JPH04173919A - Production of thin-web h beam - Google Patents

Production of thin-web h beam

Info

Publication number
JPH04173919A
JPH04173919A JP29888590A JP29888590A JPH04173919A JP H04173919 A JPH04173919 A JP H04173919A JP 29888590 A JP29888590 A JP 29888590A JP 29888590 A JP29888590 A JP 29888590A JP H04173919 A JPH04173919 A JP H04173919A
Authority
JP
Japan
Prior art keywords
web
flange
cooling
water cooling
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29888590A
Other languages
Japanese (ja)
Inventor
Akira Inagaki
稲垣 彰
Masao Kurokawa
黒川 征男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29888590A priority Critical patent/JPH04173919A/en
Priority to DE69113326T priority patent/DE69113326T2/en
Priority to EP91305475A priority patent/EP0462783B1/en
Priority to US07/719,122 priority patent/US5191778A/en
Publication of JPH04173919A publication Critical patent/JPH04173919A/en
Priority to US07/992,402 priority patent/US5259229A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To efficiently produce a thin-web H beam with the water cooling time reduced by forcedly cooling the flange of the H beam just finish-rolled in a specified time and simultaneously water-cooling the flange and heating the web in the intermediate rolling stage. CONSTITUTION:The flange of an H beam just finish-hot rolled is forcedly cooled within the specified upper and lower water cooling time limits. The upper limit where a web wave is not generated during the forced cooling and the lower limit where the thermal stress of the web being cooled to ordinary temp. after forced cooling is decreased below the buckling stress are predetermined for each size of the H beam and for each cooling water amt. density. The generation of web wave is prevented in this way. In this production of the thin-web H beam, the flange is water-cooled and the web is heated at the same time in the intermediate rolling stage before finish rolling. As a result, the flange just finish-rolled is kept at a low temp. when the water cooling of the flange is started, the web is kept at a high temp., the forced cooling time range is increased, the forced cooling time is reduced, and the decrease in the yield and production efficiency is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 フランジ厚に対しウェブ厚が薄い薄肉ウェブH形鋼を熱
間圧延によって製造する際に、ウェブ波発生を防止する
薄肉ウェブH形鋼の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] Production of a thin web H-beam steel that prevents web wave generation when producing the thin web H-beam steel whose web thickness is thinner than the flange thickness by hot rolling. It is about the method.

〔従来の技術〕[Conventional technology]

単位長さ当りの重量に対して断面係数か大きく、経済性
の優れた薄肉ウェブH形鋼は、従来は溶接によるビルド
アップH形鋼が主流を占めていたか、近時は圧延による
各種の製造手段か提案されるようになった。即ち圧延に
よる薄肉ウェブH形鋼の製造方法で最も重要な課題は、
ウェブ波の発生をいかに解消するかであったが、近時に
至り各種の実用的な対策が提案されている。
Thin-walled web H-beams, which have a large section modulus relative to the weight per unit length and are highly economical, have traditionally been mainly built-up H-beams by welding, but have recently been produced in various ways by rolling. Some methods have been proposed. In other words, the most important issue in the manufacturing method of thin-walled web H-section steel by rolling is:
Recently, various practical measures have been proposed to solve the problem of web wave generation.

薄肉ウェブH形鋼のウェブ波とは、周知のとおりフラン
ジとウェブの冷却過程における温度差に起因する残留応
力によって、ウェブの座屈限界を超える圧縮内部応力が
ウェブに発生し、これがウェブに波状の形状不良として
現われるものである。
Web waves in thin web H-section steel are, as is well known, a compressive internal stress that exceeds the buckling limit of the web is generated in the web due to the residual stress caused by the temperature difference during the cooling process between the flange and the web, and this causes the web to become wavy. This appears as a defective shape.

本願出願人は、ウェブ波を防止する手段として、先に特
開平1−205028号公報の技術を提案した。
The applicant of the present application previously proposed the technique disclosed in Japanese Patent Application Laid-Open No. 1-205028 as a means for preventing web waves.

この提案の要旨は、強制冷却中にウェブ波か発生しない
水冷時間の上限もしくは水冷直後のフランジとウェブの
温度差の下限と、強制冷却後常温に至るまでのウェブの
熱応力か、ウェブの座屈応力以下となる水冷時間の下限
もしくは水冷直後のフランジとウェブの温度差の上限を
、H形鋼のサイズおよび冷却水量密度毎に予め定めてお
き、この1下範囲内でフランジの強制冷却を行い、水冷
終了時のフランジとウェブの温度差か一定範囲内になる
ようにする手段であった。
The gist of this proposal is to determine the upper limit of the water cooling time during which web waves do not occur during forced cooling, the lower limit of the temperature difference between the flange and the web immediately after water cooling, the thermal stress of the web until it reaches room temperature after forced cooling, and the web seat. The lower limit of the water-cooling time at which the bending stress is lowered or the upper limit of the temperature difference between the flange and the web immediately after water-cooling is determined in advance for each H-beam size and cooling water flow density, and the flange is forcedly cooled within this range. The method was to keep the temperature difference between the flange and the web within a certain range at the end of water cooling.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

この特開平1−205028号技術によれば、冷却制御
のみてウェブ波の無い薄肉ウェブH形鋼を経済的に製造
することが可能となったか、フランジ水冷開始時のフラ
ンジとウェブの温度条件によっては、前記上・下限水冷
時間範囲が狭く完全に冷却ウェブ波防止かてきず、歩留
が低下したり、フランジとウェブの厚み比か大きいサイ
ズはと仕上げ圧延後の水冷時間の長くする必要かあり、
生産能率が低下するなどの問題があった。
According to the technique of JP-A-1-205028, it has become possible to economically produce a thin web H-section steel without web waves only by cooling control, or by changing the temperature conditions of the flange and web at the start of flange water cooling. If the upper and lower limit water cooling time range is narrow and it is not possible to completely prevent cooling web waves, the yield will decrease, or if the thickness ratio of the flange and web is large, it may be necessary to lengthen the water cooling time after finish rolling. can be,
There were problems such as decreased production efficiency.

本発明は、薄肉ウェブH形鋼を熱間圧延法によって製造
するに際し、仕上げ圧延後のフランジ冷却時間範囲を拡
大するとともに、水冷時間を短縮して能率良(薄肉ウェ
ブH形鋼を製造する方法を提供するものである。
The present invention aims to improve efficiency by expanding the flange cooling time range after finish rolling and shortening the water cooling time when manufacturing thin-walled web H-section steel by hot rolling. It provides:

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、熱間仕上げ圧延直後のH形鋼のフラに至るま
でのウェブの熱応力かウェブの座屈応力以下となる水冷
時間の下限とをH形鋼のサイズおよび冷却水量密度毎に
予め求めておき、前記水冷時間の上・下限内でフランジ
を強制冷却する薄肉ウェブH形鋼の製造方法において、
前記仕上げ圧延前の中間圧延段階てフランジ水冷および
ウェブ加熱を同時に行い、前記仕上げ圧延後のフランジ
強制冷却の水冷時間の上・下限の範囲を拡大し、仕上げ
圧延後のフランジ水冷時間を短縮することを特徴とする
薄肉ウェブH形鋼の製造方法である。
In the present invention, the lower limit of the water cooling time at which the web thermal stress or the web buckling stress until the H-beam fractures immediately after hot finish rolling is determined is determined in advance for each H-beam size and cooling water flow density. In a method for manufacturing a thin web H-beam steel, the flange is forcibly cooled within the upper and lower limits of the water cooling time,
Flange water cooling and web heating are performed simultaneously in the intermediate rolling stage before the finish rolling, expanding the upper and lower limits of the water cooling time range of the flange forced cooling after the finish rolling, and shortening the flange water cooling time after the finish rolling. This is a method for manufacturing a thin web H-section steel characterized by the following.

〔作 用〕[For production]

以下本発明を作用とともに説明する。 The present invention will be explained below along with its operation.

まず本願出願人の先願発明、特開平1−205028号
公報技術と共通するH形鋼のウェブ波に関する基本的な
メカニズム、即ちフランジの冷却条件、冷却後の時間経
過かフランジεよびウェブの温度、さらにはウェブ応力
等にどのように影響するかについて述べる。
First, we will discuss the basic mechanism regarding the web waves of H-section steel, which is common to the applicant's earlier invention and the technique disclosed in JP-A-1-205028, namely, the cooling conditions of the flange, the elapsed time after cooling, the temperature of the flange ε and the web. , and how it affects web stress etc.

第6図(aiは仕上げ圧延後のH形鋼の空冷および水冷
における冷却曲線の例を示し、第6図(blは第6図(
a)の温度変化に対応するウェブの熱応力の変化を示し
た図面である。横軸はウェブ輻方向中央部の温度であり
、横軸右方向は時間の経過とともに高温から低温へ推移
する状態を示す。
Figure 6 (ai shows an example of the cooling curve in air cooling and water cooling of H-beam steel after finish rolling, Figure 6 (bl is Figure 6 (
It is a drawing showing the change in thermal stress of the web corresponding to the temperature change in a). The horizontal axis represents the temperature at the center of the web in the web radial direction, and the right direction of the horizontal axis indicates a state that changes from high temperature to low temperature over time.

第6図(alの曲線11は、空冷の場合のフランジ冷却
曲線、曲線12〜14はウェブ温度がDであった時点か
らフランジ水冷を開始した時のフランジの冷却曲線であ
り、12は短時間水冷(水冷終了が温度Eまで)、14
は長時間水冷(水冷終了温度Gまて)、13は両者中間
の水冷時間(水冷終了か温度Fまで)で冷却した場合の
各フランジの冷却曲線を示す。直線15はウェブの冷却
曲線であるが、ウェブに対しては強制冷却を施さないの
で空冷・水冷共通となっている。
FIG. 6 (al) Curve 11 is the flange cooling curve in the case of air cooling, curves 12 to 14 are the flange cooling curves when flange water cooling is started from the time when the web temperature is D, and 12 is the flange cooling curve for a short time. Water cooling (water cooling ends at temperature E), 14
13 shows the cooling curve of each flange when water cooling is performed for a long time (up to the water cooling end temperature G), and 13 is the cooling curve for each flange when cooling is performed for an intermediate water cooling time (up to the end of water cooling or temperature F). The straight line 15 is the web cooling curve, but since the web is not forcedly cooled, it is common to both air cooling and water cooling.

第6図(b)の曲線16〜19は前記の各冷却曲線11
〜14に対応するウェブの熱応力推移を示す。また図中
の曲線20はウェブのlu!応力を示し、高温度になる
ほど小さな値となる。ところでウェブ波は、前記記した
ようにウェブの宋屈限界を越える圧縮内部応力がウェブ
に発生するから、第6図(b)の空冷の場合の熱応力1
6は、温度低下につれて圧縮応力が増大し、点aにおい
て座屈応力20に達し、ウェブ波が発生することになる
Curves 16 to 19 in FIG. 6(b) are each of the cooling curves 11 described above.
14 shows the thermal stress transition of the web corresponding to No. 14. Also, the curve 20 in the figure is the lu! of the web! It indicates stress, and the higher the temperature, the smaller the value. By the way, web waves generate compressive internal stress in the web that exceeds the bending limit of the web as described above, so the thermal stress 1 in the case of air cooling shown in FIG. 6(b)
6, the compressive stress increases as the temperature decreases, reaching buckling stress 20 at point a, and web waves are generated.

フランジ水冷材の熱応力を示す曲線17〜19で共通し
ていることは、水冷中にフランジとウェブの温度差が小
さくなるに従い圧縮応力が増大するが、水冷を終了する
と一旦引張り側へ変化した後、再び圧縮側へ変化する。
What is common among curves 17 to 19 showing the thermal stress of flange water-cooled materials is that the compressive stress increases as the temperature difference between the flange and the web decreases during water cooling, but once the water cooling ends, it changes to the tensile side. After that, it changes to the compression side again.

これは水冷により縮小されたフランジとウェブの温度差
が、水冷後−旦拡大し縮小するためである。水冷中のウ
ェブの圧縮応力は、点d、c、bで示すように水冷時間
が長いほど大きく、逆に常温の圧縮応力は、点g、  
f。
This is because the temperature difference between the flange and the web, which was reduced by water cooling, expands and then reduces after water cooling. The compressive stress of the web during water cooling increases as the water cooling time increases, as shown at points d, c, and b; conversely, the compressive stress at room temperature increases at points g,
f.

eて示すように水冷時間か長いほど小さくなる。As shown in e, the longer the water cooling time, the smaller it becomes.

上記の短・中・長・の各水冷時間条件のうちで、冷却時
間の長い応力推移曲線19の水冷中の応力は点りで座屈
応力20に達してεす、水冷中にウェブ波か発生する。
Among the above short, medium, and long water cooling time conditions, the stress during water cooling in the stress transition curve 19 with a long cooling time reaches the buckling stress 20 at a point and becomes ε. Occur.

また冷却時間か短い応力曲線17の場合、水冷中の熱応
力のピーク点すは座屈応力20以下であり、水冷中にウ
ェブ波か発生することかないが、水冷終了後常温に至る
途中の点iで座屈応力20に達し、ウェブ波が発生する
ことか分かった。
In addition, in the case of stress curve 17 with a short cooling time, the peak point of thermal stress during water cooling is less than the buckling stress of 20, and web waves do not occur during water cooling, but the peak point during water cooling is on the way to room temperature after water cooling. It was found that the buckling stress reached 20 at i, and web waves were generated.

即ち水冷程度が強すぎる場合は、水冷中にまた水冷程度
か弱すぎる場合には、水冷後常温に至るまでの間にウェ
ブ波が発生している。そして中間の水冷時間の場合の熱
応力推移18は、水冷中および水冷後常温に至るまで座
屈応力以下てあり、この条件のもとてウェブ波を防止す
ることか可能となる。即ち薄肉ウェブH形鋼の場合は、
従来サイズのH形鋼における残留応力軽減法のように、
単にフランジとウェブの温度差を縮小するためのフラン
ジ水冷のみではウェブ波を防止することができない。
That is, if the degree of water cooling is too strong, web waves are generated during water cooling, and if the degree of water cooling is too weak, web waves are generated after water cooling until the temperature reaches room temperature. The thermal stress transition 18 in the case of an intermediate water cooling time is below the buckling stress during and after water cooling until reaching room temperature, and under this condition it is possible to prevent web waves. In other words, in the case of thin web H-beam steel,
Like the residual stress reduction method for conventional size H-beam steel,
Simply water-cooling the flange to reduce the temperature difference between the flange and the web cannot prevent web waves.

そこて本願出願人か先に提案した特開平l−20502
8号に3いて、強制冷却中にウェブ波か発生しない水冷
時間の上限、もしくは水冷直後のフランジとウェブの温
度差の下限と、強制冷却後常温に至るまでのウェブの熱
応力かウェブの座屈応力以下となる水冷時間の下限、も
しくは水冷直後のフランジとウェブの温度差の上限をH
形鋼のサイズおよび冷却水量密度毎に予め定めておき、
この範囲内で強制冷却する手段を提案したものである。
Therefore, the applicant of this application previously proposed JP-A-1-20502.
8, the upper limit of the water cooling time during which web waves do not occur during forced cooling, or the lower limit of the temperature difference between the flange and the web immediately after water cooling, and the thermal stress of the web until it reaches room temperature after forced cooling, or the web seat. H is the lower limit of the water cooling time at which the bending stress is below or the upper limit of the temperature difference between the flange and the web immediately after water cooling.
Determine in advance for each shape steel size and cooling water flow density,
We have proposed a means for forced cooling within this range.

薄肉ウェブH形鋼の冷却中に発生するウェブ波は、基本
的には上記の冷却手段によって防止可能であるが、同じ
サイズでも水冷開始時のフランジとウェブの温度差が大
きく、ウェブ温度か低いはと、またフランジとウェブの
厚み比が大きいほと所要水冷時間か長くなり、生産能率
が低下する問題があった。その例を第3図、第4図、第
5図に示す。なお各図におけるフランジ水冷の水量密度
の条件は、400jl’/rn’・min、に統一して
いる。
Web waves that occur during cooling of thin web H-beam steel can basically be prevented by the above cooling means, but even if the size is the same, there is a large temperature difference between the flange and the web at the start of water cooling, and the web temperature may be low. Furthermore, the larger the thickness ratio between the flange and the web, the longer the required water cooling time, which resulted in a problem of lower production efficiency. Examples are shown in FIGS. 3, 4, and 5. In each figure, the water density conditions for flange water cooling are unified to 400jl'/rn'min.

第3図は、ウェブ高さ550mm、フランジ幅200m
m、ウェブ厚み6 mm、フランジ厚み12mm (H
550X 200X 6/12)のH形鋼において水冷
開始時のウェブ温度か680°Cの場合のもので、フラ
ンジとウェブの温度差か大きいはと所要水冷時間か長く
、またその許容範囲か狭くなり、温度差か、150°C
以上ては冷却ウェブ波防止は不可能になる二とが分かる
Figure 3 shows a web height of 550 mm and a flange width of 200 m.
m, web thickness 6 mm, flange thickness 12 mm (H
550 x 200 , temperature difference, 150°C
It can be seen from the above that it is impossible to prevent cooling web waves.

第4図は、同様に[550×200 X 6z’12の
サイズで、水冷開始時のフランジ温度が760°Cの場
合の所要水冷時間は、フランジの水冷開始時のウェブ温
度か低いほど所要水冷時間か長く、またその許容範囲は
狭くなっている。
Figure 4 similarly shows that the required water cooling time when the size is 550 x 200 It takes a long time, and the tolerance range is narrowing.

第5図は、H550X 200シリーズのウェブ厚み(
6mm)が一定でフランジ厚みか異なる各サイズにおい
て、水冷開始時のウェブ温度を一定(680°C)とし
た場合、フランジ厚みが厚くなると水冷開始時のフラン
ジ温度が高くなるため、フランジとウェブの厚み比か大
きいほど所要水冷時間が長くなる。
Figure 5 shows the web thickness of the H550X 200 series (
If the web temperature at the start of water cooling is constant (680°C) for each size where the flange thickness is constant (6 mm) and the flange thickness is different, the flange temperature at the start of water cooling will increase as the flange thickness increases. The larger the thickness ratio, the longer the required water cooling time.

以上のように、水冷開始時の温度条件およびフランジと
ウェブの厚み比により、水冷時間の上・下限範囲か狭い
場合には、水冷時間の制御を極めて正確に行なわなけれ
ばならない。また水冷の下限時間か長いサイズでは、圧
延材料間の間隔(圧延ピッチ)を長・こする必要かある
ため、生産能率か低下してしまう。
As described above, if the upper and lower limits of the water cooling time are narrow depending on the temperature conditions at the start of water cooling and the thickness ratio between the flange and the web, the water cooling time must be controlled extremely accurately. In addition, if the minimum time for water cooling is long, it is necessary to lengthen the interval between rolled materials (rolling pitch), which reduces production efficiency.

そこで本発明者等は、ウェブ波を防止するための前記仕
上げ圧延直後の強制冷却に先立って、仕上げ圧延前の中
間圧延段階においてフランジを強制冷却するとともにウ
ェブを加熱することにより、水冷時間の上・下限範囲を
拡大するとともに下限時間を短時間とする方法を見出し
た。具体的には、リバース圧延する中間圧延機の前後面
にフランジ水冷装置とウェブ加熱装置を設置し、必要と
するパス毎にフランジ水冷と同時にウェブを加熱しなが
ら圧延した後、前記仕上げ圧延直後に強制冷却するもの
である。
Therefore, the present inventors have solved the problem by forcibly cooling the flange and heating the web in the intermediate rolling stage before finishing rolling, prior to the forced cooling immediately after finishing rolling to prevent web waves, thereby increasing the water cooling time. - Found a method to expand the lower limit range and shorten the lower limit time. Specifically, a flange water cooling device and a web heating device are installed on the front and rear surfaces of an intermediate rolling mill that performs reverse rolling, and after rolling while heating the web at the same time as flange water cooling for each required pass, immediately after the finish rolling, This is forced cooling.

第1図は本発明法を実施する装置の配置例てあり、ユニ
バーサルミル21とエツジヤ−ミル22とからなる中間
圧延機群に、フランジ水冷装置1とつニブ加熱装置2を
配置し、次工程の仕上圧延機23の後面には冷却ウェブ
波を防止するための水冷装置3を配置している。122
4はブレークダウンミルである。
FIG. 1 shows an example of the arrangement of equipment for carrying out the method of the present invention, in which a flange water cooling device 1 and a nib heating device 2 are arranged in an intermediate rolling mill group consisting of a universal mill 21 and an edger mill 22. A water cooling device 3 is disposed at the rear of the finishing mill 23 to prevent cooling web waves. 122
4 is a breakdown mill.

第2図は、第1図のA−A細断面図であり、フランジ水
冷装置1は、圧延するH形鋼7のフランジの幅に応じて
注水可能なように多段にノズル1aを配置しており、ウ
ェブ高さへの対応は、ノズル全体をサイドガイド4の中
に設けることで調整可能としている。またウェブ加熱装
置の加熱部2aは、フランジ幅の変化に伴うウェブの通
過高さの変化に対応するための高さ調整装置5.6を有
するほか、ウェブ内法の変化に対応するため左右方向(
ウェブ高さ方向)に分割しており、ウェブ加熱に必要な
数だけウェブに接近させて使用できる構造としている。
FIG. 2 is a cross-sectional view taken along the line A-A in FIG. 1, and the flange water cooling device 1 has nozzles 1a arranged in multiple stages so that water can be injected according to the width of the flange of the H-beam 7 to be rolled. The web height can be adjusted by providing the entire nozzle within the side guide 4. In addition, the heating section 2a of the web heating device has a height adjustment device 5.6 to accommodate changes in the web passing height due to changes in the flange width, and also has a height adjustment device 5.6 in the horizontal direction to accommodate changes in the web internal method. (
It has a structure that allows it to be used close to the web as many times as necessary for web heating.

なおこれらフランジ水冷装置lとウェブ加熱装置2は、
中間圧延機群の前後に用いるかもしくはどちらか片側だ
けでもよく、またユニバーサルミル10とエツジヤ−ミ
ル11の間に設置してもよい。
Note that these flange water cooling device 1 and web heating device 2 are
It may be used before or after the intermediate rolling mill group, or only on one side, or it may be installed between the universal mill 10 and the edger mill 11.

これらの装置構成によって中間圧延段階で、フランジ水
冷とウェブ加熱とを同時に実施することにより、仕上げ
圧延直後のフランジ水冷開始時のフランジ温度を低く且
つウェブ温度を高くてきるため、冷却ウェブ波を防止で
きる仕上げ圧延後の強制冷却の時間範囲を拡大し、強制
冷却時間を短くすることが可能となり、歩留低下および
生産能率低下を防止できる。
With these equipment configurations, flange water cooling and web heating are performed simultaneously during the intermediate rolling stage, thereby lowering the flange temperature and raising the web temperature when the flange water cooling starts immediately after finish rolling, thereby preventing cooling web waves. It becomes possible to expand the time range of forced cooling after finish rolling, shorten the forced cooling time, and prevent a decrease in yield and production efficiency.

〔実施例〕〔Example〕

第1表は、H2SOx 200 x 6/9.鋼種5S
41の場合の仕上げ圧延直後のフランジ水冷のみによる
ウェブ波防止水冷時間と、本発明の中間圧延段階でのフ
ランジ水冷、ウェブ加熱を実施した時の水冷時間の比較
とそれぞれのウェブ波発生率を示すものであり、本性を
適用することにより強制水冷時間の上・下限範囲か拡大
するとともに、水冷時間が短時間でウェブ波を防止でき
る。
Table 1 shows H2SOx 200 x 6/9. Steel type 5S
Comparison of the web wave prevention water cooling time by only flange water cooling immediately after finish rolling in the case of No. 41 and the water cooling time when flange water cooling and web heating at the intermediate rolling stage of the present invention are performed, and the web wave generation rate for each is shown. By applying this property, the upper and lower limits of the forced water cooling time can be expanded, and web waves can be prevented with a short water cooling time.

第1表 〔発′明の効果〕 従来の薄肉ウェブH形鋼製造法では、仕上げ圧延後のフ
ランジ水冷時間の上・下限時間範囲が狭く、また下限時
間が長いサイズがあって、ウェブ波が発生する場合があ
ったり、生産能率を低下せざるをえなかったが、本発明
法によれば、ウェブ波発生の防止は勿論、生産能率の向
上が可能となり、極めて効率良く薄肉ウエブ形鋼を製造
することがができる。
Table 1 [Effects of the Invention] In the conventional thin web H-beam steel manufacturing method, the upper and lower limit time ranges of the flange water cooling time after finish rolling are narrow, and some sizes have long lower limit times, resulting in web waves. However, according to the method of the present invention, it is possible to not only prevent the occurrence of web waves but also improve production efficiency, and it is possible to produce thin-walled web shaped steel extremely efficiently. can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法を実施するためのH形調圧延装置の配
置例を示す図面、第2図は第1図A−A部の概略断面図
、第3図はフランジとウェブの温度差と所要水冷時間と
の関係を示すグラフ、第4図はフランジ水冷開始時のウ
ェブ温度と所要水冷時間との関係を示すグラフ、第5図
はフランジ・ウェブの厚み比と所要水冷時間との関係を
示すグラフ、第6図(alは冷却条件を変化させた場合
のウェブ温度の変化を示すグラフ、第6図(b)は(a
)図のウェブ温度に対応するウェブ応力の変化を示すグ
ラフである。 1・・・中間圧延段階のフランジ水冷装置1a・・・ノ
ズル 2・・・ウェブ加熱装置 2a・・・ウェブ加熱装置の加熱部 3・・・仕上げ圧延後のフランジ水冷装置4・・・サイ
ドガイド 5.6・・・高さ調整装置 7・・・H形鋼 21・・・ユニバーサルミル 22・・・エツジヤ−ミル 23・・・仕上圧延機 24・・・ブレークダウンミル 代理人 弁理士 秋 沢 政 光 他1名 71図 第2図 ボ3図 CH350x200x6//2) 1図  ′ CH350×200x6//2) 21′5図
Fig. 1 is a drawing showing an example of the arrangement of an H-shaped rolling mill for carrying out the method of the present invention, Fig. 2 is a schematic cross-sectional view of section A-A in Fig. 1, and Fig. 3 is a temperature difference between the flange and the web. Figure 4 is a graph showing the relationship between the web temperature at the start of flange water cooling and the required water cooling time, Figure 5 is the relationship between the flange/web thickness ratio and the required water cooling time. Figure 6 (a) is a graph showing changes in web temperature when cooling conditions are changed, Figure 6 (b) is a graph showing changes in web temperature when cooling conditions are changed.
) is a graph showing the change in web stress corresponding to the web temperature in FIG. 1... Flange water cooling device 1a at intermediate rolling stage... Nozzle 2... Web heating device 2a... Heating section of web heating device 3... Flange water cooling device after finish rolling 4... Side guide 5.6...Height adjustment device 7...H-shaped steel 21...Universal mill 22...Ezier mill 23...Finishing rolling mill 24...Breakdown mill agent Patent attorney Aki Sawa Masamitsu and 1 other person 71 Figure 2 Figure 3 CH350x200x6//2) Figure 1 ' CH350x200x6//2) Figure 21'5

Claims (1)

【特許請求の範囲】[Claims] (1)熱間仕上げ圧延直後のH形鋼のフランジを強制冷
却する際に、強制冷却中にウェブ波が発生しない水冷時
間の上限と、強制冷却後常温に至るまでのウェブの熱応
力がウェブの座屈応力以下となる水冷時間の下限とをH
形鋼のサイズおよび冷却水量密度毎に予め求めておき、
前記水冷時間の上・下限内でフランジを強制冷却する薄
肉ウェブH形鋼の製造方法において、前記仕上げ圧延前
の中間圧延段階でフランジ水冷およびウェブ加熱を同時
に行い、前記仕上げ圧延後のフランジ強制冷却の水冷時
間の上・下限の範囲を拡大し、仕上げ圧延後のフランジ
水冷時間を短縮することを特徴とする薄肉ウェブH形鋼
の製造方法。
(1) When forcibly cooling the flange of an H-section steel immediately after hot finish rolling, the upper limit of water cooling time during which web waves do not occur during forced cooling, and the thermal stress of the web until it reaches room temperature after forced cooling. The lower limit of the water cooling time at which the buckling stress of H
Obtain it in advance for each shape steel size and cooling water flow density.
In the method for manufacturing a thin web H-section steel in which the flange is forcibly cooled within the upper and lower limits of the water cooling time, flange water cooling and web heating are performed simultaneously in the intermediate rolling stage before the finish rolling, and the flange is forcedly cooled after the finish rolling. A method for manufacturing a thin-walled web H-section steel, characterized by expanding the upper and lower limits of the water cooling time and shortening the flange water cooling time after finish rolling.
JP29888590A 1990-06-21 1990-11-06 Production of thin-web h beam Pending JPH04173919A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29888590A JPH04173919A (en) 1990-11-06 1990-11-06 Production of thin-web h beam
DE69113326T DE69113326T2 (en) 1990-06-21 1991-06-18 Method and device for producing steel double-T beams with a thin web.
EP91305475A EP0462783B1 (en) 1990-06-21 1991-06-18 Process and apparatus for producing thin-webbed H-beam steel
US07/719,122 US5191778A (en) 1990-06-21 1991-06-20 Process for producing thin-webbed h-beam steel
US07/992,402 US5259229A (en) 1990-06-21 1992-12-18 Apparatus for cooling thin-webbed H-beam steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29888590A JPH04173919A (en) 1990-11-06 1990-11-06 Production of thin-web h beam

Publications (1)

Publication Number Publication Date
JPH04173919A true JPH04173919A (en) 1992-06-22

Family

ID=17865430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29888590A Pending JPH04173919A (en) 1990-06-21 1990-11-06 Production of thin-web h beam

Country Status (1)

Country Link
JP (1) JPH04173919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0752286A1 (en) * 1995-07-07 1997-01-08 DANIELI & C. OFFICINE MECCANICHE S.p.A. Thermal method to control the deformations of hot-rolled sections and relative device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037856A (en) * 1983-08-10 1985-02-27 Mitsubishi Electric Corp Failure informing system in transmitter
JPS6228002A (en) * 1985-07-29 1987-02-06 Kawasaki Steel Corp Method and apparatus for heating web in rolling of wide flange beam
JPH01205028A (en) * 1988-02-10 1989-08-17 Nippon Steel Corp Production of thin-web h-shaped steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037856A (en) * 1983-08-10 1985-02-27 Mitsubishi Electric Corp Failure informing system in transmitter
JPS6228002A (en) * 1985-07-29 1987-02-06 Kawasaki Steel Corp Method and apparatus for heating web in rolling of wide flange beam
JPH01205028A (en) * 1988-02-10 1989-08-17 Nippon Steel Corp Production of thin-web h-shaped steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0752286A1 (en) * 1995-07-07 1997-01-08 DANIELI & C. OFFICINE MECCANICHE S.p.A. Thermal method to control the deformations of hot-rolled sections and relative device

Similar Documents

Publication Publication Date Title
US6546777B2 (en) Method and apparatus for reducing and sizing hot rolled ferrous products
JPH04173919A (en) Production of thin-web h beam
JPS59133902A (en) Hot rolling method of h-beam
JPH03274225A (en) Production of wide flange shape with thin-walled web
JPH1071415A (en) Method for cooling shape beam
JPH0679333A (en) Method for cooling h-shape steel and its device and its line of mills
JP2607786B2 (en) Method for producing thin web H-section steel
JPS63140703A (en) Production of extremely thin web h section steel
JP3241444B2 (en) Manufacturing method of H-section steel rich in toughness and strength
JPH0357509A (en) Method and device for cooling thin web wide flange shape
JP3463614B2 (en) Manufacturing method of H-section steel
JP2698305B2 (en) Cooling method of steel plate
JPH01205028A (en) Production of thin-web h-shaped steel
JP2001047102A (en) Manufacture of h-shape steel
JPH04138801A (en) Manufacture of h-shape steel with thin web
JP3496531B2 (en) Manufacturing method of channel steel
JPH1177104A (en) Method for rolling shape
JP3060451B2 (en) Method and equipment for manufacturing H-section steel
JP3279222B2 (en) Rolling method of shaped steel with flange
JPH0723508B2 (en) Method and apparatus for cooling thin H-section steel
JP4333299B2 (en) Manufacturing method of high carbon steel sheet
JPH04235216A (en) Method and apparatus for producing thin web h-steel beam
JPS6386815A (en) Production of steel having excellent cold workability
JPH04274801A (en) Method and device for manufacturing thin web h-beam
JPS62104601A (en) Production of thin walled web wide flange beam