JPH04141520A - Production of thin web wide flange shape h-beam - Google Patents

Production of thin web wide flange shape h-beam

Info

Publication number
JPH04141520A
JPH04141520A JP26116990A JP26116990A JPH04141520A JP H04141520 A JPH04141520 A JP H04141520A JP 26116990 A JP26116990 A JP 26116990A JP 26116990 A JP26116990 A JP 26116990A JP H04141520 A JPH04141520 A JP H04141520A
Authority
JP
Japan
Prior art keywords
web
heating
flange
determined
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26116990A
Other languages
Japanese (ja)
Inventor
Yoji Fujimoto
洋二 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26116990A priority Critical patent/JPH04141520A/en
Publication of JPH04141520A publication Critical patent/JPH04141520A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To produce a thin web wide flange shape H-beam without causing deterioration in material and structure due to flange water cooling and also causing no waviness of a web by previously determining the maximum temp. difference between a flange and a web occurring in the course of cooling down to ordinary temp. with respect to size and cooling water volume density and performing heating so that temp. difference lies within the range free from the occurrence of the waviness of a web. CONSTITUTION:In this invention, at least one or more web heating devices 2 are provided to a thin web wide flange shape H-beam producing line. First, water cooling conditions free from the occurrence of abnormal structure and material in a flange face are computed from size, component, and bloom-passing velocity by means of simulation model, and respective temps. of a flange and a web are determined, by which the required amount of temp. rise of the web is determined from the maximum temp. difference free from the occurrence of the waviness of the web. Subsequently, the amount of applied electric power in web heating is determined. Further, whether buckling is caused or not is checked in the course of web heating, and, in the case of NO, heating is done up to the upper limit, and, as to the shortage, the amount of applied electric power in web heating in a former stage is determined. The above procedures are repeated. In the case where buckling does not occur finally, web heating at one spot suffices but stepwise heating at two spots can be used because of heating capacity. The point is that the production of the thin web wide flange shape H-beam can be done by reducing the temp. difference.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は薄肉ウェブH形鋼の製造方法に係り、詳しくは
、H形鋼のフランジ厚さ(tW)’ウェブ厚さ(tfl
の比がtf  ′tw>3.0、ウェブ高さ(tW)、
、’ウェブ厚さ(HW)の比が)1w、’tW>80で
ある薄肉つ・ニブH形鋼を熱間圧延により製造する際に
、ウェブ波の発生を防止した薄肉ウェブH形鋼の製造方
法に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a thin-walled H-section steel, and more particularly, it relates to a method for manufacturing a thin-walled H-section steel.
The ratio of tf′tw>3.0, web height (tW),
A thin-walled web H-section steel that prevents the generation of web waves when manufacturing a thin-walled two-nib H-section steel with a web thickness (HW) ratio of ) 1w, tW > 80 by hot rolling. Regarding the manufacturing method.

従  来  の  技  術 H形鋼は鉄骨構造物に広(使用されているが、その用途
によっては剛性が同程度であっても極力軽量化を計るよ
うにすることが要求されている。ごのため、剛性に宵与
することの少ないウェブの厚さを薄くし軽量化すること
が行なわれているが、この軽量化したH形鋼を一般に薄
肉ウェブH形鋼と呼んでいる。この薄肉ウェブH形鋼は
通常溶接法若しくは圧延法によって製造されるが、圧延
法によるものは溶接法によるものに比べてコストならび
に品質に優れているが、圧延法によるとウェブ族の問題
がある。
Conventional technology H-shaped steel is widely used in steel structures, but depending on the application, it is required to reduce the weight as much as possible even if the rigidity is the same. Therefore, efforts are being made to reduce the weight by reducing the thickness of the web, which has little effect on rigidity, and this lightweight H-section steel is generally called thin-web H-section steel. H-section steel is usually produced by a welding method or a rolling method, and although the rolling method is superior in cost and quality to the welding method, the rolling method has web problems.

圧延法によるウェブ波の発生はフランジとウェブとの冷
却過程における温度差に起因する残留応力によってウェ
ブの座屈限界を越える圧縮内部応力がウェブに発生する
ためであり、薄肉ウェブH形鋼はフランジが比較的厚く
、しかも、ウェブが薄く、さらにウェブ高さが高いため
、フランジとウェブの温度差を少なくすることが非常に
困難でどうしても残留応力が大となり、これに対し、ウ
ェブの座屈限界が低いため、ウェブ波の抑制は極めて困
難であった。
The generation of web waves due to the rolling method is due to residual stress caused by the temperature difference during the cooling process between the flange and the web, which generates compressive internal stress in the web that exceeds the buckling limit of the web. Because the web is relatively thick, the web is thin, and the web height is high, it is extremely difficult to reduce the temperature difference between the flange and the web, resulting in large residual stress. It was extremely difficult to suppress web waves because of the low

そこで、残留応力の1[方法やH形鋼のウェブ加熱装置
に関する技術としているいろ提案されている。例えば(
1)特開昭62−28002号公報、(2)特開昭63
−176429号公報、(3)特開昭63−21692
3号公報等がある。
Therefore, various methods have been proposed to reduce residual stress and techniques related to web heating devices for H-beam steel. for example(
1) JP-A-62-28002, (2) JP-A-63
-176429 Publication, (3) JP-A-63-21692
There is Publication No. 3, etc.

これらの中(1)ならびに(3)の技術は粗圧延機から
仕上げ圧延111間でのウェブ加熱方法に係るものであ
り、+21と(3)の技術はそのウェブ加熱温度をA 
C+以上とする方法に係るものである。
Among these, the techniques (1) and (3) are related to the web heating method between the rough rolling mill and the finish rolling mill 111, and the techniques +21 and (3) increase the web heating temperature to A.
This relates to a method for achieving C+ or higher.

しかし、tf、−tw>3.Q、H,’tw>80の薄
肉ウェブH形鋼を製造する場合には前記のいずれの技術
によってもウェブ波の発生があり、その防止のためには
、より一一仕上げ温度差を小さくするか、逆にウェブ温
度〉フランジ温度となるようにしないと、仕上げユニバ
サル圧延機(UPIによる仕上げ圧延後、ウェブ厚とフ
ランジ厚との差による冷却速度差により温度差が拡大し
、ウェブ波の発生に至る。
However, tf, -tw>3. When manufacturing thin-web H-beam steel with Q, H, 'tw > 80, web waves will occur with any of the above techniques, and in order to prevent them, it is necessary to further reduce the finishing temperature difference. Or conversely, if the web temperature is not greater than the flange temperature, after finish rolling by the finishing universal rolling mill (UPI), the temperature difference will expand due to the cooling rate difference due to the difference between the web thickness and the flange thickness, and web waves will occur. leading to.

そのことからUPI1面に水冷装置を設置し、その水量
密度をコントロールする方法が例えば特開平1−205
028号公報により提案されているが、フランジ水冷の
強化は被冷却面の硬度上昇、靭性低下などの問題を発生
することからこれに代る方法が必要であった。
For this reason, a method of installing a water cooling device on one side of the UPI and controlling the water density is disclosed in Japanese Patent Application Laid-open No. 1-2009, for example.
Although proposed in Japanese Patent No. 028, strengthening of flange water cooling causes problems such as increased hardness and decreased toughness of the surface to be cooled, so an alternative method was needed.

発明が解決しようとする課題 本発明は上記問題の解決を目的とし、具体的には、熱間
圧延法により薄肉ウェブH形鋼を製造する際に、ウェブ
の発生を簡単な手段で防止できる製造方法を提案するこ
とを目的とする。
Problems to be Solved by the Invention The purpose of the present invention is to solve the above-mentioned problems, and specifically, to provide a manufacturing method that can prevent the generation of webs by a simple means when manufacturing thin-walled web H-beam steel using a hot rolling method. The purpose is to propose a method.

l!題を解決するための 手段ならびにその作用 すなわち、本発明は、粗圧延機と仕上げ圧延機の間およ
び仕上げ圧延am面に設置したフランジ冷却装置と上記
いずれかの位置に設置したウェブ加熱装置により薄肉ウ
ェブH形鋼を製造する際に、常温までの冷却過程で発生
するフランジとウェブの最大1度差をサイズ、冷却水量
密度毎にあらかじめ求めておき、ウェブ波が発生しない
温度差内になるようにウェブを事前加熱することを特徴
とし、また、前記設備@置により薄肉ウェブH形鋼を製
造する際に、ウェブ加熱中にバックリングが発生しない
最大温度上昇量と加熱幅をあらかじめ求めておき、ウェ
ブ波が発生しない温度差内になるようにウェブを1回以
上加熱することを特徴とする。
l! Means for solving the problem and its operation, that is, the present invention provides a flange cooling device installed between a rough rolling mill and a finishing rolling mill and on the finish rolling am surface, and a web heating device installed at any of the above positions. When manufacturing web H-section steel, the maximum 1 degree difference between the flange and web that occurs during the cooling process to room temperature is determined in advance for each size and cooling water flow density, and the temperature difference is kept within a range where web waves do not occur. The method is characterized in that the web is pre-heated in advance, and when manufacturing thin-walled web H-beam steel using the above-mentioned equipment, the maximum temperature rise amount and heating width that will not cause buckling during web heating are determined in advance. , the web is heated one or more times so that the temperature difference is within a range that does not generate web waves.

以下、本発明の手段たる構成ならびにその作用について
詳しく説明すると、次の通りである。
Hereinafter, a detailed explanation of the configuration and the operation of the means of the present invention will be as follows.

本発明11!は圧延法による薄肉ウェブH形鋼のウェブ
波の発生を防止する方法につ0て検討した。
Present invention 11! investigated a method for preventing the generation of web waves in thin-web H-beam steel by rolling.

ウェブ波の発生機構は、 じ)仕上げ圧延直像のフランジとウェブの温度差による
熱収縮量差 (2)仕上げ圧延後の冷却速度差による塑性歪差 によるものであることから、仕上げ圧延前、後でフラン
ジとウェブの温度差をコントロールする必要がある。ま
た、このフランジとウェブとの温度差をコントロールす
る方法としては一般的にはコストのm点からフランジ水
冷による方式が採用されるが、被水冷面の組織変化、冷
却時の上下温度バランス不良による反り、ねじれなどの
問題が多いため、素材成分の調整などを併用して圧延し
ているのが現状である。
The generation mechanism of web waves is as follows: (1) difference in heat shrinkage due to temperature difference between the flange and web in direct image of finish rolling; (2) difference in plastic strain due to difference in cooling rate after finish rolling. Later on, it is necessary to control the temperature difference between the flange and the web. In addition, as a method to control the temperature difference between the flange and the web, a method using water cooling of the flange is generally adopted due to cost considerations, but due to changes in the structure of the water-cooled surface and an imbalance in upper and lower temperatures during cooling, Because there are many problems such as warping and twisting, the current rolling process involves adjusting the material components.

そこで、常温までの冷却過程で発生するフランジとウェ
ブの最大温度差に係る各種条件についてシミュレーショ
ンを行なったところ、ウェブの残留応力を5kgf 、
(1以下とすればよ(Aという知見を轡、この知見に基
づいて本発明は成立したものである。
Therefore, we simulated various conditions related to the maximum temperature difference between the flange and the web that occurs during the cooling process to room temperature, and found that the residual stress in the web was 5 kgf,
(As long as it is 1 or less.) Based on the knowledge A, the present invention was established based on this knowledge.

本発明者等の研究結果によれば、常温までの冷却過程で
発生するフランジとウェブの最大温度差を、サイズ、冷
却水量密度、冷fiD時間毎にあらかじめ求めておき、
ウェブ液が発生しない温度差又は目標とする残留応力に
なるように、ウェブ前段階で加熱することによって、ウ
ェブ波のない残留応力の低い薄肉H形鋼を得ることがで
き、さらに、ウェブの加熱温度をフランジ冷却の緩和分
だけ上昇させることにより、被水冷面の組織・材質変化
を防止することができることがわかった。
According to the research results of the present inventors, the maximum temperature difference between the flange and the web that occurs during the cooling process to room temperature is determined in advance for each size, cooling water flow density, and cooling fiD time.
By heating in the pre-web stage to a temperature difference that does not generate web liquid or a target residual stress, it is possible to obtain a thin H-section steel with no web waves and low residual stress. It was found that changes in the structure and material of the water-cooled surface can be prevented by increasing the temperature by the amount of relaxation of the flange cooling.

以下、図面に従って更に本発明を説明する。The present invention will be further explained below with reference to the drawings.

第1図は本発明を実施する圧延設備を示す説明図であり
、第2図はウェブ厚さに対する高さの比と臨界座屈応力
の関係を示すグラフであり、第3図(a)はウェブとフ
ランジの温度と時間の経過との関係を示すグラフであり
、第3図(b)は残留応力と時間の経過との関係を示す
グラフであり%lF!4図(a)、  (blならびに
tc>はそれぞれ本発明の実施例の一例を示し、(al
は時間と温度との関係を示すグラフ、(b)はウェブ温
度とウェブ残留応力との関係を示すグラフ、(C)はウ
ェブ温度とウェブ残留応力との関係を示すグラフであり
、第5図は本発明の実施に用いられるウェブ加熱装置の
一例を示す斜視図である。
FIG. 1 is an explanatory diagram showing the rolling equipment for carrying out the present invention, FIG. 2 is a graph showing the relationship between the ratio of height to web thickness and critical buckling stress, and FIG. 3(a) is 3(b) is a graph showing the relationship between the temperature of the web and the flange and the passage of time, and FIG. 3(b) is a graph showing the relationship between the residual stress and the passage of time, %lF! Figure 4 (a), (bl and tc> each indicate an example of the embodiment of the present invention, and (al
is a graph showing the relationship between time and temperature, (b) is a graph showing the relationship between web temperature and web residual stress, and (C) is a graph showing the relationship between web temperature and web residual stress. FIG. 1 is a perspective view showing an example of a web heating device used in carrying out the present invention.

Hw /l w > 80、tf ′tw>3.0の薄
肉ウェブH形鋼を製造する場合、142図に示すように
縦軸に臨界座屈応力 をとり、横軸にウェブ厚さ(tw)とウェブ高さ(HW
)の比(HW・tW)をとり、E=iノング率、■=ポ
アソン比、b=均一圧縮応力が作用する幅、K=定数と
すると、ウェブの座屈限界は10kQf、■2以下とな
る。しかし、ウェブ残留応力′ウェブ臨座屈応力=ウェ
ブ波発生指数と考える場合、理論上1.0でウェブ波の
発生に至るごとになるが、ウェブがフランジに拘束され
、拘束条件が平板と興なるため、通常0.6〜0.7が
ウェブ波発生の限界と考えられており、Hw2・’tW
>80ではウェブ残留応力は5 kl;l f・′12
以下好ましくは5 kl;l f 、、・閤2以下が必
要である。一方、H形鋼はt、t>t、wであるため冷
却速度はフランジくウェブとなり、第3図(a)に示す
如く温度差が発生し、この差が大きいと、UF圧延直後
、残留応力が0であっても143図(b)に示すように
ウェブに圧縮→引張→圧縮が作用し、臨界座屈応力値が
低いとウェブ液(座屈)を生ずる。
When manufacturing a thin web H-beam steel with Hw /l w > 80 and tf 'tw > 3.0, the critical buckling stress is plotted on the vertical axis and the web thickness (tw) is plotted on the horizontal axis, as shown in Figure 142. and web height (HW
), and assuming that E=iNong's modulus, ■=Poisson's ratio, b=width where uniform compressive stress acts, and K=constant, the buckling limit of the web is 10 kQf, and ■2 or less. Become. However, if we consider that the web residual stress 'web buckling stress = web wave generation index', theoretically it would be 1.0 to generate a web wave, but the web is restrained by the flange and the restraint condition is different from that of a flat plate. Therefore, 0.6 to 0.7 is usually considered to be the limit for web wave generation, and Hw2・'tW
>80, the web residual stress is 5 kl;l f・'12
Preferably, 5 kl; l f , .2 or less is required. On the other hand, since t, t > t, w for H-beam steel, the cooling rate becomes a flange web, and a temperature difference occurs as shown in Figure 3 (a). If this difference is large, immediately after UF rolling, residual Even if the stress is 0, compression→tension→compression acts on the web as shown in Figure 143(b), and if the critical buckling stress value is low, web fluid (buckling) occurs.

そのため、UF圧延前にフランジとウェブの温度差をな
くすため、141図に示すようにフランジ水冷装置1a
、1btfLIF前に設けられる。
Therefore, in order to eliminate the temperature difference between the flange and the web before UF rolling, a flange water cooling device 1a is installed as shown in Fig. 141.
, 1btfLIF before.

しかし、この場合もtf  を込・、1−1w、twが
大きい場合には第4図(a)、(blならびに(C)に
示すようにLIFIの冷却過程で温度差が発生するため
、フランジ水冷装W第1図の1Cなどが設冒されている
のが現状である。残留応力はこの温度差で決定されるた
め、各種シミュレーションによって、水冷直像のフラン
ジ温度、ウェブ2i度および製品寸法から求めることが
できる。しかし、フランジ冷却は水量又は水量密度およ
び通板速[(冷却時間)によって決定されるが、ウェブ
は通板速度だけであり、温度コントロール(″JA度上
昇)の機能がないため、温度差を小さくするためにフラ
ンジ水冷装置を増強するようにしても冷却時の材質、形
状などの問題が発生する。
However, in this case as well, if tf, 1-1w, and tw are large, a temperature difference will occur during the LIFI cooling process, as shown in Figure 4 (a), (bl, and (C)). At present, a water cooling system such as 1C in Figure 1 is installed.Since the residual stress is determined by this temperature difference, various simulations have been carried out to determine the flange temperature of the water cooling direct image, the web 2i degrees, and the product dimensions. However, flange cooling is determined by the amount of water or water density and the threading speed (cooling time), but the web is determined only by the threading speed, and the function of temperature control ("JA degree rise") is determined by the threading speed. Therefore, even if the flange water cooling device is reinforced to reduce the temperature difference, problems such as the material and shape during cooling will occur.

そこで、本発明は第1図の口に示すウェブ加熱装置2を
薄肉ウェブH形鋼の製造ラインに少なくとも1ケ所以上
設置するようにしたものであって、ウェブ温度上昇機能
を有するものであり、このウェブ加熱時にフランジ加熱
も併せ行なうことが好ましい。なお、第5図は発明者が
提案した好ましい電磁誘導型ウェブ加熱装置の一例を示
すものである。
Therefore, the present invention is such that the web heating device 2 shown in FIG. It is preferable to also perform flange heating during this web heating. Incidentally, FIG. 5 shows an example of a preferable electromagnetic induction type web heating device proposed by the inventor.

このウェブ加熱装置の使用方法は次の通りである。The method of using this web heating device is as follows.

■ ます、フランジ面の組織・材質異常の発生しない水
冷条件をサイズ、成分、通板速度からシミュレートモデ
ルにて計算し、フランジとウェブの温度を求める。(含
む残留応力とバックリングの有無) ■ ■よりウェブ波が発生しない最大の温度差からウェ
ブの必!!温度上昇量を求める。
■ First, use a simulation model to calculate the water cooling conditions that will not cause abnormalities in the structure or material of the flange surface from the size, composition, and threading speed, and determine the temperature of the flange and web. (Including residual stress and presence or absence of buckling) ■■The web must be made from the maximum temperature difference that prevents web waves from occurring! ! Find the amount of temperature rise.

■ ■よりウェブ加熱の投入電力歯を求める。■ Determine the power input for web heating from ■.

■ ■よりウェブ加熱中にバックリングが発生しないか
チエツクし、Noの場合は上限まで加熱し、不足分は前
段でのウェブ加熱の投入電力量を求める。
(2) Check whether buckling occurs during web heating. If no, heat up to the upper limit, and calculate the amount of power input for web heating in the previous stage to account for the shortage.

■ ■〜■を繰返す。■ Repeat ■~■.

但し、■でYESの場合はウェブ加熱は1ケ所でよいが
、加熱容量の関係から2ケ所での段階加熱のケースとし
てもよい。
However, if the answer is YES to (2), the web may be heated at one location, but due to the heating capacity, it may be heated in stages at two locations.

以上のところから、材質・組織から許容しつる温度まで
フランジを冷却し、これでもウェブ波の出るサイズにつ
いてはウェブを1ケ所以上で加熱し、温度差を小さくす
ることによって、薄肉ウェブH形綱の製造が可能となる
From the above, we found that by cooling the flange to the allowable shearing temperature based on the material and structure, and for sizes that still produce web waves, heating the web at one or more places to reduce the temperature difference, it is possible to It becomes possible to manufacture

なお、ウェブ加熱装置は第1図に示す粗ユニバーサル圧
延813の前後およびフランジ水冷装置1Cの後方に設
置してもよく、また、ウェブ加熱によってフランジ冷却
を緩冷却化してウェブ波発生の防止を行なうことも可能
である。
Note that the web heating device may be installed before and after the rough universal rolling 813 shown in FIG. 1 and behind the flange water cooling device 1C, and web heating can slow down the flange cooling to prevent the generation of web waves. It is also possible.

更に、UF前で加熱によってTF<TWとすることも可
能である。
Furthermore, it is also possible to set TF<TW by heating before UF.

〈発明の効果〉 以上詳しく説明したように、本発明は、粗圧延機と仕上
げ圧延機の間および仕上げ圧延mVt面に設置したフラ
ンジ冷却装置と上記いずれかの位置に設置したウェブ加
熱装置により薄肉ウェブH形鋼を製造する際に、常温ま
での冷却過程で発生するフランジとウェブの最大温度差
をサイズ、冷却水最密度毎にあらかじめ求めておき、ウ
ェブ液が発生しない温度差内になるようにウェブを事前
加熱することを特徴とし、また、前記設備装置により薄
肉ウェブH形鋼を製造する際に、ウェブ加熱中にバック
リングが発生しない最大温度上昇量と加業幅をあらかじ
め求めておき、ウェブ波が発生しない温度差内になるよ
うにウェブを1回以上加熱することを特徴とする。
<Effects of the Invention> As explained in detail above, the present invention provides a thin-walled material by using a flange cooling device installed between a rough rolling mill and a finishing rolling mill and on the finish rolling mVt surface, and a web heating device installed at any of the above positions. When manufacturing web H-section steel, the maximum temperature difference between the flange and web that occurs during the cooling process to room temperature is determined in advance for each size and the highest density of cooling water, and the temperature difference is determined so that the web liquid does not occur. The method is characterized in that the web is pre-heated in advance, and when manufacturing thin-walled web H-beam steel using the equipment, the maximum temperature rise and processing width that will not cause buckling during web heating are determined in advance. , the web is heated one or more times so that the temperature difference is within a range that does not generate web waves.

本発明によれば、フランジ冷却8Mとウェブ加熱装置と
を組合わせる薄肉ウェブH形鋼を製造する際に、予め常
温までの冷却過程で発生するフランジとウェブの最大温
度差をサイズ、冷却水最密度毎に求めてお(か若しくは
ウェブ加熱中にバックリングが発生しない温度上昇lと
加熱幅を求めておき、ウェブをウェブ波が発生しない温
度差内になるように加熱するようにしたため、フランジ
水冷による材質・組織の悪化を発生させず、かつ、ウェ
ブ波を出さずに薄肉H形鋼を製造することができる。
According to the present invention, when manufacturing a thin web H section steel that combines a flange cooling 8M and a web heating device, the maximum temperature difference between the flange and the web that occurs during the cooling process to room temperature is determined in advance based on the size and the maximum temperature of the cooling water. By determining the temperature rise l and heating width at which buckling does not occur during web heating for each density (or determining the temperature rise l and heating width at which buckling does not occur during web heating), the web is heated within a temperature difference that does not generate web waves, so the flange Thin H-section steel can be manufactured without deteriorating the material and structure due to water cooling and without producing web waves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する圧延設備を示す説明図、第2
図はウェブ厚さに対する高さの比と臨界座屈応力の関係
を示すグラフ、第3図(a)はウェブとフランジの温度
とFfI簡の経過との関係を示すグラフ、I!3図(b
)は残留応力と時間の経過との関係を示すグラフ、M4
図(a)。 (b)ならびに(C)はそれぞれ本発明の実施例の一例
を示し、(a)は時間と温度との関係を示すグラフ、(
1))はウェブ温度とウェブ残留応力との関係を示すグ
ラフ、(C)はウェブ711度とウェブ残留応力との関
係を示すグラフ、第5図は本発明の実施に用いられるウ
ェブ加熱装置の一例を示す斜視図である。 符号1a、]b、1C・・・・・・フランジ水冷装置2
・・・・・・ウェブ加熱装置 3・・・・・・粗ユニバーサル圧延機 4・・・・・・エツジング圧延機 5・・・・・・仕上ユニバーサル圧延機6・・・・・・
H形鋼    6f・・・・・・フランジ6W・・・・
・・ウェブ   7・・・・・・誘導加熱装習特軒出願
人 川崎製鉄株式会社 代  理  人  弁理士  松  下  義 勝弁護
士 副 島 文 雄 第 図 ん 第2図 に 第3図 (の) 1015   肋 時rrI<分) (わ) 時 11(す) 第4図 (久) (F)) つ、]′i朗 Q’c 第4図 (C) 第5図
FIG. 1 is an explanatory diagram showing a rolling equipment for carrying out the present invention, and FIG.
The figure is a graph showing the relationship between the ratio of height to web thickness and critical buckling stress. Figure 3 (a) is a graph showing the relationship between web and flange temperature and the course of FfI. Figure 3 (b
) is a graph showing the relationship between residual stress and the passage of time, M4
Figure (a). (b) and (C) each show an example of the embodiment of the present invention, (a) is a graph showing the relationship between time and temperature, (
1)) is a graph showing the relationship between web temperature and web residual stress, (C) is a graph showing the relationship between web 711 degrees and web residual stress, and Figure 5 is a graph showing the relationship between web temperature and web residual stress. It is a perspective view showing an example. Codes 1a, ]b, 1C... Flange water cooling device 2
... Web heating device 3 ... Rough universal rolling mill 4 ... Etching rolling mill 5 ... Finishing universal rolling mill 6 ...
H-shaped steel 6f...Flange 6W...
・・Web 7・・・・Induction Heating Equipment Applicant Kawasaki Steel Co., Ltd. Agent Patent Attorney Yoshikatsu Matsushita Lawyer Fumio Soejima Figures 2 and 3 (of) 1015 Riku time rrI < minute) (wa) hour 11 (su) Fig. 4 (ku) (F)) tsu, ]'irou Q'c Fig. 4 (C) Fig. 5

Claims (1)

【特許請求の範囲】 1)粗圧延機と仕上げ圧延機の間および仕上げ圧延機後
面に設置したフランジ冷却装置と上記いずれかの位置に
設置したウェブ加熱装置により薄肉ウェブH形鋼を製造
する際に、常温までの冷却過程で発生するフランジとウ
ェブの最大温度差をサイズ、冷却水量密度毎にあらかじ
め求めておき、ウェブ波が発生しない温度差内になるよ
うに前記ウェブを事前加熱することを特徴とする薄肉ウ
ェブH形鋼の製造方法。 2)請求項1記載の装置により、薄肉ウェブH形鋼を製
造する際に、ウェブ加熱中にバックリングが発生しない
最大温度上昇量と加熱幅をあらかじめ求めておき、ウェ
ブ波が発生しない温度差内になるように前記ウェブを1
回以上加熱することを特徴とする薄肉ウェブH形鋼の製
造方法。
[Claims] 1) When manufacturing a thin web H-section steel using a flange cooling device installed between a rough rolling mill and a finishing rolling mill and at the rear of the finishing rolling mill and a web heating device installed at any of the above positions. First, the maximum temperature difference between the flange and the web that occurs during the cooling process to room temperature is determined in advance for each size and cooling water flow density, and the web is preheated so that the temperature difference is within the range where web waves do not occur. A method for producing a characteristic thin-walled web H-section steel. 2) When manufacturing a thin web H-section steel using the apparatus according to claim 1, the maximum temperature rise amount and heating width at which buckling does not occur during web heating are determined in advance, and the temperature difference at which web waves do not occur is determined in advance. 1. Place the web so that it is inside.
A method for producing a thin web H-beam steel, the method comprising heating the steel more than once.
JP26116990A 1990-09-28 1990-09-28 Production of thin web wide flange shape h-beam Pending JPH04141520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26116990A JPH04141520A (en) 1990-09-28 1990-09-28 Production of thin web wide flange shape h-beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26116990A JPH04141520A (en) 1990-09-28 1990-09-28 Production of thin web wide flange shape h-beam

Publications (1)

Publication Number Publication Date
JPH04141520A true JPH04141520A (en) 1992-05-15

Family

ID=17358083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26116990A Pending JPH04141520A (en) 1990-09-28 1990-09-28 Production of thin web wide flange shape h-beam

Country Status (1)

Country Link
JP (1) JPH04141520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1111074A3 (en) * 1999-12-23 2004-01-07 SMS Demag AG Method and device for cooling hot-rolled profiles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1111074A3 (en) * 1999-12-23 2004-01-07 SMS Demag AG Method and device for cooling hot-rolled profiles

Similar Documents

Publication Publication Date Title
Peng et al. Strip shape modeling and its setup strategy in hot strip mill process
JPH04141520A (en) Production of thin web wide flange shape h-beam
Wu et al. The study of improving the strip flatness in run-out-table during laminar cooling
Zhang et al. Comparisons of flow behavior characteristics and microstructure between asymmetrical shear rolling and symmetrical rolling by macro/micro coupling simulation
Zhu et al. Cheng Ji
JP2004283878A (en) Straightening method for obtaining steel plate having small variation in residual stress and having excellent shape
KR100715264B1 (en) Device and method for controllably cooling thick steel plate
Koric et al. Thermo-mechanical model of solidification processes with ABAQUS
JPH075962B2 (en) Method for manufacturing thin web H-section steel
KR100363415B1 (en) Shape Control Method of Steel Sheet in Cold Rolling_
JPH0679333A (en) Method for cooling h-shape steel and its device and its line of mills
JP2576916B2 (en) Thick plate rolling method in pair cloth rolling mill
Hardy et al. Three-dimensional hot rolling model for prediction of camber generation
JP2861871B2 (en) Control method of winding temperature of hot rolled steel sheet
JP3271700B2 (en) Manufacturing method of mold steel
JP2020157364A (en) Manufacturing method for h section steel
JPS63140703A (en) Production of extremely thin web h section steel
JPH10113713A (en) Production of steel plate of controlled cooling
Kainz et al. Elasto‐Plastic Simulation Concepts For Profile Transfer And Flatness Prediction In Flat Hot Rolling
JP2696071B2 (en) Sheet rolling shape control method
JP2771042B2 (en) Method and apparatus for manufacturing thin web H-section steel
JPS6137323A (en) Controlling device for plate width of thin sheet material
Wang Macro-and micro-modeling of hot rolling of steels
JP2003305514A (en) Device and method for correcting shape steel
JPH04173919A (en) Production of thin-web h beam