JPH06257884A - Heat utilization apparatus - Google Patents

Heat utilization apparatus

Info

Publication number
JPH06257884A
JPH06257884A JP4705093A JP4705093A JPH06257884A JP H06257884 A JPH06257884 A JP H06257884A JP 4705093 A JP4705093 A JP 4705093A JP 4705093 A JP4705093 A JP 4705093A JP H06257884 A JPH06257884 A JP H06257884A
Authority
JP
Japan
Prior art keywords
heat
hydrogen
fluid
alloy
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4705093A
Other languages
Japanese (ja)
Inventor
Kenichi Hashizume
健一 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4705093A priority Critical patent/JPH06257884A/en
Publication of JPH06257884A publication Critical patent/JPH06257884A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide a heat utilization apparatus in which warm heat or cold can be continuously taken and sensible heat recovery rate can be set to a specific %. CONSTITUTION:A heat accumulator 19 is provided together with heat source side alloys 2a, 2b, 2c made of different hydrogen occlusion alloys or units 1a, 1b, 1c containing utilization side alloys 4a, 4b, 4c provided in vessels 3a, 3b, 3c, 5a, 5b, 5c, and a sensible heat recovering step for recovering sensible heat of the alloy 2a is conducted between a hydrogen discharging step and a hydrogen absorbing step of the alloy 2a between the unit 1a and the alloy 4a. Further, an operation cycle is so formed as to conduct a sensible heat preheating step for preheating the alloy 2a with heat recovered to the accumulator 19 between the hydrogen absorbing step and the hydrogen discharging step, the cycle is similarly formed also at the other units 1b, 1c, and phases are deviated and repeated, and hence sensible heat recovery rate can be set to 50% or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金を用いる
冷凍機またはヒートポンプ等の熱利用装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat utilization device such as a refrigerator or a heat pump using a hydrogen storage alloy.

【0002】[0002]

【従来の技術】熱利用装置で水素吸蔵合金を用いる冷凍
機またはヒートポンプはフロンを使用しないこと、比較
的低温の熱源でも作動すること、構造が簡単なこと、高
い効率が期待できることなどの特徴を有し、実用化する
ための研究開発が行われている。
2. Description of the Related Art Refrigerators or heat pumps that use hydrogen storage alloys for heat utilization devices are characterized by the fact that they do not use CFCs, can operate with heat sources at relatively low temperatures, have a simple structure, and can be expected to have high efficiency. Research and development is being carried out to have it and put it to practical use.

【0003】以下従来の技術を図4を参照しながら説明
する。図4は冷凍機の接続図である。なお冷凍機とヒー
トポンプとは同一の構成で、熱源流体と熱利用流体の温
度関係が異なるのみであるので、ここでは冷凍機の場合
について説明する。
A conventional technique will be described below with reference to FIG. FIG. 4 is a connection diagram of the refrigerator. Since the refrigerator and the heat pump have the same configuration and only the temperature relationship between the heat source fluid and the heat utilization fluid is different, the case of the refrigerator will be described here.

【0004】図4において、冷凍機は第1及び第2のユ
ニット1a,1bで構成され、各ユニット1a,1bは
水素吸蔵合金でなる熱源側合金2a,2bを収納した容
器3a,3b、熱源側合金2a,2bと異なる水素吸蔵
合金でなる利用側合金4a,4bを収納した容器5a,
5b、容器3a,3bと容器5a,5bとの間を水素弁
6a,6bを挿入して接続する水素配管7a,7bを備
えている。
In FIG. 4, the refrigerator is composed of first and second units 1a and 1b, and each unit 1a and 1b is a container 3a and 3b containing heat source side alloys 2a and 2b made of a hydrogen storage alloy, and a heat source. A container 5a containing the utilization side alloys 4a, 4b made of a hydrogen storage alloy different from the side alloys 2a, 2b,
5b, and hydrogen pipes 7a and 7b for connecting the containers 3a and 3b and the containers 5a and 5b by inserting hydrogen valves 6a and 6b.

【0005】また容器3a,3b,5a,5bにはそれ
らの内部に設けられた熱交換部に、熱源流体A、熱利用
流体B、冷却流体Cの流れを切り替える流体切替弁8
a,8b,9a,9b,10a,10b,11a,11
b,12a,12b,13a,13bを有する配管が接
続されている。さらに熱源側合金2a,2b側の配管に
は顕熱回収用ポンプ14を含む顕熱回収用配管15が設
けられている。
A fluid switching valve 8 for switching the flow of the heat source fluid A, the heat utilization fluid B, and the cooling fluid C to a heat exchange portion provided inside the vessels 3a, 3b, 5a, 5b.
a, 8b, 9a, 9b, 10a, 10b, 11a, 11
Pipes having b, 12a, 12b, 13a, 13b are connected. Further, a sensible heat recovery pipe 15 including a sensible heat recovery pump 14 is provided in the pipes on the heat source side alloys 2a and 2b side.

【0006】このように構成された冷凍機は次のように
作動する。すなわち、図4のような接続状態にあると
き、熱源流体Aを第1のユニット1aの容器3aに流し
その熱交換部を介して熱源側合金2aを加熱し、容器3
a内の熱源側合金2aに吸収されている水素の圧力を高
める。そして水素弁6aを開放すると水素が容器5a側
に流れ、利用側合金4aが水素を吸収する。この時の利
用側合金4aの発熱は冷却流体Cを容器5aの熱交換部
に流すことによって冷却される。
The refrigerator constructed as described above operates as follows. That is, in the connection state as shown in FIG. 4, the heat source fluid A is caused to flow into the container 3a of the first unit 1a, and the heat source side alloy 2a is heated through the heat exchange part thereof, and
The pressure of hydrogen absorbed in the heat source side alloy 2a in a is increased. Then, when the hydrogen valve 6a is opened, hydrogen flows to the container 5a side, and the utilization side alloy 4a absorbs hydrogen. The heat generation of the utilization side alloy 4a at this time is cooled by flowing the cooling fluid C into the heat exchange section of the container 5a.

【0007】次に、水素弁6aを閉止して流体切替弁1
0a,11aを図中で90°反時計方向に回転させ、熱
源側合金2aを容器3aの熱交換部に冷却流体Cを流し
て冷却する。その後、水素弁6aを開放すると、水素は
今度は容器5aの利用側合金4aから容器3aの熱源側
合金2aの方向に向かって流れ、この過程で利用側合金
4aは吸熱する。この時、流体切替弁12a,13aを
反時計方向に90°回転させて熱利用流体Bを容器5a
内の熱交換部に流すことで冷熱が得られる。
Next, the hydrogen valve 6a is closed to close the fluid switching valve 1
0a and 11a are rotated counterclockwise by 90 ° in the figure, and the heat source side alloy 2a is cooled by flowing a cooling fluid C into the heat exchange section of the container 3a. Then, when the hydrogen valve 6a is opened, hydrogen flows from the utilization side alloy 4a of the container 5a toward the heat source side alloy 2a of the container 3a, and the utilization side alloy 4a absorbs heat in this process. At this time, the fluid switching valves 12a and 13a are rotated counterclockwise by 90 ° to transfer the heat-utilizing fluid B to the container 5a.
Cold heat is obtained by flowing the heat to the heat exchange section.

【0008】このような操作を同様に第2のユニット1
bで行うようにして、流体切替弁8a,8b,9a,9
b,10a,10b,11a,11b,12a,12
b,13a,13bを切り替えながら第1及び第2のユ
ニット1a,1bで交互に繰り返すサイクル運転を行う
ことで、熱利用流体Bでは冷熱を得ることができ、冷凍
機とし作動する。
[0008] Such operation is similarly performed in the second unit 1.
b, the fluid switching valves 8a, 8b, 9a, 9
b, 10a, 10b, 11a, 11b, 12a, 12
By performing a cycle operation in which the first and second units 1a and 1b are alternately repeated while switching b, 13a, and 13b, cold heat can be obtained in the heat-utilizing fluid B, and it operates as a refrigerator.

【0009】ここで、例えば熱源流体Aを95℃の熱水
とし、冷却流体Cを30℃の冷却水を使用した場合、熱
源側合金2aに水素を吸収させるときには冷却流体Cで
約30℃に冷却しておき、ここから水素を放出させるた
めには熱源流体Aで約95℃に加熱する。このため約3
0℃にまで冷却されている熱源側合金2aを約95℃近
くにまで昇温(予熱)しなければならない。
Here, for example, when the heat source fluid A is hot water of 95 ° C. and the cooling fluid C is 30 ° C., when the heat source side alloy 2a absorbs hydrogen, the cooling fluid C is heated to about 30 ° C. It is cooled and heated to about 95 ° C. with the heat source fluid A in order to release hydrogen from this. Therefore, about 3
The heat source side alloy 2a cooled to 0 ° C. must be heated (preheated) to about 95 ° C.

【0010】この際の昇温の熱量は、熱容量の大きい両
合金2a,2b,4a,4b及び各容器3a,3b,5
a,5bの温度変化のための顕熱として消費されるだけ
で、冷熱を取り出すことには使われない。すなわち、熱
源流体Aの持つ熱エネルギの一部が無駄に捨てられ、冷
凍機としての成績係数(COP)の低下をもたらす。
At this time, the amount of heat for heating is such that both alloys 2a, 2b, 4a, 4b having a large heat capacity and the respective containers 3a, 3b, 5 are used.
It is only consumed as sensible heat for temperature changes of a and 5b, and is not used for extracting cold heat. That is, a part of the heat energy of the heat source fluid A is wasted, and the coefficient of performance (COP) of the refrigerator is lowered.

【0011】そこで顕熱回収を行ってCOPの向上をは
かるために、第1及び第2のユニット1a,1bの作動
を切り替える前に図4に示された位置から流体切替弁1
0b,11bを時計方向に、流体切替弁8a,8b,9
a,9bを反時計方向に90°回転させ、顕熱回収用ポ
ンプ14を一定時間運転して熱源側合金2a,2bの間
で熱交換を行わせる。このようにすると、水素の放出を
終えた熱源側合金の顕熱を次のサイクルで水素を放出す
る熱源側合金の予熱に利用できるのでCOPの向上をは
かることができる。
Therefore, in order to recover the sensible heat and improve the COP, the fluid switching valve 1 is moved from the position shown in FIG. 4 before switching the operations of the first and second units 1a and 1b.
0b, 11b clockwise, fluid switching valves 8a, 8b, 9
The a and 9b are rotated counterclockwise by 90 ° and the sensible heat recovery pump 14 is operated for a certain period of time to cause heat exchange between the heat source side alloys 2a and 2b. In this case, the sensible heat of the heat source side alloy that has finished releasing hydrogen can be used for preheating the heat source side alloy that releases hydrogen in the next cycle, so that COP can be improved.

【0012】一方、利用側合金についても同様で、冷熱
を取り出す時には水素を吸収する過程で30℃近くまで
暖まった利用側合金を熱利用流体で熱利用温度まで冷却
しなければならないから、利用側合金4a,4bの配管
にも顕熱回収用ポンプを含む顕熱回収用配管を接続すれ
ば利用側合金でも顕熱を回収することができ、より一層
のCOP向上をはかることができる。
On the other hand, the same applies to the utilization side alloy. When the cold heat is taken out, the utilization side alloy, which has been warmed up to about 30 ° C. in the process of absorbing hydrogen, must be cooled to the heat utilization temperature by the utilization fluid. If the sensible heat recovery pipe including the sensible heat recovery pump is connected to the pipes of the alloys 4a and 4b, the sensible heat can be recovered even in the use side alloy, and the COP can be further improved.

【0013】しかしながら上記の従来技術においては、
顕熱回収過程を実行している間、熱利用流体Bの流れが
停止し冷凍機としての運転が中断されてしまい、その間
は冷熱を取り出すことができない。さらに2つの合金の
間での熱交換であるため原理的には夫々の合金2a,2
b,4a,4bは、両者の中間温度にまでしか到達せず
顕熱の半分しか回収できないことになり、顕熱回収率は
原理的に50%を越えることができない。
However, in the above-mentioned prior art,
While the sensible heat recovery process is being performed, the flow of the heat-utilizing fluid B is stopped and the operation of the refrigerator is interrupted, during which cold heat cannot be taken out. Furthermore, since heat is exchanged between the two alloys, in principle, each of the alloys 2a, 2
b, 4a and 4b reach only the intermediate temperature between them, and only half of the sensible heat can be recovered, so that the sensible heat recovery rate cannot theoretically exceed 50%.

【0014】また同様に、ヒートポンプを構成した場合
においても温熱を連続的に取り出すことができない。
Similarly, even when a heat pump is constructed, it is impossible to continuously take out heat.

【0015】[0015]

【発明が解決しようとする課題】上記のように従来のも
のでは、顕熱回収過程で中断するために連続して冷熱ま
たは温熱の取り出しを行うことができず、また顕熱回収
率も50%以上とすることができない。このような状況
に鑑みて本発明はなされたもので、その目的とするとこ
ろは略連続的に冷熱または温熱の取り出しを行うことが
でき、また顕熱回収率も50%以上とすることができる
熱利用装置を提供することにある。
As described above, in the conventional device, it is not possible to continuously take out cold heat or hot heat because the sensible heat recovery process is interrupted, and the sensible heat recovery rate is 50%. It cannot be more than that. The present invention has been made in view of such a situation, and the purpose thereof is to be able to take out cold heat or warm heat substantially continuously, and the sensible heat recovery rate can be 50% or more. To provide a heat utilization device.

【0016】[0016]

【課題を解決するための手段】本発明の熱利用装置は、
切替弁が挿入された配管で接続された複数の容器に異な
る種類の水素吸蔵合金を夫々収納し水素を封入してなる
ユニットを備え、熱源流体で熱源側の水素吸蔵合金から
水素を放出させ利用側の水素吸蔵合金に吸収させる水素
放出過程と、利用側の水素吸蔵合金が吸収した水素を放
出させ熱源側の水素吸蔵合金に吸収させる水素吸収過程
とを行なうように運転サイクルを構成し、この運転サイ
クルを繰り返し行なわせながら熱利用流体によって冷熱
または温熱を取り出すようにした熱利用装置において、
ユニットを少なくとも3対設けると共に蓄熱器を設け、
水素放出過程と水素吸収過程との間に水素吸蔵合金の顕
熱を蓄熱器に回収する顕熱回収過程を行なわせ、水素吸
収過程と水素放出過程との間に蓄熱器に回収された熱に
よって水素吸蔵合金を予熱または予冷する顕熱予熱また
は予冷過程を行なわせるように運転サイクルを構成し、
且つこの運転サイクルを前記各ユニットで位相をずらし
て繰り返し行なわせるようにしたものであることを特徴
とするものであり、また、蓄熱器が、熱源流体または熱
利用流体と同じ流体を蓄熱材とし、軸方向に移動可能な
ディスプレーサを内部に有する円筒状容器からなるもの
であることを特徴とするものであり、さらに、蓄熱器
が、熱源流体または熱利用流体と同じ流体を蓄熱材と
し、略水平に螺旋状に巻いたパイプからなるものである
ことを特徴するものである。
The heat utilization device of the present invention comprises:
Equipped with a unit in which hydrogen storage alloys of different types are stored in multiple containers connected by piping with a switching valve inserted and hydrogen is sealed, and hydrogen is released from the hydrogen storage alloy on the heat source side with a heat source fluid for use The operation cycle is configured to perform a hydrogen releasing process of absorbing hydrogen by the hydrogen absorbing alloy on the side and a hydrogen absorbing process of releasing the hydrogen absorbed by the hydrogen absorbing alloy on the utilizing side and absorbing by the hydrogen absorbing alloy on the heat source side. In a heat utilization device configured to extract cold heat or warm heat by a heat utilization fluid while repeating an operation cycle,
Provide at least 3 pairs of units and a heat accumulator,
The sensible heat recovery process of recovering the sensible heat of the hydrogen storage alloy to the regenerator is performed between the hydrogen desorption process and the hydrogen absorption process, and the sensible heat is recovered by the heat regenerator between the hydrogen absorption process and the hydrogen desorption process. The operation cycle is configured to perform a sensible preheating or precooling process of preheating or precooling the hydrogen storage alloy,
And this operating cycle is characterized in that it is configured to be repeatedly performed by shifting the phase in each unit, and the heat accumulator uses the same fluid as the heat source fluid or the heat utilization fluid as the heat storage material. The heat storage device is characterized by comprising a cylindrical container having a displacer movable in the axial direction therein, and the heat storage device uses the same fluid as the heat source fluid or the heat utilization fluid as a heat storage material. It is characterized in that it is composed of a horizontally spirally wound pipe.

【0017】[0017]

【作用】上記のように構成された熱利用装置は、複数の
容器内に夫々熱源側合金または利用側合金である異なる
水素吸蔵合金を収納したユニットを少なくとも3対設け
ると共に蓄熱器を設け、水素放出過程と水素吸収過程と
の間に水素吸蔵合金の顕熱を蓄熱器に回収する顕熱回収
過程を行なわせ、水素吸収過程と水素放出過程との間に
蓄熱器に回収された熱によって水素吸蔵合金を予熱また
は予冷する顕熱予熱または予冷過程を行なわせるように
運転サイクルを構成し、且つこの運転サイクルを各ユニ
ットで位相をずらして繰り返し行なわせるようにしてい
る。それ故、例えば水素放出過程を終えて高温になって
いる熱源側合金から、水素吸収過程を終えて低温になっ
ている熱源側合金の温度に近い温度にまで顕熱を蓄熱器
に回収しておき、この蓄熱器に回収した熱で、水素放出
過程に先だって低温になっている熱源側合金を水素放出
温度近くにまで予熱をする。同様に利用側合金において
は予冷を行なうことができる。そして各過程が少なくと
も3対設けたユニットにおいて位相をずらして行なわれ
る。このため、略連続的に冷熱または温熱の取り出しを
行うことができ、また顕熱回収率も50%以上とするこ
とができる。
In the heat utilization device configured as described above, at least three pairs of units each containing a different hydrogen storage alloy, which is a heat source side alloy or a utilization side alloy, are provided in a plurality of containers, and a heat accumulator is provided. A sensible heat recovery process of recovering the sensible heat of the hydrogen storage alloy in the regenerator is performed between the desorption process and the hydrogen absorption process, and hydrogen is recovered by the heat recovered in the regenerator between the hydrogen absorption process and the hydrogen desorption process. The operation cycle is configured to perform the sensible heat preheating or precooling process of preheating or precooling the storage alloy, and the operation cycle is repeatedly performed by shifting the phase in each unit. Therefore, for example, sensible heat is recovered in the regenerator from the heat source side alloy that has become high temperature after completing the hydrogen desorption process to a temperature close to the temperature of the heat source side alloy that has become low temperature after completing the hydrogen absorption process. Then, the heat recovered by this heat accumulator is used to preheat the heat source side alloy, which is at a low temperature prior to the hydrogen release process, to a temperature close to the hydrogen release temperature. Similarly, the utilization side alloy can be precooled. Then, each process is performed with a phase shift in units provided with at least three pairs. Therefore, cold heat or warm heat can be taken out almost continuously, and the sensible heat recovery rate can be 50% or more.

【0018】[0018]

【実施例】以下、本発明の一実施例を熱利用装置の1つ
である冷凍機について図1乃至図3を参照して説明す
る。図1は接続図であり、図2は作動状態を説明するた
めに示す図であり、図3は蓄熱器の変形例を示す概略の
構成図である。なお、冷凍機とヒートポンプとは同一の
構成で、熱源流体と熱利用流体の温度関係が異なるのみ
であるので、ここでは冷凍機の場合について説明する。
また従来と同一部分には同一符号を付して説明を省略
し、従来と異なる本発明の構成について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 to 3 for a refrigerator as one of heat utilization devices. FIG. 1 is a connection diagram, FIG. 2 is a diagram for explaining an operating state, and FIG. 3 is a schematic configuration diagram showing a modified example of the heat storage device. Since the refrigerator and the heat pump have the same configuration and only the temperature relationship between the heat source fluid and the heat utilization fluid is different, the case of the refrigerator will be described here.
Further, the same parts as those of the related art will be denoted by the same reference numerals and the description thereof will be omitted, and a configuration of the present invention different from the related art will be described.

【0019】図1及び図2において、冷凍機は第1及び
第2、第3のユニット1a,1b,1cを設けて構成さ
れ、各ユニット1a,1b,1cは水素吸蔵合金でなる
熱源側合金2a,2b,2cを収納した容器3a,3
b,3c、熱源側合金2a,2b,2cと温度平衡圧力
特性を異にする水素吸蔵合金でなる利用側合金4a,4
b,4cを収納した容器5a,5b,5c、容器3a,
3b,3cと容器5a,5b,5cとの間を水素弁6
a,6b,6cを挿入して接続する水素配管7a,7
b,7cを備えている。
In FIGS. 1 and 2, the refrigerator is constructed by providing first, second and third units 1a, 1b and 1c, and each unit 1a, 1b and 1c is a heat source side alloy made of a hydrogen storage alloy. Containers 3a, 3 containing 2a, 2b, 2c
b, 3c, heat source side alloys 2a, 2b, 2c, and use side alloys 4a, 4 made of hydrogen storage alloys having different temperature equilibrium pressure characteristics
b, 4c containing containers 5a, 5b, 5c, container 3a,
Hydrogen valve 6 is provided between 3b and 3c and containers 5a, 5b and 5c.
Hydrogen pipes 7a, 7 for inserting and connecting a, 6b, 6c
b, 7c.

【0020】また容器3a,3b,3c,5a,5b,
5cにはそれらの内部に設けられた熱交換部に、温度状
態が異なる同一の流体でなる熱源流体A、熱利用流体
B、冷却流体Cの流れを切り替える熱源側合金2a,2
b,2c側の流体切替弁8a,8b,8c,9a,9
b,9c,10a,10b,10c,11a,11b,
11c、及び利用側合金4a,4b,4c側の流体切替
弁8′a,8′b,8′c,9′a,9′b,9′c,
10′a,10′b,10′c,11′a,11′b,
11′cを有する配管が接続されている。
Further, the containers 3a, 3b, 3c, 5a, 5b,
5c includes heat source side alloys 2a, 2 for switching the flow of a heat source fluid A, a heat utilization fluid B, and a cooling fluid C, which are the same fluid in different temperature states, in a heat exchange portion provided therein.
b, 2c side fluid switching valves 8a, 8b, 8c, 9a, 9
b, 9c, 10a, 10b, 10c, 11a, 11b,
11c and the fluid switching valves 8'a, 8'b, 8'c, 9'a, 9'b, 9'c on the side of the utilization side alloys 4a, 4b, 4c,
10'a, 10'b, 10'c, 11'a, 11'b,
A pipe having 11'c is connected.

【0021】さらに、熱源側合金2a,2b,2c側の
配管には顕熱回収用ポンプ16を含む顕熱回収用配管1
7が設けられ、また四方弁18により流れ方向が変わる
蓄熱器19が設けられている。同様に利用側合金4a,
4b,4c側の配管にも顕熱回収用ポンプ16′を含む
顕熱回収用配管17′が設けられ、また四方弁18′に
より流れ方向が変わる蓄熱器19が設けられている。
Further, the sensible heat recovery pipe 1 including the sensible heat recovery pump 16 is provided in the pipes on the heat source side alloys 2a, 2b, 2c side.
7 is provided, and a heat storage device 19 whose flow direction is changed by a four-way valve 18 is provided. Similarly, the utilization side alloy 4a,
The sensible heat recovery pipe 17 'including the sensible heat recovery pump 16' is also provided in the pipes on the 4b and 4c sides, and the heat storage device 19 whose flow direction is changed by the four-way valve 18 'is also provided.

【0022】蓄熱器19,は共に垂直に設置された円筒
状容器20で構成され、容器20は内部に軸方向に自由
に移動可能に設けられたディスプレーサ21を有し、頂
部及び底部の端部分に容器20内に流体を出し入れする
ノズル22がそれぞれ設けられている。なおディスプレ
ーサ21の外周には容器20内壁面に液密に摺動可能と
するシールリング23が嵌着されている。
The heat accumulator 19 is composed of a cylindrical container 20 installed vertically, and the container 20 has a displacer 21 provided therein so as to be freely movable in the axial direction, and the top and bottom end portions thereof. Each of the nozzles 22 is provided with a nozzle 22 for taking a fluid in and out of the container 20. A seal ring 23, which is slidable in a liquid-tight manner on the inner wall surface of the container 20, is fitted around the displacer 21.

【0023】このように構成された冷凍機は、その第1
及び第2、第3のユニット1a,1b,1cがフェイズ
I〜VIからなるサイクルを位相をずらしながら順次繰り
返す。以下に熱源側合金2a,2b,2c側での作動状
態を中心に動作を説明する。なお、利用側合金4a,4
b,4c側の作動状態も、熱源流体Aと利用流体Bの温
度状態が異なるのみで同様に動作する。またフェイズI
〜VIにおいて熱源側合金2a,2b,2c側の各流体切
替弁8a,8b,8c,9a,9b,9c,10a,1
0b,10c,11a,11b,11cは、図2に示す
位置にある。
The refrigerator constructed as described above is the first one.
And the second and third units 1a, 1b, 1c sequentially repeat the cycle consisting of phases I to VI while shifting the phase. The operation will be described below centering on the operating state on the heat source side alloys 2a, 2b, 2c. In addition, the utilization side alloys 4a, 4
The operating states on the b and 4c sides operate similarly except that the temperature states of the heat source fluid A and the utilization fluid B are different. Also Phase I
In VI, heat source side alloys 2a, 2b, 2c side fluid switching valves 8a, 8b, 8c, 9a, 9b, 9c, 10a, 1
0b, 10c, 11a, 11b and 11c are in the positions shown in FIG.

【0024】先ず、第1のユニット1aでの作動状態を
見ると、フェイズIでは熱源側合金2aで水素放出過程
(図2で実線で示す。)が行われる。すなわち、熱源側
合金2aが容器3a内の熱交換部に例えば95℃の熱源
流体Aが流れることで加熱され、吸収していた水素の容
器3a内の圧力が高まり、水素は容器5a側に流れて利
用側合金4aが水素を吸収する。この時の利用側合金4
aの発熱は例えば30℃の冷却流体Cを容器5aの熱交
換部に流すことによって冷却される。
First, looking at the operating state of the first unit 1a, in Phase I, the hydrogen release process (shown by the solid line in FIG. 2) is performed in the heat source side alloy 2a. That is, the heat source side alloy 2a is heated by the heat source fluid A of, for example, 95 ° C. flowing to the heat exchange section in the container 3a, the pressure of the absorbed hydrogen in the container 3a increases, and the hydrogen flows to the container 5a side. The utilization-side alloy 4a absorbs hydrogen. Use side alloy 4 at this time
The heat generated by a is cooled by, for example, flowing a cooling fluid C at 30 ° C. into the heat exchange section of the container 5a.

【0025】次のフェイズIIでは熱源側合金2aで顕熱
回収過程(蓄熱器蓄熱過程)(図2に1点鎖線で示
す。)が行われる。すなわち、容器3a内の熱交換部に
顕熱回収用ポンプ16により蓄熱器19内から頂部のノ
ズル22を介して熱源流体Aと同じ流体が送り込まれ
る。同時に熱源側合金2aと容器3aの持つ顕熱を回収
して温度が上昇し蓄熱した流体は、蓄熱器19の底部の
ノズル22から内部に戻る。
In the next phase II, the sensible heat recovery process (heat storage process of the regenerator) (shown by a chain line in FIG. 2) is performed in the heat source side alloy 2a. That is, the same fluid as the heat source fluid A is sent from the sensible heat recovery pump 16 to the heat exchange section in the container 3a from the inside of the regenerator 19 through the nozzle 22 at the top. At the same time, the sensible heat of the heat source side alloy 2a and the container 3a is recovered, the temperature of which rises and the accumulated heat returns to the inside from the nozzle 22 at the bottom of the heat accumulator 19.

【0026】この時、蓄熱器19内のディスプレーサ2
1は底部から上方向に流体に押し上げられるようにして
移動し、ディスプレーサ21の下方側に戻ってきた流体
は、水素を放出して熱源側合金2aと容器3aの温度が
低下していくので、顕熱回収過程が進むにしたがって温
度が低いものとなり、蓄熱器19内には底部に行くほど
温度が低くなる流体層(温度成層)が形成される。
At this time, the displacer 2 in the heat storage unit 19
1 moves upward from the bottom so as to be pushed upward by the fluid, and the fluid returning to the lower side of the displacer 21 releases hydrogen and the temperatures of the heat source side alloy 2a and the container 3a decrease. The temperature becomes lower as the sensible heat recovery process progresses, and a fluid layer (temperature stratification) is formed in the heat accumulator 19 in which the temperature becomes lower toward the bottom.

【0027】同様に利用側合金4aにおいても容器5a
内の熱交換部に、顕熱回収用ポンプ16′により蓄熱器
19内から頂部のノズル22を介して流体が送り込まれ
る。なお動作が継続して行なわれる中では利用側合金4
aの予冷が行なわれる。そして、容器5a内を通流した
流体は蓄熱器19の底部のノズル22から蓄熱器19内
部に戻り、容器5a内の熱交換部の温度変化に対応した
流体層を蓄熱器19内に形成する。
Similarly, the container 5a for the utilization side alloy 4a
A sensible heat recovery pump 16 'sends a fluid from the inside of the regenerator 19 through the nozzle 22 at the top to the heat exchange section therein. In addition, during continuous operation, alloy 4 on the user side
Pre-cooling of a is performed. Then, the fluid flowing through the container 5a returns to the inside of the heat storage device 19 from the nozzle 22 at the bottom of the heat storage device 19, and forms a fluid layer in the heat storage device 19 corresponding to the temperature change of the heat exchange section in the container 5a. .

【0028】次にフェイズIII 〜IVでは熱源側合金2a
で水素吸収過程(図2に破線で示す。)が行われる。す
なわち、水素弁6aを閉止した状態で容器3a内の熱交
換部に冷却流体Cを流して熱源側合金2aを冷却し、容
器3a内圧力が所定値となったところで水素弁6aを開
放し、さらに熱源側合金2aを冷却し続ける。これによ
って容器5aの利用側合金4aから水素が放出され、容
器3aの熱源側合金2aの方向に向かって流れて熱源側
合金2aに吸収される。この時、利用側合金4aは吸熱
するので熱利用流体Bを容器5a内の熱交換部に流し、
これによって冷熱を得る。
Next, in phases III to IV, the heat source side alloy 2a
The hydrogen absorption process (shown by the broken line in FIG. 2) is carried out. That is, with the hydrogen valve 6a closed, the cooling fluid C is caused to flow through the heat exchange section in the container 3a to cool the heat source side alloy 2a, and when the pressure in the container 3a reaches a predetermined value, the hydrogen valve 6a is opened. Further, the heat source side alloy 2a is continuously cooled. As a result, hydrogen is released from the utilization side alloy 4a of the container 5a, flows toward the heat source side alloy 2a of the container 3a, and is absorbed by the heat source side alloy 2a. At this time, since the utilization side alloy 4a absorbs heat, the heat utilization fluid B is caused to flow to the heat exchange section in the container 5a,
This produces cold heat.

【0029】次のフェイズVでは熱源側合金2aで顕熱
予熱過程(蓄熱器放熱過程)(図2に2点鎖線で示
す。)が行われる。すなわち、四方弁18を切り替えて
顕熱回収用配管17内の流体の流れ方向をフェイズIIの
顕熱回収過程とは逆方向にする。そして容器3a内の熱
交換部に、顕熱回収用ポンプ16により蓄熱器19内か
ら底部のノズル22を介して蓄熱している流体を送り込
む。この時送り込まれる流体は、蓄熱器19内に温度成
層を形成し底部ほど温度が低く上部側の温度が高い流体
で、低温のものから高温のものが送り込まれるにしたが
って熱源側合金2aと容器3aが予熱される。同時に熱
源側合金2aと容器3aを予熱した流体は、蓄熱器19
の頂部のノズル22から内部に戻る。
In the next phase V, the sensible heat preheating process (heat storage heat dissipation process) (shown by a two-dot chain line in FIG. 2) is performed in the heat source side alloy 2a. That is, the four-way valve 18 is switched so that the flow direction of the fluid in the sensible heat recovery pipe 17 is opposite to the sensible heat recovery process of Phase II. Then, the sensible heat recovery pump 16 sends the fluid storing heat from the inside of the regenerator 19 through the nozzle 22 at the bottom to the heat exchange section in the container 3a. The fluid fed at this time is a fluid that forms a temperature stratification in the heat accumulator 19 and has a lower temperature at the bottom and a higher temperature at the upper side. As the fluid from the low temperature to the high temperature is fed, the heat source side alloy 2a and the container 3a. Is preheated. At the same time, the fluid that preheats the heat source side alloy 2a and the container 3a is
Return to the inside from the nozzle 22 at the top of the.

【0030】この時、蓄熱器19内のディスプレーサ2
1は頂部から下方向に流体に押し下げられるようにして
移動し、ディスプレーサ21の上方側に戻ってきた流体
は、顕熱予熱過程が進むにしたがって熱源側合金2aと
容器3aの温度が上昇していくので、蓄熱器19内に頂
部に行くほど温度が高くなる流体層(温度成層)が形成
される。なお蓄熱器19内のディスプレーサ21の下面
側近傍の流体温度は高く、逆に上面側近傍の流体温度は
低いものとなるが、ディスプレーサ21があるために自
然対流は阻止され、温度の異なる流体が混合することが
なく、温度成層は維持される。
At this time, the displacer 2 in the heat storage unit 19
1 moves downward from the top so that the fluid returns to the upper side of the displacer 21, and the temperature of the heat source side alloy 2a and the container 3a rises as the sensible heat preheating process progresses. Therefore, a fluid layer (temperature stratification) is formed in the heat accumulator 19 in which the temperature increases toward the top. Although the fluid temperature near the lower surface side of the displacer 21 in the heat storage unit 19 is high and the fluid temperature near the upper surface side is low, natural convection is blocked by the displacer 21 and fluids with different temperatures are Thermal mixing is maintained without mixing.

【0031】同様に利用側合金4aにおいても低温とな
っている容器5a内の熱交換部に、顕熱回収用ポンプ1
6′により蓄熱器19内から頂部のノズル22を介して
流体が送り込まれる。そして容器5a内を通流し冷熱を
蓄えた流体は蓄熱器19の底部のノズル22から蓄熱器
19内部に戻り、容器5a内の熱交換部の温度変化に対
応した流体層を蓄熱器19内に形成する。
Similarly, in the utilization side alloy 4a, the sensible heat recovery pump 1 is provided in the heat exchange section in the container 5a which has a low temperature.
The fluid is sent from the inside of the heat accumulator 19 through the nozzle 22 at the top by 6 '. Then, the fluid that has passed through the container 5a and stored cold heat returns from the nozzle 22 at the bottom of the heat storage device 19 to the inside of the heat storage device 19, and a fluid layer corresponding to the temperature change of the heat exchange part in the container 5a is placed in the heat storage device 19. Form.

【0032】続いてフェイズVIでは熱源側合金2aで水
素放出過程に戻り、熱源側合金2aが熱源流体Aで加熱
され、吸収していた水素が容器3aから容器5a側に流
れて利用側合金4aに吸収される。そして利用側合金4
aの発熱は冷却流体Cによって冷却される。
Then, in phase VI, the heat source side alloy 2a returns to the hydrogen release process, the heat source side alloy 2a is heated by the heat source fluid A, and the absorbed hydrogen flows from the container 3a to the container 5a side and the utilization side alloy 4a. Is absorbed by. And use side alloy 4
The heat generation of a is cooled by the cooling fluid C.

【0033】そして、上述のフェイズI〜VIの各過程が
第1のユニット1aで以降繰り返して行なわれ、また第
2のユニット1b及び第3のユニット1cにおいても夫
々第1のユニット1aよりも2フェイズ、及び4フェイ
ズ遅れて同様の過程が繰り返されて冷凍機は継続的に運
転される。
Then, each of the above-mentioned phases I to VI is repeatedly performed in the first unit 1a and thereafter, and in the second unit 1b and the third unit 1c, respectively, more than the first unit 1a. The same process is repeated with a delay of 4 phases and the phase, and the refrigerator is continuously operated.

【0034】この結果、水素放出過程を終えて高温にな
っている熱源側合金2a,2b,2c及び容器3a,3
b,3cから、水素吸収過程を終えて低温になっている
熱源側合金2a,2b,2cの温度に近い温度まで顕熱
を蓄熱器19に回収しておき、この蓄熱器19に回収し
た熱で、水素放出過程に先だって冷却流体Cで冷却され
低温になっている熱源側合金2a,2b,2c及び容器
3a,3b,3cを、水素放出温度近くにまで予熱をす
ることが可能となる。すなわち、50%以上の顕熱回収
が実現する。そして顕熱回収過程の最中でも略連続的に
冷熱の取り出しを行うことができる。同様に利用側合金
4a,4b,4cにおいては予冷を行なうことができ
る。
As a result, the heat source side alloys 2a, 2b, 2c and the containers 3a, 3 which have reached a high temperature after the hydrogen release process are completed.
The sensible heat from b and 3c is recovered in the regenerator 19 to a temperature close to the temperature of the heat source side alloys 2a, 2b and 2c, which has become low temperature after finishing the hydrogen absorption process, and the heat recovered in the regenerator 19 is recovered. Then, it becomes possible to preheat the heat source side alloys 2a, 2b, 2c and the containers 3a, 3b, 3c which are cooled by the cooling fluid C and have a low temperature prior to the hydrogen releasing process to a temperature close to the hydrogen releasing temperature. That is, 50% or more sensible heat recovery is realized. Further, during the sensible heat recovery process, cold heat can be taken out substantially continuously. Similarly, the use side alloys 4a, 4b and 4c can be pre-cooled.

【0035】次に本発明に用いることができる蓄熱器の
変形例について図3により説明する。図3において、蓄
熱器24は長いパイプ25を螺旋状に巻き、その螺旋軸
方向を垂直にして構成され、螺旋状に巻かれた部分は略
水平となるよう巻きピッチに対し巻き直径が大きなもの
となっている。そして冷凍機の顕熱回収用配管17内に
顕熱回収用ポンプ16及び四方弁18と共に直列に挿入
される。
Next, a modified example of the heat storage device that can be used in the present invention will be described with reference to FIG. In FIG. 3, the heat storage unit 24 is configured by winding a long pipe 25 in a spiral shape and making the spiral axis direction vertical, and the winding diameter is larger than the winding pitch so that the spirally wound portion is substantially horizontal. Has become. Then, the sensible heat recovery pump 16 and the four-way valve 18 are inserted in series in the sensible heat recovery pipe 17 of the refrigerator.

【0036】このように構成され、顕熱回収用配管17
内に挿入されているため、蓄熱器24内に温度勾配を持
って流入してきた流体はパイプ25の管軸方向に温度分
布を持って温度成層を形成する。また蓄熱器24内にそ
の両端部から温度勾配を持つようにして流出入する流体
が、パイプ25内で最も温度の高い流体と最も温度が低
い流体として直接接するようなことがあっても、パイプ
25が略水平に巻かれているので自然対流が起こらず、
直接接触する高温流体と低温流体の混合が抑制される。
The pipe 17 for recovering sensible heat constructed as described above
Since it is inserted inside, the fluid flowing into the heat storage unit 24 with a temperature gradient forms a temperature stratification with a temperature distribution in the pipe axis direction of the pipe 25. Further, even if the fluid flowing into and out of the heat storage unit 24 with a temperature gradient from both ends thereof comes into direct contact with the highest temperature fluid and the lowest temperature fluid in the pipe 25, Since 25 is wound almost horizontally, natural convection does not occur,
Mixing of the hot fluid and the cold fluid in direct contact is suppressed.

【0037】その結果、この変形例の蓄熱器24におい
ても上述の蓄熱器19と同様の効果が簡単な構成で得ら
れる。
As a result, also in the heat storage unit 24 of this modification, the same effect as that of the heat storage unit 19 can be obtained with a simple structure.

【0038】尚、本発明は上記の実施例のみに限定され
るものではなく、熱源流体と熱利用流体を交換すること
でヒートポンプとして作動させるようにしてもよく、ユ
ニットの数も3対以上でもよい等、要旨を逸脱しない範
囲内で適宜変更して実施し得るものである。
The present invention is not limited to the above embodiment, but may be operated as a heat pump by exchanging the heat source fluid and the heat utilizing fluid, and the number of units may be three or more. The present invention can be appropriately modified and implemented without departing from the scope of the invention.

【0039】[0039]

【発明の効果】以上の説明から明らかなように本発明
は、複数の容器内に夫々異なる水素吸蔵合金を収納した
ユニットを少なくとも3対設けると共に蓄熱器を設け、
水素放出過程と水素吸収過程との間に水素吸蔵合金の顕
熱を蓄熱器に回収する顕熱回収過程を行なわせ、水素吸
収過程と水素放出過程との間に蓄熱器に回収された熱に
よって水素吸蔵合金を予熱または予冷する顕熱予熱また
は予冷過程を行なわせるように運転サイクルを構成し、
且つこの運転サイクルを各ユニットで位相をずらして繰
り返し行なわせる構成としたことにより、略連続的に冷
熱または温熱の取り出しを行うことができ、また顕熱回
収率も50%以上とすることができる等の効果が得られ
る。
As is apparent from the above description, according to the present invention, at least three pairs of units containing different hydrogen storage alloys are provided in a plurality of containers, and a heat accumulator is provided.
The sensible heat recovery process of recovering the sensible heat of the hydrogen storage alloy to the regenerator is performed between the hydrogen desorption process and the hydrogen absorption process, and the sensible heat is recovered by the heat regenerator between the hydrogen absorption process and the hydrogen desorption process. The operation cycle is configured to perform a sensible preheating or precooling process of preheating or precooling the hydrogen storage alloy,
Moreover, by adopting a configuration in which this operation cycle is repeatedly performed by shifting the phase in each unit, cold heat or warm heat can be taken out substantially continuously, and the sensible heat recovery rate can be 50% or more. And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す接続図である。FIG. 1 is a connection diagram showing an embodiment of the present invention.

【図2】本発明の一実施例の作動状態を説明するために
示す図である。
FIG. 2 is a diagram for explaining an operating state of an embodiment of the present invention.

【図3】本発明における蓄熱器の変形例を示す概略の構
成図である。
FIG. 3 is a schematic configuration diagram showing a modified example of the heat storage device in the present invention.

【図4】従来例を示す接続図である。FIG. 4 is a connection diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1a,1b,1c…ユニット 2a,2b,2c…熱源側合金 3a,3b,3c,5a,5b,5c…容器 4a,4b,4c…利用側合金 6a,6b,6c…水素弁 7a,7b,7c…水素配管 8a,8b,8c,9a,9b,9c,10a,10
b,10c,11a,11b,11c,8′a,8′
b,8′c,9′a,9′b,9′c,10′a,1
0′b,10′c,11′a,11′b,11′c…流
体切替弁 19…蓄熱器 A…熱源流体 B…熱利用流体 C…冷却流体
1a, 1b, 1c ... Unit 2a, 2b, 2c ... Heat source side alloy 3a, 3b, 3c, 5a, 5b, 5c ... Container 4a, 4b, 4c ... Utilization side alloy 6a, 6b, 6c ... Hydrogen valve 7a, 7b, 7c ... Hydrogen piping 8a, 8b, 8c, 9a, 9b, 9c, 10a, 10
b, 10c, 11a, 11b, 11c, 8'a, 8 '
b, 8'c, 9'a, 9'b, 9'c, 10'a, 1
0'b, 10'c, 11'a, 11'b, 11'c ... fluid switching valve 19 ... heat accumulator A ... heat source fluid B ... heat utilization fluid C ... cooling fluid

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 切替弁が挿入された配管で接続された複
数の容器に異なる種類の水素吸蔵合金を夫々収納し水素
を封入してなるユニットを備え、熱源流体で熱源側の前
記水素吸蔵合金から水素を放出させ利用側の前記水素吸
蔵合金に吸収させる水素放出過程と、利用側の前記水素
吸蔵合金が吸収した水素を放出させ熱源側の前記水素吸
蔵合金に吸収させる水素吸収過程とを行なうように運転
サイクルを構成し、この運転サイクルを繰り返し行なわ
せながら熱利用流体によって冷熱または温熱を取り出す
ようにした熱利用装置において、前記ユニットを少なく
とも3対設けると共に蓄熱器を設け、前記水素放出過程
と水素吸収過程との間に前記水素吸蔵合金の顕熱を前記
蓄熱器に回収する顕熱回収過程を行なわせ、前記水素吸
収過程と水素放出過程との間に前記蓄熱器に回収された
熱によって前記水素吸蔵合金を予熱または予冷する顕熱
予熱または予冷過程を行なわせるように運転サイクルを
構成し、且つこの運転サイクルを前記各ユニットで位相
をずらして繰り返し行なわせるようにしたものであるこ
とを特徴とする熱利用装置。
1. A hydrogen storage alloy on a heat source side with a heat source fluid, comprising a unit in which hydrogen storage alloys of different types are respectively stored in a plurality of containers connected by a pipe in which a switching valve is inserted and hydrogen is sealed. A hydrogen release process of releasing hydrogen from the hydrogen storage alloy on the use side and a hydrogen absorption process of releasing the hydrogen absorbed by the hydrogen storage alloy on the use side to be absorbed by the hydrogen storage alloy on the heat source side. In the heat utilization device configured as described above, wherein cold heat or warm heat is taken out by the heat utilization fluid while repeating this operation cycle, at least three pairs of the units are provided and a heat accumulator is provided, and the hydrogen release process is performed. Between the hydrogen absorption process and the hydrogen absorption process, the sensible heat recovery process of recovering the sensible heat of the hydrogen storage alloy to the heat storage device is performed, and the hydrogen absorption process and the hydrogen release process are performed. The operation cycle is configured so as to perform a sensible heat preheating or precooling process of preheating or precooling the hydrogen storage alloy by the heat recovered in the regenerator between the steps, and the operation cycle is phased in each unit. A heat-utilizing device characterized in that the heat-dissipating device is arranged so as to be repeatedly operated by shifting.
【請求項2】 蓄熱器が、熱源流体または熱利用流体と
同じ流体を蓄熱材とし、軸方向に移動可能なディスプレ
ーサを内部に有する円筒状容器からなるか、あるいはほ
ぼ水平に螺旋状に巻いたパイプからなるものであること
を特徴とする請求項1記載の熱利用装置。
2. The regenerator comprises a cylindrical container having a displacer axially movable therein as a heat storage material or the same fluid as a heat source fluid or a heat utilization fluid, or spirally wound substantially horizontally. The heat utilization device according to claim 1, wherein the heat utilization device comprises a pipe.
JP4705093A 1993-03-09 1993-03-09 Heat utilization apparatus Pending JPH06257884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4705093A JPH06257884A (en) 1993-03-09 1993-03-09 Heat utilization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4705093A JPH06257884A (en) 1993-03-09 1993-03-09 Heat utilization apparatus

Publications (1)

Publication Number Publication Date
JPH06257884A true JPH06257884A (en) 1994-09-16

Family

ID=12764343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4705093A Pending JPH06257884A (en) 1993-03-09 1993-03-09 Heat utilization apparatus

Country Status (1)

Country Link
JP (1) JPH06257884A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007065642A1 (en) * 2005-12-07 2007-06-14 Sortech Ag Adsorption apparatus
JP2010503823A (en) * 2006-09-18 2010-02-04 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Adsorption heat pump
WO2018033243A1 (en) * 2016-08-17 2018-02-22 Mahle International Gmbh Arrangement, particularly refrigerating machine or heat pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007065642A1 (en) * 2005-12-07 2007-06-14 Sortech Ag Adsorption apparatus
JP2010503823A (en) * 2006-09-18 2010-02-04 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Adsorption heat pump
US8631667B2 (en) 2006-09-18 2014-01-21 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Adsorption heat pump with heat accumulator
WO2018033243A1 (en) * 2016-08-17 2018-02-22 Mahle International Gmbh Arrangement, particularly refrigerating machine or heat pump

Similar Documents

Publication Publication Date Title
US4055962A (en) Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles
CN105115340A (en) Phase change heat storage device and heat-pump water heater
CN106767082A (en) Packaged type based on pulsating heat pipe stores heat-releasing device and its stores exothermic processes
CN206862181U (en) Packaged type based on pulsating heat pipe stores heat-releasing device
JPH06257884A (en) Heat utilization apparatus
JP5360765B2 (en) Hydrogen storage alloy tank system
JPH0245114B2 (en)
CN107843135A (en) A kind of energy storage equipment using the self-driven loop of the temperature difference
JPH01114639A (en) Heat pipe type heat storage water tank device
JPH109709A (en) Metal hydride adsorption type thermally driven refrigerating machine
JP2642830B2 (en) Cooling device
USRE30840E (en) Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles
JP4547731B2 (en) Helium circulation cooling system
JPH06257886A (en) Heat utilization apparatus
JP3418047B2 (en) Operating method of cold heat generator
JPH01201001A (en) Hydrogen liquefier using metal hydride
JP2703360B2 (en) Heat-driven chiller using metal hydride
JPH06265286A (en) Method and apparatus for heat exchanging
Nasako et al. The development of refrigeration systems using hydrogen-absorbing alloys
JP2000346483A (en) Heat pump
JP3583185B2 (en) Cold heat generator using hydrogen storage alloy
JP3464337B2 (en) Cold heat generator using hydrogen storage alloy and method of operating the same
JPH086984B2 (en) Heat recovery method and device for heat exchanger for heat pump
JP3133442B2 (en) Heat driven cold heat generation method and apparatus using metal hydride
Mazet et al. Gravitational heat pipes for discontinuous applications