because if the heat utilization temperature levels of each unit were different, the heat medium could not be used together. Was.

(ハ) 発明が解決しようとする問題点 しかしながら、上記のように複数台の熱利用ユ
ニツトをそれぞれ独立に設置すると、各ユニツト
で熱の過不足が生じても相互に融通し合うことが
できない。この結果、熱が過剰となる側のユニツ
トは余つた熱を棄てることになり、また、熱が不
足する側のユニツトでは不足分を補うため、ヒー
タ等の補助熱源を設置しなければならない。この
ように従来の熱利用システムにおいては、熱を効
率良く利用することができないという問題点があ
つた。
(C) Problems to be Solved by the Invention However, when a plurality of heat utilization units are installed independently as described above, even if there is excess or deficiency in heat in each unit, they cannot accommodate each other. As a result, the unit on the side with excess heat must discard the excess heat, and the unit on the side with insufficient heat must install an auxiliary heat source such as a heater to make up for the shortage. As described above, conventional heat utilization systems have a problem in that heat cannot be utilized efficiently.

(ニ) 問題点を解決するための手段 本発明は、熱利用温度レベルの異なるユニツト
間でも熱を融通し合い、各ユニツトで過不足なく
熱を有効利用できる熱利用システムを提供するこ
とを目的とし、各熱利用ユニツト内の熱源から熱
媒を循環供給する熱負荷の出入口にそれぞれ金属
水素化物容器を設置し、各熱利用ユニツトの各熱
負荷入口側に設置される各金属水素化物容器間お
よび各熱負荷出口側に設置される金属水素化物容
器間をそれぞれ水素配管で連結するようにしたも
のである。
(d) Means for solving the problems The purpose of the present invention is to provide a heat utilization system in which heat can be exchanged between units with different heat utilization temperature levels, and each unit can effectively utilize heat without excess or deficiency. A metal hydride container is installed at the entrance and exit of the heat load that circulates heat medium from the heat source in each heat utilization unit, and a metal hydride container is installed between each metal hydride container installed at each heat load inlet side of each heat utilization unit. The metal hydride containers installed on each heat load outlet side are connected by hydrogen piping.

(ホ) 作用 本発明の熱利用システムは、ある熱利用ユニツ
ト内における熱媒温度が熱負荷駆動温度より高い
場合には、その熱利用ユニツト内の金属水素化物
容器の金属水素化物を熱媒により加熱して脱水素
化させ、発生した水素ガスを水素配管を通して熱
負荷駆動温度より熱媒温度の低い他の熱利用ユニ
ツトの金属水素化物容器に導入し、水素化反応に
より発生した熱で熱媒を加熱し、利用するように
したもので、熱利用システム全体としての熱利用
効率の向上が図られる。
(E) Effect The heat utilization system of the present invention is such that when the temperature of the heat medium in a certain heat utilization unit is higher than the heat load driving temperature, the metal hydride in the metal hydride container in that heat utilization unit is heated by the heat medium. The hydrogen gas generated is heated and dehydrogenated, and the generated hydrogen gas is introduced through hydrogen piping into the metal hydride container of another heat utilization unit whose heating medium temperature is lower than the heat load driving temperature, and the heat generated by the hydrogenation reaction is used to dehydrogenate the heating medium. The heat utilization efficiency of the entire heat utilization system can be improved.

また、熱利用ユニツト間の熱の移動はすべて水
素ガスの形態で行なわれるため、熱利用ユニツト
間に大きな距離があつても熱損失は小さい。更
に、金属水素化物容器に充填する金属水素化物の
組み合わせを選択することによつて熱利用温度レ
ベルの異なる熱利用ユニツト間でも熱を有効に移
動させることができる。従つて、単一の熱利用ユ
ニツトで発生した余剰熱を他の熱利用ユニツトで
有効に利用でき、熱利用システム全体として熱源
の熱を有効に利用することができる。更に、熱源
へ供給する熱の温度レベルが調整されるため熱利
用システム全体としての熱利用効率の向上が図ら
れる。
In addition, since all heat transfer between heat utilization units occurs in the form of hydrogen gas, heat loss is small even if there is a large distance between heat utilization units. Furthermore, by selecting a combination of metal hydrides to be filled in the metal hydride container, heat can be effectively transferred even between heat utilization units having different heat utilization temperature levels. Therefore, surplus heat generated by a single heat utilization unit can be effectively used in other heat utilization units, and the heat of the heat source can be effectively utilized as a whole of the heat utilization system. Furthermore, since the temperature level of the heat supplied to the heat source is adjusted, the heat utilization efficiency of the entire heat utilization system can be improved.

(ヘ) 実施例 図は本発明の熱利用システムの一実施例のシス
テム構成図を示したもので、熱源として太陽熱集
熱器を使用した3個の熱利用ユニツト11,2
1,31で熱利用システムを構成した場合の例で
ある。各熱利用ユニツト11,21,31におい
て、太陽熱集熱器12,22,32(熱源)によ
り加熱された熱媒(図示せず)は、熱媒経路1
3,23,33を通つて熱負荷入口側に設けられ
た金属水素化物容器14,24,34の熱交換器
15,25,35に送られる。そこで熱の授受が
行なわれて温度調整された熱媒は、熱負荷16,
26,36に供給されて熱負荷を駆動する。その
結果、温度の低下した熱媒は更に熱負荷出口側に
設けられた金属水素化物容器17,27,37の
熱交換器18,28,38に送られる。そこで、
再び熱の授受が行なわれて温度調整された熱媒
は、ポンプ19,29,39により太陽熱集熱器
12,22,32に戻され、循環される。
(F) Embodiment The figure shows a system configuration diagram of an embodiment of the heat utilization system of the present invention, which includes three heat utilization units 11 and 2 that use a solar heat collector as a heat source.
This is an example in which a heat utilization system is configured with 1 and 31. In each heat utilization unit 11, 21, 31, a heat medium (not shown) heated by a solar heat collector 12, 22, 32 (heat source) is transferred to a heat medium path 1.
3, 23, and 33 to the heat exchangers 15, 25, and 35 of the metal hydride containers 14, 24, and 34 provided on the heat load inlet side. There, heat is exchanged and the temperature of the heating medium is adjusted.Thermal load 16,
26 and 36 to drive the heat load. As a result, the heat medium whose temperature has decreased is further sent to the heat exchangers 18, 28, 38 of the metal hydride containers 17, 27, 37 provided on the heat load outlet side. Therefore,
The heating medium, whose temperature has been adjusted by transferring heat again, is returned to the solar heat collectors 12, 22, and 32 by the pumps 19, 29, and 39, and is circulated.

このとき、熱負荷入口側金属水素化物容器1
4,24,34間では開閉弁41,42,43か
ら水素配管47を介して、また熱負荷出口側金属
水素化物容器17,27,37間では開閉弁4
4,45,46から水素配管48を介して水素移
動が行なわれる。これら水素移動は、各熱利用ユ
ニツト11,21,31間の熱媒の熱負荷入口温
度あるいは熱負荷出口温度の大小関係により起き
る。
At this time, the heat load inlet side metal hydride container 1
between the on-off valves 41, 42, and 43 through the hydrogen pipe 47, and between the metal hydride containers 17, 27, and 37 on the heat load outlet side, the on-off valve 4
Hydrogen transfer is performed from 4, 45, and 46 via hydrogen pipe 48. These hydrogen transfers occur depending on the magnitude relationship of the heat load inlet temperature or the heat load outlet temperature of the heat medium between the heat utilization units 11, 21, and 31.

例えば、熱利用ユニツト11の熱負荷入口の熱
媒温度が高いのに対して、他の熱利用ユニツト2
1,31の熱負荷入口の熱媒温度が低い場合、水
素ガスは熱利用ユニツト11から熱利用ユニツト
21,31へ移動する。これにより、金属水素化
物容器14で水素放出反応、金属水素化物容器2
4,34で水素吸収反応が行なわれて、熱利用ユ
ニツト11の余剰熱は熱利用ユニツト21,31
へ分配供給される。
For example, while the heat medium temperature at the heat load inlet of heat utilization unit 11 is high, other heat utilization units 2
When the heat medium temperature at the heat load inlets 1 and 31 is low, hydrogen gas moves from the heat utilization unit 11 to the heat utilization units 21 and 31. As a result, a hydrogen release reaction occurs in the metal hydride container 14, and a hydrogen release reaction occurs in the metal hydride container 2.
Hydrogen absorption reaction is carried out in the heat utilization units 21 and 34, and the surplus heat of the heat utilization unit 11 is transferred to the heat utilization units 21 and 31.
distributed and supplied to

一方、熱利用ユニツト11の熱負荷が大きく熱
負荷通過後の熱媒の温度低下が熱利用ユニツト2
1より大きい場合には水素ガスは金属水素化物容
器27より金属水素化物容器17へ移動する。逆
に熱利用ユニツト21の熱負荷が大きく熱負荷後
の熱媒の温度低下が熱利用ユニツト11より大き
い場合は、水素ガスは金属水素化物容器17より
金属水素化物容器27に移動する。
On the other hand, the heat load on the heat utilization unit 11 is large, and the temperature of the heat medium after passing through the heat load decreases.
If it is greater than 1, hydrogen gas moves from the metal hydride container 27 to the metal hydride container 17. Conversely, if the thermal load on the heat utilization unit 21 is large and the temperature drop of the heat medium after the heat load is greater than that on the heat utilization unit 11, hydrogen gas moves from the metal hydride container 17 to the metal hydride container 27.

このように水素ガスは熱媒の温度差に応じて移
動する。但し、システム内の全ての水素ガスが一
つの熱利用ユニツト内の金属水素化物容器例えば
14,17に移動し、なおかつ熱利用ユニツト1
1で熱が不足する場合には、それ以上の水素ガス
の移動は起こらず、熱交換器15,18での熱媒
の加熱もできなくなる。このような場合には、熱
利用ユニツト11において補助熱源を使用して熱
量を補うことが必要である。また、金属水素化物
容器14,17の水素ガスは、夜間に深夜電力等
を用いて金属水素化物容器14,17内の金属水
素化物を加熱し、脱水素化することにより各金属
水素化物容器14,24,34および17,2
7,37内に均等になるように移動させ、水素ガ
スの各容器への分布が不均一にならないようにす
る必要がある。
In this way, hydrogen gas moves according to the temperature difference of the heat medium. However, if all the hydrogen gas in the system is transferred to metal hydride containers such as 14 and 17 in one heat utilization unit, and
If there is insufficient heat in step 1, no further movement of hydrogen gas occurs, and heating of the heat medium in heat exchangers 15 and 18 becomes impossible. In such a case, it is necessary to use an auxiliary heat source in the heat utilization unit 11 to supplement the amount of heat. Further, the hydrogen gas in the metal hydride containers 14 and 17 is generated by heating the metal hydride in the metal hydride containers 14 and 17 at night using late-night electricity and dehydrogenating the metal hydride in each metal hydride container 14 and 17. , 24, 34 and 17, 2
It is necessary to move the hydrogen gas evenly within the containers 7 and 37 so that the distribution of hydrogen gas to each container is not uneven.

このように、本実施例の熱利用システムでは、
集熱された熱を熱利用ユニツト間にわたつて利用
できるため、設置場所の制限により水平面あるい
は垂直面にしか太陽熱集熱器を設置できない場合
にも集熱量の時間的な変動を平準化でき、太陽熱
を有効に活用することが可能となる。
In this way, in the heat utilization system of this embodiment,
Since the collected heat can be used between heat utilization units, temporal fluctuations in the amount of heat collected can be leveled out even when solar collectors can only be installed on horizontal or vertical surfaces due to installation location restrictions. It becomes possible to effectively utilize solar heat.

この場合、太陽熱を利用する熱負荷としては、
冷暖房空調機、乾燥器、加熱器等が使用できる
が、本実施例の熱利用システムでは、負荷変動が
大きい場合にもその使用が容易となる。
In this case, the heat load using solar heat is:
Although a heating/cooling air conditioner, a dryer, a heater, etc. can be used, the heat utilization system of this embodiment can be easily used even when load fluctuations are large.

なお、各熱利用ユニツトの熱負荷入口側金属水
素化物容器および熱負荷出口側金属水素化物容器
に充填する金属水素化物は熱利用温度での平衡水
素圧力が1〜10atm程度のものが望ましく、例え
ば、熱利用温度80〜90℃の場合には、Ca−Ni系
合金水素化物(CaNi5水素化物等)、La−Ni系合
金水素化物(LaNi4.7Al0.3水素化物等)等が、100
〜150℃の場合には、ZrMn2系合金水素化物
(Ti0.5Zr0.5(Mn0.8Fe0.21.7水素化物等)等が使用
できる材料として挙げられる。
The metal hydride filled in the metal hydride container on the heat load inlet side and the metal hydride container on the heat load outlet side of each heat utilization unit preferably has an equilibrium hydrogen pressure of about 1 to 10 atm at the heat utilization temperature, for example. , when the heat utilization temperature is 80 to 90℃, Ca-Ni alloy hydrides (CaNi 5 hydride, etc.), La-Ni alloy hydrides (LaNi 4.7 Al 0.3 hydride, etc.), etc.
When the temperature is 150° C., ZrMn 2 alloy hydride (Ti 0.5 Zr 0.5 (Mn 0.8 Fe 0.2 ) 1.7 hydride, etc.) can be used as a material.

また、各熱利用ユニツトの熱利用温度がほとん
ど同じ場合には、各熱利用ユニツトの金属水素化
物容器に同一の種類の金属水素化物を充填すれば
よく、また、熱利用温度が異なる場合には、各熱
利用ユニツトの熱利用温度における平衡水素圧力
がほぼ等しい金属水素化物の組み合わせにより、
各金属水素化物容器での熱再生温度は各々の熱利
用ユニツトでの熱利用温度に合致したものとな
り、極めて有効に熱利用を行なうことができる。
Furthermore, if the heat utilization temperatures of each heat utilization unit are almost the same, it is sufficient to fill the metal hydride containers of each heat utilization unit with the same type of metal hydride; , a combination of metal hydrides with approximately equal equilibrium hydrogen pressure at the heat utilization temperature of each heat utilization unit,
The heat regeneration temperature in each metal hydride container matches the heat utilization temperature in each heat utilization unit, making it possible to utilize heat extremely effectively.

また、前記熱利用システムにおける太陽熱集熱
器としては平板型あるいは真空ガラス型のものが
使用できる。
Further, as the solar heat collector in the heat utilization system, a flat plate type or a vacuum glass type can be used.

また、本発明による熱利用システムの熱源とし
ては太陽熱以外に工場廃熱、廃棄物焼却熱等幅広
く使用できることは言う迄もない。
Furthermore, it goes without saying that the heat source of the heat utilization system according to the present invention can be widely used in addition to solar heat, such as factory waste heat and waste incineration heat.

(ト) 発明の効果 以上のように本発明によれば、複数個の熱利用
ユニツト相互間の熱の移動を金属水素化物を使用
して水素の形態で行なつているため、以下のよう
な効果を有する。
(G) Effects of the Invention As described above, according to the present invention, heat is transferred between a plurality of heat utilization units in the form of hydrogen using metal hydride, so that the following effects can be achieved. have an effect.

熱利用ユニツト内で生じた余剰の熱を、熱が
不足する他の熱利用ユニツトに、移動させるこ
とができるため、熱源からの熱供給量の変動お
よび熱負荷量の変動に伴う熱利用ユニツト内の
熱の過不足を最小限に抑え、熱利用システム全
体として熱源の熱を有効に利用できる。
Surplus heat generated within a heat utilization unit can be transferred to other heat utilization units that are short of heat, so that the heat utilization within the heat utilization unit due to fluctuations in the amount of heat supplied from the heat source and fluctuations in the amount of heat load can be transferred. The excess or deficiency of heat can be minimized, and the heat from the heat source can be used effectively as a whole for the heat utilization system.

熱を水素の形態で移動させるため、熱利用ユ
ニツト間に大きな距離がある場合にも、小さな
熱損失で熱を移動させることができる。
Because heat is transferred in the form of hydrogen, heat can be transferred with small heat losses even when there is a large distance between heat utilization units.

使用する金属水素化物の組み合わせを選択す
ることにより、各熱利用ユニツトの熱利用温度
に合致した温度レベルの熱を相互に供給するこ
とができる。
By selecting the combination of metal hydrides to be used, it is possible to mutually supply heat at a temperature level that matches the heat utilization temperature of each heat utilization unit.

以上のことから、熱利用ユニツト内の熱の過不
足を最小限に抑え、しかも熱利用ユニツト間に大
きな距離がある場合にも、その熱利用温度に合致
した温度の熱を相互に供給し、システム全体とし
て熱源からの熱を有効に利用することが可能な実
用上極めて優れた熱利用システムが得られる。
From the above, it is possible to minimize the excess or deficiency of heat within the heat utilization units, and even if there is a large distance between the heat utilization units, they can mutually supply heat at a temperature that matches their heat utilization temperatures. A practically excellent heat utilization system that can effectively utilize the heat from the heat source as a whole system can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の熱利用システムの一実施例のシス
テム構成図である。 11,21,31……熱利用ユニツト、12,
22,32……太陽熱集熱器、13,23,33
……熱媒経路、14,24,34……熱負荷入口
側金属水素化物容器、15,18,25,28,
35,38……熱交換器、16,26,36……
熱負荷、17,27,37……熱負荷出口側金属
水素化物容器、19,29,39……熱媒用ポン
プ、41〜46……開閉弁、47,48……水素
配管。
The figure is a system configuration diagram of an embodiment of the heat utilization system of the present invention. 11, 21, 31...heat utilization unit, 12,
22, 32...Solar heat collector, 13, 23, 33
... Heat medium path, 14, 24, 34 ... Heat load inlet side metal hydride container, 15, 18, 25, 28,
35, 38... Heat exchanger, 16, 26, 36...
Heat load, 17, 27, 37... Metal hydride container on the heat load outlet side, 19, 29, 39... Heat medium pump, 41-46... Opening/closing valve, 47, 48... Hydrogen piping.

Claims (1)

【特許請求の範囲】[Claims] 1 熱源から熱負荷に熱媒配管を通して熱媒を循
環供給する熱利用ユニツトを複数台備えてなる熱
利用システムにおいて、各熱利用ユニツトにおけ
る熱媒管の熱負荷入口側と出口側にそれぞれ内部
に金属水素化物と共に熱交換器を収容してなる金
属水素化物容器を配置し、前記熱媒管をその熱交
換器に接続すると共に、各熱利用ユニツトの熱負
荷入口側に配置した各金属水素化物容器間および
出口側に配置した各金属水素化物容器間をそれぞ
れ水素配管で接続したことを特徴とする熱利用シ
ステム。
1. In a heat utilization system comprising a plurality of heat utilization units that circulate and supply a heat medium from a heat source to a heat load through heat medium piping, there is a A metal hydride container containing a heat exchanger together with the metal hydride is arranged, the heat medium pipe is connected to the heat exchanger, and each metal hydride is arranged on the heat load inlet side of each heat utilization unit. A heat utilization system characterized by connecting the containers and the metal hydride containers arranged on the outlet side with hydrogen piping.
JP61037234A 1986-02-24 1986-02-24 System utilizing heat Granted JPS62196597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61037234A JPS62196597A (en) 1986-02-24 1986-02-24 System utilizing heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61037234A JPS62196597A (en) 1986-02-24 1986-02-24 System utilizing heat

Publications (2)

Publication Number Publication Date
JPS62196597A JPS62196597A (en) 1987-08-29
JPH0524438B2 true JPH0524438B2 (en) 1993-04-07

Family

ID=12491917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61037234A Granted JPS62196597A (en) 1986-02-24 1986-02-24 System utilizing heat

Country Status (1)

Country Link
JP (1) JPS62196597A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006058025A1 (en) 2006-12-07 2008-06-19 Krones Ag Device for generating process heat for a packaging device
CN106524809A (en) * 2016-12-01 2017-03-22 西安交通大学 Gradient energy storage and energy release system and method based on reversible chemical reaction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943720A (en) * 1982-09-06 1984-03-10 Iseki & Co Ltd Conveying device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943720A (en) * 1982-09-06 1984-03-10 Iseki & Co Ltd Conveying device

Also Published As

Publication number Publication date
JPS62196597A (en) 1987-08-29

Similar Documents

Publication Publication Date Title
US4523635A (en) Metal hydride heat pump system
US4143814A (en) Control and transfer of energy
US4413670A (en) Process for the energy-saving recovery of useful or available heat from the environment or from waste heat
JPH046357A (en) Operation method of heat utilizing apparatus using hydrogen-occlusion alloy
CN110171553A (en) A kind of hydrogen fuel cell Power Vessel waste heat comprehensive utilization system
JPH0524438B2 (en)
CN111735333A (en) Multistage phase change heat storage box, photovoltaic phase change heat storage structure and multistage photovoltaic multistage phase change heat storage structure
Liu et al. Exergy analysis of a solar heating system
JPH0476203A (en) Method and system for making use of energy
JPH0128304B2 (en)
JPH0355749B2 (en)
CN218480673U (en) Preheating and water replenishing device of heat exchange unit
CN105190029A (en) Concentrating solar power station with improved operation
JPS5835337A (en) Floor heating device
JPS5895154A (en) Solar heat collecting device
JPS5854A (en) Heat accumulation utilizing solar heat and device therefor
CN115875717A (en) Thermoelectric decoupling and deep peak regulation system utilizing heat storage water tank
JPS638391B2 (en)
JPS6135478B2 (en)
JP3813340B2 (en) Heat utilization system using hydrogen storage alloy
JPS6359063B2 (en)
JPH0316594B2 (en)
JPH0395866A (en) Fuel cell cooling system
JPS60114672A (en) Heat pump method by metallic hydride
JPS5623667A (en) Heat accumulator for solar heat cooling and heating

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees