JPH04142091A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH04142091A
JPH04142091A JP26546690A JP26546690A JPH04142091A JP H04142091 A JPH04142091 A JP H04142091A JP 26546690 A JP26546690 A JP 26546690A JP 26546690 A JP26546690 A JP 26546690A JP H04142091 A JPH04142091 A JP H04142091A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
semiconductor laser
current
partly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26546690A
Other languages
Japanese (ja)
Inventor
Hitoshi Mizuochi
水落 均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26546690A priority Critical patent/JPH04142091A/en
Publication of JPH04142091A publication Critical patent/JPH04142091A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To efficiently inject a current in an active layer and to obtain an excellent result in laser characteristics by partly diffusing the same conductivity type dopant as a first conductivity type in a direction of a waveguide near an active region. CONSTITUTION:A buried layer 4, a current blocking layer 4, and current blocking layer 5 are grown by an LPE until a mesa is flatly buried in a second epitaxial growth. Then, both sides of a stripe partly remain in a stripe state, the other is covered with an SiN film 11, etc., and partly diffused in a p-type by a vacuum sealing method. The layers 4, 5 are completely separated, the film 11, etc., is removed, and a first clad layer 6, a contact layer 7 are crystalline grown. Thus, the same conductivity type dopant as a first conductivity type is partly diffused in the direction of a waveguide near an active region to perform a high yield in the manufacture of a semiconductor laser to obtain the laser having a stable threshold value, an operating current.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体レーザの特性向上および高歩留りが
達成される半導体レーザの製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor laser, which improves the characteristics of the semiconductor laser and achieves a high yield.

〔従来の技術〕[Conventional technology]

第4図は、例えばELECTRONICS LETTE
RS 21 May1987 Vol、23.546−
547に示された従来のPPIBH構造を有するDFB
レーザの回折格子を形成していないためにファブリベロ
ー(FP)モードで発振する半導体レーザを示す断面図
であり、この図において、1はp形(p −) I n
 P基板(以下、単に基板と略す。その他についても同
様とする。)2はInGaAsP活性層、3はp −I
 n P埋込層、4はn −I n P電流阻止層、5
はp −I n P電流阻止層、6および6′はn−I
 n P第1クラッド層、7はn−I nGaAsP:
+ンタク1、層、8はSin、絶縁膜、9はn側電極、
10はp側電極である。
FIG. 4 shows, for example, ELECTRONICS LETTE
RS 21 May1987 Vol, 23.546-
DFB with conventional PPIBH structure shown in 547
1 is a cross-sectional view showing a semiconductor laser that oscillates in Fabry-Bello (FP) mode because no laser diffraction grating is formed; in this figure, 1 is a p-type (p −) I n
P substrate (hereinafter simply referred to as a substrate. The same applies to the others.) 2 is an InGaAsP active layer, 3 is a p-I
nP buried layer, 4 is n-I nP current blocking layer, 5
is p-I n P current blocking layer, 6 and 6' are n-I
nP first cladding layer, 7 is n-I nGaAsP:
+Ntak 1, layer, 8 is Sin, insulating film, 9 is n-side electrode,
10 is a p-side electrode.

次に、本構造を有する半導体レーザの製造方法について
述べる。
Next, a method for manufacturing a semiconductor laser having this structure will be described.

最初に1回目の結晶成長(活性層厚の均一性を考えMO
CVD法による成長が望ましい)において、活性層2を
はさんで第1クラッド層6まで、ダブル・\テロ(以下
、DHと略す)構造を作製する。この時、基板1と活性
層2の間に基板1と同じ導電形のp −I n Pバッ
ファ層を成長させてもよい。次に、活性層幅が1.0〜
2.0μmになるようにメサ溝のストライプ(レーザ導
波路方向)を作製する。次に、第2回目の結晶成長でL
PE法を用い、ストライブの両脇にp−n−p構造を有
する埋込層3.電流阻止層4,5を埋込み、活性層2上
の第1クラッド層6(厚さ1μm程度)の高さまで埋込
み成長を行った後、引き続き連続して第1クラツド層6
′、コンタク)・層7を成長し、最後に絶縁膜8および
np p側電極9,1゜を作製する。
First, the first crystal growth (in consideration of the uniformity of the active layer thickness, MO
(Growth by CVD method is preferable), a double \tero (hereinafter abbreviated as DH) structure is fabricated from the active layer 2 to the first cladding layer 6. At this time, a p-I n P buffer layer having the same conductivity type as the substrate 1 may be grown between the substrate 1 and the active layer 2 . Next, the active layer width is 1.0~
Stripes of mesa grooves (in the direction of the laser waveguide) are prepared to have a thickness of 2.0 μm. Next, in the second crystal growth, L
3. A buried layer having a p-n-p structure on both sides of the stripe using the PE method. After the current blocking layers 4 and 5 are buried and grown to the height of the first cladding layer 6 (about 1 μm thick) on the active layer 2, the first cladding layer 6 is continuously grown.
', contact) layer 7 is grown, and finally an insulating film 8 and an np p-side electrode 9,1° are formed.

以上のようにして作製された半導体レーザは、活性層2
の両脇をp−n−’−p構造にしているので、電流が流
れに<<、電流は効率よく活性層2に注入されるような
構造をもつ。また、活性層2を含んだDH構造は1回目
の成長で平坦な結晶を作製しているため、MOCVD法
の利点(均一性)を利用し、DFB構造のレーザも容易
に作製できる。
The semiconductor laser manufactured as described above has an active layer 2
Since both sides of the active layer 2 have a p-n-'-p structure, the current is efficiently injected into the active layer 2. Further, since the DH structure including the active layer 2 is made into a flat crystal in the first growth, a DFB structure laser can also be easily produced by utilizing the advantage (uniformity) of the MOCVD method.

〔発明が解決しようとする課題〕 しかしながら、上記のようにして製造された従来の半導
体レーザにおいて、最大のポイントとなるのは、電流阻
止層4と第1クラッド層6が適切に切り離されているこ
とが問題となる。すなわち、もしつながっていると、第
4図に示したように、基板1から電流阻止層4−第1ク
ラッド層6という電流バスができるため、活性層2に効
率よく電流注入ができず、レーザ特性(しきい値、効率
[Problems to be Solved by the Invention] However, in the conventional semiconductor laser manufactured as described above, the most important point is that the current blocking layer 4 and the first cladding layer 6 are appropriately separated. That becomes a problem. In other words, if they are connected, a current bus from the substrate 1 to the current blocking layer 4 to the first cladding layer 6 will be formed as shown in FIG. Characteristics (thresholds, efficiency.

動作電流)の低下をまねく。従来の製造方法では、この
問題を解決するために2回目のLPE成長工程において
、電流阻止層5からの固相拡散(第1・ドーピング)に
よりn−nの切り離しを行っていた。しかし、結晶成長
におけるオートドーピングは再現性に欠け、切り離しが
できない時もあり、また、離れすぎると、基板1から埋
込層3→電流阻止層5→第1クラッド層6′という電流
バスも増え、相対的に活性層2への注入電流が減少し、
し・−ザ特性に悪影響を及ぼす乙とも考えられる等の問
題点があった。
(operating current). In the conventional manufacturing method, in order to solve this problem, in the second LPE growth step, nn was separated by solid phase diffusion (first doping) from the current blocking layer 5. However, autodoping during crystal growth lacks reproducibility and separation is sometimes impossible, and if the separation is too far, the current bus from the substrate 1 to the buried layer 3 → current blocking layer 5 → first cladding layer 6' increases. , the current injected into the active layer 2 is relatively reduced,
There were some problems, such as the fact that it could be considered to have a negative effect on the characteristics of the device.

この発明は、上記のような問題点を解消するためになさ
れたもので、活性層を有するDH構造に効率よく電流注
入が行われるような半導体レーザの製造方法を得ること
を目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a semiconductor laser in which current can be efficiently injected into a DH structure having an active layer.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体レーザの製造方法は、活性領域近
傍の導波路方向に部分的に第1導電形と同じ導電形のド
ーパントを拡散するものである。
The method of manufacturing a semiconductor laser according to the present invention is to partially diffuse a dopant of the same conductivity type as the first conductivity type in the direction of the waveguide near the active region.

〔作用〕[Effect]

この発明におけろ半導体レーザの製造方法においては、
ストライブ近傍がp形反転していることにより、基板−
電流阻止層→クラッド層という電流バスの経路を防止で
き、これにより活性層に効率よく電流注入が行われ、L
・−ザ特性に良好な結果をもたらす。
In the method of manufacturing a semiconductor laser according to the present invention,
Due to the p-type inversion near the stripe, the substrate -
It is possible to prevent the current bus path from the current blocking layer to the cladding layer, thereby efficiently injecting current into the active layer and reducing the L
・-Brings good results to the characteristics.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明による半導体レーザの一実施例を示す
断面構造図である。第1図において、第4図と同一符号
は同一構成部分を示し、12はnn分離のためのp形拡
散領域である。
FIG. 1 is a cross-sectional structural diagram showing an embodiment of a semiconductor laser according to the present invention. In FIG. 1, the same reference numerals as in FIG. 4 indicate the same components, and 12 is a p-type diffusion region for nn isolation.

次に、製造方法について第2図(a)〜(C)の製造フ
ローに従って説明する。
Next, the manufacturing method will be explained according to the manufacturing flow shown in FIGS. 2(a) to (C).

第1回目のエピタキシャル成長におけるDH影形成メサ
ストライプ形成は従来と同じである。次に、第2回目の
エピタキシャル成長におけろ埋込成長をメサ部が平坦に
埋め込まれるまで、埋込層3−電流阻止層4−電流阻止
層5をLPEにて成長する(第2図(a))。次に、ス
トライブ両脇を部分的にストライブ状に残し、他はSi
N膜11等で覆い、真空封じ切り法にてp形に部分拡散
を施す。これにより、電流阻止層4と第1クラッド層6
を完全に切り離す(第2図(b))。次に、SiN膜1
1等を除去し、第1クラッド層6′およびコンタクト層
7を結晶成長させるなどの以下の工程を従来例と同様に
行い(第2図(C))第1図の半導体レーザを得る。
The DH shadow forming mesa stripe formation in the first epitaxial growth is the same as the conventional method. Next, in the second epitaxial growth, the buried layer 3, the current blocking layer 4, and the current blocking layer 5 are grown by LPE until the mesa part is buried flat (see FIG. 2(a). )). Next, leave a stripe shape partially on both sides of the stripe, and leave the rest in a stripe shape.
It is covered with an N film 11, etc., and partially diffused into p-type using a vacuum sealing method. As a result, the current blocking layer 4 and the first cladding layer 6
completely separate it (Fig. 2(b)). Next, SiN film 1
The following steps, such as removing the first cladding layer 6' and crystal growth of the contact layer 7, are carried out in the same manner as in the conventional example (FIG. 2(C)) to obtain the semiconductor laser shown in FIG.

このような製造方法を用いれば、p形拡散領域12を結
晶成長によるオー1−ドーピングという不安定な工程を
用いずに、真空による封じ切り拡散という確実な方法で
形成できるため、n −nInPがつながるという構造
の半導体レーザはでき得ない。すなわち、高歩留り、レ
ーザ特性の安定化につながる。
If such a manufacturing method is used, the p-type diffusion region 12 can be formed by a reliable method of sealing diffusion using vacuum, without using the unstable process of O1-doping through crystal growth. It is impossible to create a semiconductor laser with a structure that connects the two. That is, it leads to high yield and stabilization of laser characteristics.

なお、上記実施例はF、P型のレーザを製造するのに適
用したが、DFB構造を有する半導体し・−ザにも適用
できることは言うまでもない。
Although the above embodiments were applied to manufacturing F-type and P-type lasers, it goes without saying that the invention can also be applied to semiconductor lasers having a DFB structure.

第3図にその一実施例を示す。この図において、13は
n −I n Pバリ1層、14はn  InGaAs
Pガイド層、15は回折格子である。この実施例でも、
p形拡散領域12を設けることは容易にできる。
FIG. 3 shows an example of this. In this figure, 13 is a single layer of n-I nP burr, and 14 is n-InGaAs.
The P guide layer 15 is a diffraction grating. Also in this example,
The p-type diffusion region 12 can be easily provided.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、活性領域近傍の導波
路方向に部分的に第1導電形と同し導電形のドーパント
を拡散するので、半導体レーザを製造する上で高歩留り
を達成でき、安定したしきい値、動作電流を有する半導
体レーザを得ることができる。
As explained above, the present invention partially diffuses a dopant of the same conductivity type as the first conductivity type in the direction of the waveguide near the active region, so that a high yield can be achieved in manufacturing a semiconductor laser. A semiconductor laser having a stable threshold value and operating current can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の半導体レーザの一実施例を示す断面
構造図、第2図は、第1図の半導体レーザの製造工程を
示す断面図、第3図はこの発明の半導体し・−ザの他の
実施例を示す構造断面図、第4図は従来の半導体レーザ
の構造断面図である。 図において、1はp −I n P基板、2はInG 
aAs P活性層、3はp −I n P埋込層、4は
n−I n P電流阻止層、5はp −1n P電流阻
止層、6および6′はn −1n Pクラッド層、7は
n−1nGaAsP=+ンタクト層、8はSiO2絶縁
膜、9はn側電極、10はp側電極、12はp形拡散領
域である。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄   (外2名)第 図 第 図
FIG. 1 is a cross-sectional structural diagram showing one embodiment of the semiconductor laser of the present invention, FIG. 2 is a cross-sectional view showing the manufacturing process of the semiconductor laser of FIG. 1, and FIG. FIG. 4 is a cross-sectional view of the structure of a conventional semiconductor laser. In the figure, 1 is a p-I n P substrate, 2 is InG
aAs P active layer, 3 is p-I n P buried layer, 4 is n-I n P current blocking layer, 5 is p-1 n P current blocking layer, 6 and 6' are n-1 n P cladding layer, 7 8 is a SiO2 insulating film, 9 is an n-side electrode, 10 is a p-side electrode, and 12 is a p-type diffusion region. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Fig.

Claims (1)

【特許請求の範囲】[Claims]  第1導電形を有する半導体基板上に、ダブルヘテロ接
合を設け、かつ活性領域を導波路方向に設け、その両脇
に電流阻止層が埋め込まれた半導体レーザの製造方法に
おいて、前記活性領域近傍の導波路方向に部分的に前記
第1導電形と同じ導電形のドーパントを拡散する工程を
含むことを特徴とする半導体レーザの製造方法。
In a method for manufacturing a semiconductor laser in which a double heterojunction is provided on a semiconductor substrate having a first conductivity type, an active region is provided in the waveguide direction, and current blocking layers are embedded on both sides of the semiconductor laser, A method for manufacturing a semiconductor laser, comprising the step of partially diffusing a dopant of the same conductivity type as the first conductivity type in a waveguide direction.
JP26546690A 1990-10-02 1990-10-02 Manufacture of semiconductor laser Pending JPH04142091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26546690A JPH04142091A (en) 1990-10-02 1990-10-02 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26546690A JPH04142091A (en) 1990-10-02 1990-10-02 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH04142091A true JPH04142091A (en) 1992-05-15

Family

ID=17417562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26546690A Pending JPH04142091A (en) 1990-10-02 1990-10-02 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH04142091A (en)

Similar Documents

Publication Publication Date Title
JPH0474877B2 (en)
JP3421140B2 (en) Method of manufacturing semiconductor laser device and semiconductor laser device
JPH11121860A (en) Compound semiconductor light emitting device and its forming method
JPH08250801A (en) Semiconductor laser device and its manufacture
JPH04142091A (en) Manufacture of semiconductor laser
JPS58207690A (en) Buried type semiconductor laser
US6518076B2 (en) Semiconductor laser device and manufacturing method of the same
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0474488A (en) Semiconductor laser and manufacture thereof
JP2528877B2 (en) Semiconductor laser
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JP2956255B2 (en) Method for manufacturing ridge waveguide semiconductor laser
JP3217461B2 (en) Method for manufacturing semiconductor laser device
JPS63153882A (en) Semiconductor laser device
JP2538613B2 (en) Semiconductor laser and manufacturing method thereof
JPH0567849A (en) Semiconductor light emitting element
JPH06120615A (en) Manufacture of semiconductor laser element
JPS59148382A (en) Manufacture of injection laser
JPH01166592A (en) Semiconductor laser element
JPH0553316B2 (en)
JPH01309393A (en) Semiconductor laser device and its manufacture
JPH03120775A (en) Embedded structure semiconductor and its manufacture
JPH04320083A (en) Semiconductor laser element and manufacture thereof
JPH05121721A (en) Semiconductor light emitting device and manufacture thereof
JPH0195583A (en) Buried-type semiconductor laser device