JPH0414258B2 - - Google Patents

Info

Publication number
JPH0414258B2
JPH0414258B2 JP60107413A JP10741385A JPH0414258B2 JP H0414258 B2 JPH0414258 B2 JP H0414258B2 JP 60107413 A JP60107413 A JP 60107413A JP 10741385 A JP10741385 A JP 10741385A JP H0414258 B2 JPH0414258 B2 JP H0414258B2
Authority
JP
Japan
Prior art keywords
heat
medium
cycle
group
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60107413A
Other languages
Japanese (ja)
Other versions
JPS61265465A (en
Inventor
Isao Takeshita
Takashi Inami
Minoru Tagashira
Tsutomu Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10741385A priority Critical patent/JPS61265465A/en
Publication of JPS61265465A publication Critical patent/JPS61265465A/en
Publication of JPH0414258B2 publication Critical patent/JPH0414258B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、作動気体の可逆的な吸脱着反応での
発熱、吸熱を利用したケミカルヒートポンプの原
理による間欠作動式ヒートポンプ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an intermittent operating heat pump device based on the principle of a chemical heat pump that utilizes heat generation and heat absorption in a reversible adsorption/desorption reaction of a working gas.

従来の技術 まず始めにこのような間欠作動式ヒートポンプ
装置の性能をあらわす成積係数、すなわち、出力
エネルギーを入力エネルギーで除した値を左右す
る要因について説明する。
BACKGROUND ART First, factors that influence the product coefficient, which indicates the performance of such an intermittent heat pump device, that is, the value obtained by dividing output energy by input energy, will be explained.

説明をわかり易くするため吸着材に金属水素化
物、作動媒体を水素とした時の例について説明す
る。
To make the explanation easier to understand, an example will be explained in which the adsorbent is a metal hydride and the working medium is hydrogen.

今第1の容器に1つの金属水素化物を形成しう
る合金粉末を充たし、第2の容器に前者に比べ、
同一温度で平衡圧の高い金属水素化物を形成する
合金粉末を充し、前者を十分水素化したとする。
Now, the first container is filled with an alloy powder capable of forming one metal hydride, and the second container is filled with an alloy powder capable of forming one metal hydride.
Assume that the chamber is filled with an alloy powder that forms a metal hydride with a high equilibrium pressure at the same temperature, and the former is sufficiently hydrogenated.

次に両容器を管で連結すると水素は第2の容器
に移動しうるが、第2の容器の合金の水素化物の
方が平衡圧が高いので、第1の容器内の水素ガス
圧を第2の圧力以上にするためには、第1の容器
を加熱する必要がある。この際第2の容器は常温
に保つものとする。又水素ガスを脱着させるため
には脱着熱が必要でこの熱を供給する必要があ
る。この熱をQa1とし、容器とその内容物を所定
の温度にまで暖めるに必要な熱量をQs1とすれば
入力はQa1+Qs1になる。Qs1は容器とその内容物
との熱容量の和(C1)と、昇温幅ΔT1の積であ
る(これを顕熱損と呼ぶ)。
Next, by connecting both containers with a pipe, hydrogen can move to the second container, but since the equilibrium pressure of the alloy hydride in the second container is higher, the hydrogen gas pressure in the first container is In order to make the pressure higher than 2, it is necessary to heat the first container. At this time, the second container shall be kept at room temperature. Furthermore, in order to desorb hydrogen gas, desorption heat is required, and this heat must be supplied. If this heat is Q a1 and the amount of heat required to warm the container and its contents to a predetermined temperature is Q s1 , then the input is Q a1 + Q s1 . Q s1 is the product of the sum of the heat capacities of the container and its contents (C 1 ) and the temperature rise width ΔT 1 (this is called sensible heat loss).

このように加熱すると、第1の容器から第2の
容器に水素が移動し、第2の容器の合金は、ほぼ
全部が金属水素化物となり、第1の容器の内容物
は殆んどもとの合金の状態になる。
Upon heating in this manner, hydrogen moves from the first container to the second container, the alloy in the second container becomes almost entirely metal hydride, and the contents of the first container become almost entirely the same as before. becomes an alloy.

次に第1の容器を常温にもどし、第1と第2容
器を再び連通すると、第2の容器の水素は解離し
第1の容器の合金は水素化されてゆくが、この
際、第2の容器では吸熱反応が生じ、容器および
その内容物の温度が下り、第1の容器の温度で定
まる平衡圧に対応する第2の容器内の金属水素化
物の平衡温度で吸熱が継続する。この吸熱能力が
冷却出力であるが、この冷却出力の値は、反応に
よつて生ずる全吸熱Qa2から、容器および内容物
を常温から低温吸熱が持続する温度まで下げるの
に必要な熱量Qs2を差し引いた値Qa2−Qs2になる。
なおQs2は第2の容器とその内容物の熱容量C2
温度下げ幅ΔT2の積である(顕熱損)。
Next, when the first container is returned to room temperature and the first and second containers are communicated again, the hydrogen in the second container is dissociated and the alloy in the first container is hydrogenated. An endothermic reaction occurs in the vessel, the temperature of the vessel and its contents decreases, and the endotherm continues at the equilibrium temperature of the metal hydride in the second vessel, which corresponds to the equilibrium pressure determined by the temperature of the first vessel. This heat absorption capacity is the cooling output, and the value of this cooling output is calculated from the total heat absorption Q a2 generated by the reaction to the amount of heat Q s2 required to lower the container and contents from room temperature to a temperature at which low-temperature endotherm persists. The value obtained by subtracting Q a2 −Q s2 is obtained.
Note that Q s2 is the product of the heat capacity C 2 of the second container and its contents and the temperature reduction width ΔT 2 (sensible heat loss).

以上の考察から成積係数(COP)は COP=Qa2−Qs2/Qa1+Qs1 で与えられる。 From the above considerations, the product coefficient (COP) is given by COP=Q a2 −Q s2 /Q a1 +Q s1 .

このことから明らかなことはQs1,Qs2をいかに
小さくするかということがCOPを大きくする要
因であるということである。
What is clear from this is that how small Q s1 and Q s2 are made is a factor in increasing COP.

以上の考察から容器の熱容量C1,C2を小さく
することは重要であるが、ΔT1,ΔT2を小さくす
ることも有効である。
From the above considerations, it is important to reduce the heat capacities C 1 and C 2 of the container, but it is also effective to reduce ΔT 1 and ΔT 2 .

第3図は間欠作動式ヒートポンプ装置の基本的
な構成を模式的に表わした図であり、容器1,2
に吸着媒体3,4が充たされており、配起5によ
つて連結されており、この間に弁6が存在する。
それぞれの容器には熱交換器7,8が設けてあ
る。
FIG. 3 is a diagram schematically representing the basic configuration of an intermittent operation type heat pump device, and shows containers 1 and 2.
are filled with adsorption media 3, 4 and are connected by a support 5, between which a valve 6 is present.
Each container is provided with a heat exchanger 7,8.

まず熱交換器7を介して容器1の中の吸着媒体
3を加熱し、作動媒体を放出せしめると作動媒体
は配管5を通つて容器2に至り、吸着媒体4に吸
着される。この時発熱するので熱交換器8を介し
て冷却する。この際吸着媒体4は冷却水温より高
い温度となり、熱交換器8より温出力をうる。こ
の時の吸着媒体4の温度をTMとする。
First, the adsorption medium 3 in the container 1 is heated via the heat exchanger 7 to release the working medium, which then reaches the container 2 through the pipe 5 and is adsorbed by the adsorption medium 4. At this time, heat is generated, so it is cooled through a heat exchanger 8. At this time, the temperature of the adsorption medium 4 becomes higher than the temperature of the cooling water, and a thermal output is obtained from the heat exchanger 8. Let T M be the temperature of the adsorption medium 4 at this time.

次に熱交換器7を介して吸着媒体3を冷却し、
弁6を開くと、作動媒体は、吸着媒体4から同3
に移りその際吸着媒体4で吸熱が起り、まず自ら
の温度がTLまで下り、さらに熱交換器8から温
度TLの冷出力を得る。ここでTM−TLが前記ΔT2
である。このように間欠式ヒートポンプは2つの
位相状態を交互にくり返す。
Next, the adsorption medium 3 is cooled through the heat exchanger 7,
When the valve 6 is opened, the working medium flows from the adsorption medium 4 to the same 3
At this time, heat absorption occurs in the adsorption medium 4, and its own temperature first drops to T L , and then a cooling output of temperature T L is obtained from the heat exchanger 8. Here, T M − T L is the above ΔT 2
It is. In this way, the intermittent heat pump alternates between two phase states.

冷暖給湯に使えるシステムを考えると、 TM=50℃、TL=5℃位必要であり、ΔT=45℃
位となる。
Considering a system that can be used for cooling and heating hot water, T M = 50℃, T L = 5℃, and ΔT = 45℃.
It becomes the rank.

次に二重効用について説明すると、それぞれの
サイクルの成積係数は先に説明した通りである
が、第2のサイクルは第1のサイクルの廃熱によ
つて駆動されているため、いうなれば無償で働い
ていることになる。この場合の成積係数(COP)
は第1第2のサイクルの成積係数を COP1,COP2とすれば、 COP=COP1+COP2 で与えられ、成積係数は大幅に向上する。
Next, to explain the double effect, the product coefficient of each cycle is as explained above, but since the second cycle is driven by the waste heat of the first cycle, it is free, so to speak. You will be working. Productivity coefficient (COP) in this case
If the product coefficients of the first and second cycles are COP 1 and COP 2 , then it is given by COP=COP 1 +COP 2 , and the product coefficient is significantly improved.

発明が解決しようとする問題点 二重効用にすることによつて成積係数は原理的
には大幅に向上するはずだが、高温で作動するサ
イクルは、高温側媒体の昇温幅が原理的に大きい
という問題がある。
Problems to be Solved by the Invention In principle, the formation coefficient should be greatly improved by creating a dual effect. The problem is that it's big.

すなわち前記Δt1が大きいため第1のサイクル
のQs1が大きく成積係数があまり大きくならず、
二重効用の効果があまり発揮できない。
In other words, since Δt 1 is large, Q s1 in the first cycle is large, and the product coefficient is not very large.
The effect of dual utility is not very effective.

問題点を解決するための手段 第1のサイクルと第2のサイクルを有する二重
効用ケミカルヒートポンプ装置をA,B2組用い
る。この場合、第2のサイクルは第1のサイクル
の高温側媒体の吸着に際して生ずる発熱によつて
加熱されるようになつている。
Means for solving the problem Two sets of dual-effect chemical heat pump equipment, A and B, each having a first cycle and a second cycle are used. In this case, the second cycle is heated by the heat generated when the high temperature medium of the first cycle is adsorbed.

ここでそれぞれのサイクルの高温側媒体の収容
容器に内部の吸着媒体と熱交換可能な流体通路を
設け、これら通路をA組第1、B組第1、B組第
2、A組第2の順に連結し最後は再びA組第1に
もどる循環路を設け、又この循環路には熱媒体を
封入し、この熱媒体を前記順序又は逆循環するよ
う、ポンプなどの手段を途中に設ける。
Here, a fluid passage capable of exchanging heat with the internal adsorption medium is provided in the storage container for the high temperature side medium of each cycle, and these passages are connected to the first group of A group, the first group B, the second group B, and the second group A. A circulation path is provided which is connected in sequence and finally returns to the first group of A, and a heat medium is sealed in this circulation path, and means such as a pump is provided along the way to circulate the heat medium in the above order or in the reverse order.

さらにこの循環路の、A組第1とB組第1を結
ぶ管路の途中およびA組第2とB組第2を結ぶ管
路の途中に開閉可能な弁を設け、又各組の第1、
第2のサイクルの高温側容器の熱媒通路の前記循
環路で直接結ばれていない他端間に、途中に開閉
弁を有する熱媒路を設ける。
Furthermore, in this circulation path, valves that can be opened and closed are provided in the middle of the pipe connecting the first group A and the first group B, and in the middle of the pipe connecting the second group A and the second group B. 1,
A heat medium path having an on-off valve in the middle is provided between the other ends of the heat medium path of the high temperature side container of the second cycle that are not directly connected by the circulation path.

作 用 ヒートポンプとして運転している状態では、前
記循環路はその途中の弁を閉じ、熱媒循環手段も
停止しており全く機能させない。
Function When operating as a heat pump, the valve in the circulation path is closed, and the heat medium circulation means is also stopped, so that it does not function at all.

今1つのサイクルが終了しようとする状態を考
える。
Now consider a state where one cycle is about to end.

例えばA組の第1のサイクルは外部から加熱さ
れ、高い温度T1に達し、内部の水素を殆んど放
出しているとする。
For example, assume that the first cycle of group A is heated from the outside, reaches a high temperature T1 , and releases most of the internal hydrogen.

この時B組の第1のサイクルは、T1より低い
T2の温度で水素を吸蔵しつつあり、その反応は
殆んど終ろうとしている。そしてこの時の発熱
は、何らかの手段でB組の第2のサイクルの高温
側媒体容器へ搬送され、この容器および中の媒体
はT3にほぼ近い、しかしそれより幾分低い温度
T2になつておりB組の第2のサイクルの高温側
吸着媒体は、水素を殆んど放出した状態である。
一方この時のA組の第2のサイクルはT3よりさ
らに低いT4の温度でこのサイクルの低温側吸着
媒体からの水素を吸蔵し、その反応は殆んど終ろ
うとしている。
At this time, the first cycle of group B is lower than T 1
It is absorbing hydrogen at a temperature of T 2 and the reaction is almost complete. The heat generated at this time is then transferred by some means to the hot side medium container of the second cycle of group B, and this container and the medium therein are at a temperature approximately close to T 3 but somewhat lower than that.
At T 2 , the adsorption medium on the high temperature side in the second cycle of group B has released almost all hydrogen.
On the other hand, the second cycle of group A at this time absorbs hydrogen from the adsorption medium on the low temperature side of this cycle at a temperature of T4 , which is even lower than T3 , and the reaction is almost completed.

すなわち、A1(A組の第1サイクル高温側吸
着媒体とその容器のこと、以下同様)はT1度、
B1はT2度、A2はT4度、B2はT3度でT1>T2
>T3>T4である。
That is, A1 (the first cycle high temperature side adsorption medium of group A and its container, the same applies hereinafter) is T 1 degree,
B1 is T 2 degrees, A2 is T 4 degrees, B2 is T 3 degrees, and T 1 > T 2
>T 3 >T 4 .

こゝで次の位相状態ではA組とB組の状態が反
転してA1はT2、B1はT1、A2はT3、B2は
T4度になり吸着と脱着の動作が逆になる。
Here, in the next phase state, the states of group A and group B are reversed, and A1 is T 2 , B1 is T 1 , A2 is T 3 , and B2 is
At T 4 degrees, the adsorption and desorption operations are reversed.

従つてこの位相の反転に際し、A1はT1−T2
だけ温度が下り、B1はT1−T2だけ温度を上げ
ねばならない。
Therefore, upon this phase reversal, A1 becomes T 1 - T 2
, and B1 must increase in temperature by T 1 - T 2 .

又、A2はT3−T4だけ昇温、B2はT3−T4
け降温せねばならない。
Also, the temperature of A2 must be increased by T 3 - T 4 and the temperature of B2 must be decreased by T 3 - T 4 .

この温度差に、その容器および吸着媒体の比熱
を乗じたものが始めに述べた顕熱損失であり、成
積係数低下の原因をなすものである。
This temperature difference multiplied by the specific heat of the container and adsorption medium is the sensible heat loss mentioned at the beginning, and is the cause of the decrease in the accumulation coefficient.

そこでこの位相の反転の際に熱回収の位相と呼
ぶ状態を作る。すなわち、各サイクルの容器間の
水素の通路の弁を閉じ、次の位相に移らないよう
にし、前記の循環路に、この説明の状態ではA
1,B1,B2,A2の順に熱媒体を循環せしめ
うるよう熱媒路の弁を開き、熱媒循環手段として
のポンプを働かせる。
Therefore, when this phase is reversed, a state called the heat recovery phase is created. That is, the valve of the hydrogen passage between the containers of each cycle is closed to prevent it from moving to the next phase, and the above-mentioned circulation path is filled with A in the condition described.
The valves of the heat medium path are opened so that the heat medium can be circulated in the order of 1, B1, B2, and A2, and the pump as a heat medium circulation means is activated.

このようにするとT1度のA1は次第に冷却し
T2度のB1は次第に暖められ、両者の温度は理
想的にはT1+T2/2になる。
In this way, A1 at T 1 degree will gradually cool down.
B1 at T 2 degrees is gradually warmed, and the temperature of both is ideally T 1 +T 2 /2.

又、T3度のB2は次第に冷却しT2度のA2は
次第に暖められ、両者の温度は理想的には
T3+T4/2になる。
Also, B2 at T 3 degrees is gradually cooled, and A2 at T 2 degrees is gradually warmed, and ideally the temperature of both is
It becomes T 3 +T 4 /2.

この後次の逆位相の状態に入り、水素流路の弁
を開くと、水素は前とは逆の方向に流れ、A1,
B1,A2,B2はそれぞれT2,T1,T3,T4
になる。
After this, the next reverse phase state is entered, and when the hydrogen flow path valve is opened, hydrogen flows in the opposite direction to A1,
B1, A2, and B2 are T 2 , T 1 , T 3 , and T 4 degrees, respectively.

そしてこの位相が終了した時、前と同様に水素
の弁を閉じ、今度は熱媒をB1,A1,A2,B
2の順に流すと、再びB1とA1は同じ温度
T1+T2/2に、A2,B2はT3+T4/2となる。
And when this phase is finished, close the hydrogen valve as before, and this time turn the heating medium into B1, A1, A2, B
When flowing in the order of 2, B1 and A1 are at the same temperature again.
At T 1 +T 2 /2, A2 and B2 become T 3 +T 4 /2.

また二重効用ヒートポンプとしての運転の位相
の時、前記熱媒体の循環路のA1,A2間、B1,B2
間の弁を閉めると共に、二重効用化のため第1の
サイクルから第2のサイクルに熱を搬送する必要
にある側の、(例えばこれがA1,A2間とすれ
ば)、前記循環路で直接結ばれていない、容器熱
媒体通路の他端を結ぶ管路の弁を開けば、A1,
A2間に熱媒体循環路が出来上るから先の顕熱回
収と同一熱媒および同一熱交換器を用いこの循環
路でA1からA2に熱を搬送することができる。
In addition, during the operation phase as a dual-effect heat pump, between A 1 and A 2 of the heat medium circulation path, B 1 and B 2
At the same time, the valve on the side where heat needs to be transferred from the first cycle to the second cycle for double effect (for example, if this is between A1 and A2) is directly in the circulation path. If you open the valve of the pipe connecting the other end of the unconnected container heat medium passage, A1,
Since a heat medium circulation path is created between A2, heat can be transferred from A1 to A2 using this circulation path using the same heat medium and the same heat exchanger as in the previous sensible heat recovery.

実施例 第1図に本発明の一実施例を示す。Example FIG. 1 shows an embodiment of the present invention.

図の中心より左がA組、右がB組の二重効用ケ
ミカルヒートポンプで、A組の部品番号はすべて
1桁台に1、B組には2を付し、10ないしそれ
以上の桁の番号は2つの組の対応する部分で同じ
数字を付した。
The left side of the figure is the A group, and the right side is the B group dual-effect chemical heat pump. All part numbers for the A group have a 1 in the single digit, and the B group has a 2 in the 1 digit. The same numbers were assigned to corresponding parts of the two sets.

11(12),21(22),31(32),4
1(42)はそれぞれ金属水素化物を収容する容
器を示し、容器11と容器12と容器21で第1
のサイクル、容器31と容器41で第2のサイク
ルを形成し、容器11、容器31、はそれぞれの
サイクルの高温側、容器21と容器41は低温側
である。弁51,61はそれぞれのサイクルの水
素流路を開閉する弁である。
11 (12), 21 (22), 31 (32), 4
1 (42) respectively indicate containers containing metal hydrides;
In this cycle, containers 31 and 41 form a second cycle, containers 11 and 31 are on the high temperature side of their respective cycles, and containers 21 and 41 are on the low temperature side of their respective cycles. The valves 51 and 61 are valves that open and close the hydrogen flow path of each cycle.

各容器内に設けた管路101,111などは、
その内容物である金属水素化物と熱交換可能な熱
媒通路(伝熱管)であり、容器21(22),4
1(42)にも、冷出力を取出す伝熱管が必要だ
が、説明に必要ないので省略した。又第2サイク
ルの高温側の容器31(32)の冷却の際の伝熱
管についても省略する。
The pipe lines 101, 111 etc. provided in each container are
It is a heat medium passage (heat exchanger tube) that can exchange heat with the metal hydride that is the content, and the containers 21 (22), 4
1 (42) also requires a heat exchanger tube to take out the cold output, but it is omitted because it is not necessary for the explanation. Further, the heat transfer tubes used for cooling the high temperature side container 31 (32) in the second cycle will also be omitted.

このように2組の二重効用ケミカルヒートポン
プサイクルにおいて、管路101,102,11
2,111を連結する管路、15,16を設け、
管路101,16,102,122,112,1
5,111,121、そして管路101にもどる
循環路を構成する。この時、管路131,132
に設けられた弁71,72は閉じている。又この
循環路にはバイパス弁81(82)を持つ液ポン
プ91(92)があり、ポンプ91を動かし、バ
イパス弁81を閉じ、バイパス弁82を開くと、
図で反時計まわりに前述の循環路を熱媒が循環
し、逆にポンプ92を動かしバイパス弁82を閉
じ、同81を開くと、時計まわりに熱媒は循環す
る。
In this way, in two sets of dual-effect chemical heat pump cycles, the pipes 101, 102, 11
2 and 111 are provided, pipes 15 and 16 are provided,
Pipe lines 101, 16, 102, 122, 112, 1
5, 111, 121, and then back to the pipe line 101, forming a circulation path. At this time, pipes 131 and 132
Valves 71 and 72 provided in are closed. Also, in this circulation path, there is a liquid pump 91 (92) having a bypass valve 81 (82), and when the pump 91 is operated, the bypass valve 81 is closed, and the bypass valve 82 is opened,
The heat medium circulates in the above-mentioned circulation path counterclockwise in the figure, and when the pump 92 is operated in the opposite direction to close the bypass valve 82 and open the bypass valve 81, the heat medium circulates clockwise.

又、弁13,14を閉じた状態で、ポンプ91
を動かしバイパス弁81を閉じ、管路131の弁
71を開くと、A組の第1のサイクルの高温側吸
着媒体容器11と第2のサイクルの高温側吸着媒
体容器31の間の熱交換を行う。伝熱管101、
管路131、伝熱管111、管路121の循環路
に熱媒を循環させることができる。前記ポンプ9
1以下の説明の数字の1桁を2にすれば、B組に
おいて全く同じことが行われる。
Also, with the valves 13 and 14 closed, the pump 91
When the bypass valve 81 is closed and the valve 71 of the pipe line 131 is opened, heat exchange between the high temperature side adsorption medium container 11 of the first cycle of group A and the high temperature side adsorption medium container 31 of the second cycle is performed. conduct. heat exchanger tube 101,
The heat medium can be circulated through the circulation path of the pipe line 131, the heat transfer tube 111, and the pipe line 121. Said pump 9
If one digit of the number in the explanation below 1 is set to 2, exactly the same thing will be done in group B.

第2図は、このシステムの弁の開閉、ポンプの
運転および、第1サイクルの高温側の外部熱源に
よる加熱の有無を示した図で、A組の外部熱源に
よる加熱をシステムの運転の第1の位相とすれ
ば、これと逆の位相はB組の方が外部熱源により
加熱される状態であるが、この2つの状態の間
に、顕熱再生の位相を、これにも2つの状態が存
在するが……、はさんで運転が行われる。
Figure 2 shows the opening and closing of the valves, pump operation, and presence/absence of heating by the external heat source on the high temperature side of the first cycle. If the phase is set to It exists, but it is operated between them.

このシステムの熱搬送は液体の温度差で搬送す
るいわゆる顕熱搬送でもよいが、蒸発、凝縮によ
るいわゆる潜熱搬送によるのがさらによい。すな
わち、例えば反時計まわりの循環では伝熱管10
1で蒸発し、102で凝縮し、112で蒸発し、
111で凝縮させる。何故なら、伝熱管111と
101の間には大きな温度差があり、顕熱搬送で
は、この温度差により、金属水素化物11が冷却
されるからである。
The heat transfer in this system may be so-called sensible heat transfer using the temperature difference of the liquid, but it is even better to use so-called latent heat transfer due to evaporation and condensation. That is, for example, in counterclockwise circulation, the heat exchanger tube 10
Evaporates at 1, condenses at 102, evaporates at 112,
111 to condense. This is because there is a large temperature difference between the heat exchanger tubes 111 and 101, and in sensible heat transfer, the metal hydride 11 is cooled by this temperature difference.

発明の効果 以上説明した如く、運転の2つの位相の間に顕
熱再生の位相を設け、この時熱媒体は4つの金属
水素化物を、定められた順序で流れることによ
り、両組の第1のサイクルの高温側媒体および容
器101,102は両者の平均温度(T1
T2)/2となり、第2のサイクルの容器111,
112は(T3+T4)/2の温度となり、その後
次の運転位相に入るため、次に加熱される容器の
昇温幅は従来のT1−T2またはT3−T4から、T1
(T1+T2)/2=(T1−T2)/2、または(T3
T4)/2と半分になり、前に述べた顕熱損失も
半分になるため、各サイクルの成積係数は、 (Qa2−Qs2)/(Qa1+Qs1)から(Qa2−Qs2)/
(Qa1+Qs1/2)となる。後者を前者で割つてその比 を求めると 1+Qs1/2/Qa1+Qs1/2 と明らかに1より大きくなる。すなわち成積係数
が増大することを示している。
Effects of the Invention As explained above, a phase of sensible heat regeneration is provided between the two phases of operation, and at this time, the heating medium flows through the four metal hydrides in a predetermined order. The medium and containers 101 and 102 on the high temperature side of the cycle have their average temperature (T 1 +
T 2 )/2, and the container 111 of the second cycle,
112 reaches a temperature of (T 3 + T 4 )/2 and then enters the next operation phase. Therefore, the temperature increase width of the next heated container is changed from the conventional T 1 - T 2 or T 3 - T 4 to T 1
(T 1 + T 2 )/2 = (T 1 − T 2 )/2, or (T 3
T 4 )/2, and the sensible heat loss mentioned earlier is also halved, so the product coefficient for each cycle is (Q a2 − Q s2 )/(Q a1 + Q s1 ) to (Q a2 − Q s2 )/
(Q a1 +Q s1 /2). When the latter is divided by the former to find the ratio, it is clearly larger than 1 as 1+Q s1 /2/Q a1 +Q s1 /2. In other words, this indicates that the product coefficient increases.

ここでもう一つ大切なことは前記従来の技術に
示した成積係数の式で、分子が0になつてしまえ
ばこの方法で成積係数が改善される可能性はない
ということである。すなわち第1、第2の容器と
その内容物の熱容量C1,C2を小さくしておかな
いとこの方法は有効でないことに注意する必要が
ある。
Another important point here is that in the formula for the product coefficient shown in the prior art, if the numerator becomes 0, there is no possibility of improving the product coefficient by this method. That is, it must be noted that this method is not effective unless the heat capacities C 1 and C 2 of the first and second containers and their contents are made small.

顕熱回路という考え方は新しいものではなく、
そのような考え方に従つた提案はすでにあるが、
それを実行するために金属水素化物の収容容器
に、余分な顕熱回収のための熱交換器を取り付け
それぞれに別々の熱媒体を用いているため、実際
にはこのC1,C2が予想以上に大きくなり、成績
係数は0に近い値ないしはマイナスになることが
多い。
The idea of a sensible heat circuit is not new;
There are already proposals based on this idea, but
In order to do this, a heat exchanger is installed in the metal hydride storage container to recover excess sensible heat, and separate heat carriers are used for each, so in reality, C 1 and C 2 are not as expected. The coefficient of performance is often close to 0 or negative.

特に二重効用という1つのサイクルの発熱を他
のサイクルの駆動に利用するという本発明のよう
な場合にはそのための熱交換器が余分に必要とな
り、容器の熱容量をさらに増加させることにな
る。
Particularly in the case of the present invention, where the heat generated in one cycle is used to drive another cycle (double effect), an extra heat exchanger is required for this purpose, further increasing the heat capacity of the container.

本発明は二重効用化のための熱交換器と、顕熱
回収のための熱交換器と熱媒体を共用にできる構
成に係るもので、前記C2を小さくし、その結果
Qs2を小さくしうるため、顕熱回収なしでの成績
係数が改善され、それだけ顕熱回収の効果も上記
式から明らかなように高められる。
The present invention relates to a configuration in which a heat exchanger for dual effect, a heat exchanger for sensible heat recovery, and a heat medium can be used in common.
Since Q s2 can be made small, the coefficient of performance without sensible heat recovery is improved, and the effect of sensible heat recovery is increased accordingly, as is clear from the above equation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による間欠作動式ヒ
ートポンプ装置の構成図、第2図は、同装置の動
作説明図、第3図は一般的な間欠作動式ヒートポ
ンプ装置の基本構成図である。 11,21,31,41……容器、101,1
11……管路、91,92……熱媒ポンプ、5
1,61,81,71,13,15……弁。
FIG. 1 is a block diagram of an intermittent heat pump device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the operation of the same device, and FIG. 3 is a basic block diagram of a general intermittent heat pump device. . 11, 21, 31, 41... Container, 101, 1
11... Pipe line, 91, 92... Heat medium pump, 5
1, 61, 81, 71, 13, 15... valve.

Claims (1)

【特許請求の範囲】[Claims] 1 作動気体を可逆的に吸脱着できる物質で、温
度平衡圧力特性の異なる吸脱着反応媒体を2種類
用い、この媒体をそれぞれ容器内に収容し、これ
らの容器を連結する作動媒体通路を設けてサイク
ルを構成し、作動媒体熱をそれぞれのサイクル間
を移動させるポンプを有し、第1のサイクルの高
温側媒体の吸着発熱温度を第2のサイクルの高温
側媒体の加熱脱着温度より高くし、前記第1のサ
イクルの発熱により前記第2のサイクルの加熱を
行うA組、B組の二重効用ケミカルヒートポンプ
を用い、交互に逆位相で運転し、前記作動媒体通
路に開閉弁を設け、前記A組、B組の第1、第2
のサイクルの高温側媒体の容器に内部の吸着媒体
と熱交換可能な伝熱管を設けてこれらを結び、A
組第1、B組第1、B組第2、A組第2の各管路
を経てA組第1の管路にもどる循環路を設け、熱
媒体を前記循環路に封入し、前記熱媒体を前記順
序および逆順序に循環させる手段を設けた間欠作
動式ヒートポンプ装置。
1. Two types of adsorption/desorption reaction media, which are substances that can reversibly adsorb and desorb working gases and have different temperature equilibrium pressure characteristics, are used, each medium is housed in a container, and a working medium passage is provided to connect these containers. comprising a pump for transferring heat of the working medium between each cycle, the adsorption exothermic temperature of the hot side medium of the first cycle being higher than the thermal desorption temperature of the hot side medium of the second cycle; A and B groups of dual-effect chemical heat pumps are used to perform heating in the second cycle using heat generated in the first cycle, and are operated alternately in opposite phases, and an on-off valve is provided in the working medium passage. Groups A and B, 1st and 2nd
A heat exchanger tube that can exchange heat with the adsorption medium inside is installed in the high temperature side medium container of the cycle, and these are connected.
A circulation path is provided which returns to the first group A pipe line through each of the pipe lines of the first group, the first group B, the second group B, and the second group A, and a heat medium is sealed in the circulation path, and the heat medium is An intermittent operating heat pump device comprising means for circulating the medium in said order and in the reverse order.
JP10741385A 1985-05-20 1985-05-20 Intermittent operation type heat pump device Granted JPS61265465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10741385A JPS61265465A (en) 1985-05-20 1985-05-20 Intermittent operation type heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10741385A JPS61265465A (en) 1985-05-20 1985-05-20 Intermittent operation type heat pump device

Publications (2)

Publication Number Publication Date
JPS61265465A JPS61265465A (en) 1986-11-25
JPH0414258B2 true JPH0414258B2 (en) 1992-03-12

Family

ID=14458517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10741385A Granted JPS61265465A (en) 1985-05-20 1985-05-20 Intermittent operation type heat pump device

Country Status (1)

Country Link
JP (1) JPS61265465A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179549A (en) * 1981-04-28 1982-11-05 Sekisui Chemical Co Ltd Method and device for obtaining thermal energy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179549A (en) * 1981-04-28 1982-11-05 Sekisui Chemical Co Ltd Method and device for obtaining thermal energy

Also Published As

Publication number Publication date
JPS61265465A (en) 1986-11-25

Similar Documents

Publication Publication Date Title
EP0071271B1 (en) Metal hydride heat pump system
US5396775A (en) Cooling apparatus for electronic and computer components
EP0603199B1 (en) Dual temperature heat pump apparatus
US5619866A (en) Adsorptive type refrigeration apparatus
JPH0414258B2 (en)
JPH0429949B2 (en)
JPS61265466A (en) Intermittent operation type heat pump device
Ziegler et al. Increase of the efficiency of the heat transfer phase in solid sorption or reaction systems
JP3316932B2 (en) Adsorption refrigeration equipment
JPS6329185B2 (en)
JPS6183847A (en) Intermittent operation type heat pump device
JPH06257886A (en) Heat utilization apparatus
JPS6329183B2 (en)
JPH06265286A (en) Method and apparatus for heat exchanging
JPH06257885A (en) Heat utilization apparatus
JPH04263754A (en) Chemical heat pump
JPH06257884A (en) Heat utilization apparatus
JPS63143466A (en) Heat pump utilizing metallic hydride and control method thereof
JPH03244974A (en) Adsorption type freezing device
JPS6011072A (en) Heat pump utilizing adsorbent and method of operating said pump
JPS60245974A (en) Multiple effect heat pump device
JP3464337B2 (en) Cold heat generator using hydrogen storage alloy and method of operating the same
JP4175612B2 (en) Single-effect absorption chiller / heater
JP2001183024A (en) Heat utilizing system using hydrogen absorbing material
JPS63113265A (en) Heat pump device utilizing metallic hydride