JPH04274801A - Method and device for manufacturing thin web h-beam - Google Patents

Method and device for manufacturing thin web h-beam

Info

Publication number
JPH04274801A
JPH04274801A JP3460791A JP3460791A JPH04274801A JP H04274801 A JPH04274801 A JP H04274801A JP 3460791 A JP3460791 A JP 3460791A JP 3460791 A JP3460791 A JP 3460791A JP H04274801 A JPH04274801 A JP H04274801A
Authority
JP
Japan
Prior art keywords
web
flange
cooling
temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3460791A
Other languages
Japanese (ja)
Other versions
JP2771042B2 (en
Inventor
Hiroshi Yoshida
博 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3034607A priority Critical patent/JP2771042B2/en
Publication of JPH04274801A publication Critical patent/JPH04274801A/en
Application granted granted Critical
Publication of JP2771042B2 publication Critical patent/JP2771042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To realize the manufacture of thin web H-beam in which a web wave is not generated, and also, toughness of a flange part is not deteriorated. CONSTITUTION:On the delivery of a finishing rolling mill 6 of an H-beam steel rolling mill consisting of a rough rolling mill 4, an edging mill 5 and the finishing rolling mill 6, a forced cooling system 7 formed by arranging alternately plural strong water-cooling banks and weak water-cooling banks is provided, and forced cooling is executed to a flange so that a flange surface temperature enters within a temperature range of MS point to {MS+50 deg.C}, and the system is controlled so that an average temperature difference between the flange and a web at the time when cooling is stopped becomes a prescribed value or below.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、薄肉ウエブH形鋼の製
造方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for manufacturing thin-walled H-section steel.

【0002】0002

【従来の技術】一般にH形鋼の断面形状は、図4に示す
ようにフランジ1の厚さがウエブ2の厚さよりも厚くな
っている。このH形鋼を梁や柱などの構造部材として利
用することを考えると、曲げ剛性に対するウエブ2の寄
与率は小さいのでウエブ厚を極力薄くして単重を小さく
することが経済的な設計となる。平板を溶接して作るH
形鋼(以下、溶接H形鋼という)では、ウエブ2の残留
応力が小さいため座屈によるウエブ波などの形状不良が
発生しにくく、比較的容易にウエブ2を薄くすることが
できる。
2. Description of the Related Art In general, the cross-sectional shape of an H-section steel is such that the thickness of the flange 1 is thicker than the thickness of the web 2, as shown in FIG. Considering that this H-shaped steel is used as a structural member such as a beam or column, the contribution rate of the web 2 to the bending rigidity is small, so it is an economical design to make the web thickness as thin as possible to reduce the unit weight. Become. H made by welding flat plates
In a shaped steel (hereinafter referred to as a welded H-shaped steel), residual stress in the web 2 is small, so shape defects such as web waves due to buckling are less likely to occur, and the web 2 can be made thinner relatively easily.

【0003】これに対して熱間圧延で製造されるH形鋼
(以下、圧延H形鋼という)では、上記したフランジ1
とウエブ2の板厚差により圧延および冷却の過程でウエ
ブ2の冷却速度がフランジ1に比較して速くなることか
ら両者間に温度差が生じ、これに起因して図5に示すよ
うに、フランジ1に引張、ウエブ2に圧縮の長手方向残
留応力が発生する。それ故、圧延H形鋼におけるウエブ
2の薄肉化は、残留応力を増大させるとともにウエブ2
の臨界座屈応力を低下させるため、ウエブ波が発生して
形状不良となり製品として使用できないのである。
On the other hand, in H-section steel manufactured by hot rolling (hereinafter referred to as rolled H-section steel), the above-mentioned flange 1
Due to the difference in thickness between the web 2 and the flange 2, the cooling rate of the web 2 becomes faster than that of the flange 1 during rolling and cooling, resulting in a temperature difference between the two, as shown in FIG. A tensile residual stress is generated in the flange 1 and a compressive longitudinal residual stress is generated in the web 2. Therefore, the thinning of the web 2 in the rolled H-beam increases the residual stress and the web 2 becomes thinner.
In order to reduce the critical buckling stress of the material, web waves are generated and the material becomes defective in shape, making it unusable as a product.

【0004】しかし、それにもかかわらず圧延H形鋼は
、溶接H形鋼に比して安価であること、およびフランジ
1とウエブ2の境界部のフィレット部3の材質が安定し
ていることなどの利点があるため、薄肉ウエブの圧延H
形鋼が市場からは強く要請されている。ここで、薄肉ウ
エブ圧延H形鋼とは、フランジ厚さTF とウエブ厚さ
TW との比(TF /TW )が2以上で、ウエブ高
さHW とウエブ厚さTW との比(HW /TW )
が65以上のH形鋼を指すものとする。
However, despite this, rolled H-section steel is cheaper than welded H-section steel, and the material of fillet portion 3 at the boundary between flange 1 and web 2 is stable. Because of the advantages of rolling thin web H
Shaped steel is strongly requested by the market. Here, thin web rolled H-beam steel has a ratio of flange thickness TF to web thickness TW (TF /TW) of 2 or more, and a ratio of web height HW to web thickness TW (HW /TW). )
refers to H-beam steel with a diameter of 65 or more.

【0005】ところで、特開平1−205028号公報
には薄肉ウエブH形鋼の製造方法が開示されているが、
この方法は熱間仕上圧延後にフランジ水冷を行うに際し
、水冷中にウエブ波が発生しない水冷直後のフランジと
ウエブの温度差の下限と水冷後常温に至るまでにウエブ
波が発生しない水冷直後のフランジとウエブの温度差の
上限とをH形鋼のサイズおよび冷却水量密度ごとに求め
ておき、前記温度差の上下限内に水冷直後の温度差が入
るようにフランジを強制冷却するものである。しかしな
がら、この方法では本発明者らの実験によると、ウエブ
が薄肉になると水冷中および水冷後ともウエブ波を発生
し易くなり、水冷直後のフランジとウエブの温度差の上
下限の範囲が非常に小さくなるかあるいは上下限の範囲
が存在しないとが多々あるため、ウエブ波を完全に防止
し得なかった。さらに、フランジ水冷時にフランジ表面
温度がマルテンサイト変態開始温度であるMS 点以下
になることがあり、この場合には冷却面に低温変態組織
(マルテンサイト組織)が生成しフランジ表面硬度が上
がり過ぎて伸び,曲げ加工性のパラメータである靱性が
劣化するなどの問題も生じた。
By the way, Japanese Patent Application Laid-Open No. 1-205028 discloses a method for manufacturing a thin web H-beam steel.
When water-cooling a flange after hot finish rolling, this method uses the lower limit of the temperature difference between the flange and the web immediately after water-cooling, at which web waves do not occur during water-cooling, and the flange immediately after water-cooling, at which web waves do not occur until the temperature reaches room temperature after water-cooling. The upper limit of the temperature difference between the web and the web is determined for each size of H-beam steel and cooling water flow density, and the flange is forcibly cooled so that the temperature difference immediately after water cooling falls within the upper and lower limits of the temperature difference. However, according to experiments conducted by the inventors, this method tends to generate web waves both during and after water cooling when the web becomes thin, and the upper and lower limits of the temperature difference between the flange and the web immediately after water cooling are extremely limited. In many cases, the wave becomes small or the upper and lower limits do not exist, so it has not been possible to completely prevent web waves. Furthermore, when the flange is water-cooled, the flange surface temperature may drop below the MS point, which is the martensitic transformation start temperature. Problems such as deterioration of toughness, which is a parameter for elongation and bending workability, also occurred.

【0006】また、特公昭60− 37856号公報に
は、ウエブ波のないH形鋼の製造方法としてウエブ波の
形状不良を評価するウエブ波評価指数をフランジとウエ
ブの仕上温度および断面寸法の関数で表し、その関数式
を使ってウエブ波を発生しないフランジおよびウエブの
仕上温度を決定し、この仕上温度になるように最終仕上
圧延前の工程でウエブの保温もしくはフランジの水冷を
行う方法が提案されているが、TF /TW ,HW 
/TW が上記のように大きい薄肉ウエブH形鋼につい
ては、ウエブ1のみの保温では仕上温度条件が満足でき
ず、圧延後の空冷による冷却中にウエブ波発生の問題が
、またフランジ水冷ではマルテンサイト生成による靱性
劣化の問題がそれぞれ生じている。
In addition, Japanese Patent Publication No. 60-37856 describes a method for manufacturing H-section steel without web waves, in which a web wave evaluation index for evaluating shape defects of web waves is determined as a function of the finishing temperature and cross-sectional dimensions of the flange and web. A proposed method is to use the functional formula to determine the finishing temperature of the flange and web that does not generate web waves, and to keep the web warm or water-cool the flange in the process before final finishing rolling to reach this finishing temperature. However, TF /TW, HW
For thin web H-beam steel with a large /TW as described above, finishing temperature conditions cannot be satisfied by insulating only web 1, and there is a problem of web wave generation during air cooling after rolling, and marten The problem of toughness deterioration due to site formation has arisen in each case.

【0007】[0007]

【発明が解決しようとする課題】本発明は、TF /T
W ,HW /TW の大きいH形鋼、すなわち薄肉ウ
エブH形鋼を圧延によって製造するにあたって、上記の
ような従来の技術が有する課題を解決して、効率的にウ
エブ波の発生を防止し、加えて靱性にもすぐれた薄肉ウ
エブH形鋼の製造方法および装置を提供することを目的
とする。
[Problems to be Solved by the Invention] The present invention provides TF/T
In manufacturing H-section steel with large W, HW /TW, that is, thin-walled H-section steel, by rolling, the problems of the conventional technology as described above are solved, and the generation of web waves is efficiently prevented. In addition, it is an object of the present invention to provide a method and apparatus for manufacturing a thin-walled web H-section steel having excellent toughness.

【0008】[0008]

【課題を解決するための手段】本発明の第1の態様は、
H形鋼の最終仕上圧延後の工程でフランジを強制冷却し
て薄肉ウエブH形鋼を製造する方法において、フランジ
表面温度をマルテンサイト変態開始温度のMS 点以上
でかつ{MS 点+50℃}以下の温度範囲に入るよう
にフランジを強制冷却し、予め鋼種および断面寸法によ
って決定されたフランジとウエブの板厚方向の平均温度
差の上限値よりも小さくなった時点で強制冷却を停止す
ることを特徴とする薄肉ウエブH形鋼の製造方法である
[Means for Solving the Problems] A first aspect of the present invention is
In a method of manufacturing thin-walled H-section steel by forced cooling of the flange in the process after final finish rolling of H-section steel, the flange surface temperature is set at the MS point of martensitic transformation start temperature or higher and below {MS point +50°C} The flange is forcibly cooled so that the temperature falls within the temperature range of This is a method for manufacturing a characteristic thin-walled web H-beam steel.

【0009】また本発明の第2の態様は、粗圧延機とエ
ッジングミルと仕上圧延機とからなるH形鋼の製造装置
において、前記仕上圧延機の出側に強水冷バンクと弱水
冷バンクとを交互に配列してなる強制冷却装置を配置し
たことを特徴とする薄肉ウエブH形鋼の製造装置である
[0009] A second aspect of the present invention is an H-section steel manufacturing apparatus comprising a rough rolling mill, an edging mill, and a finishing mill. This is an apparatus for manufacturing thin-walled H-section steel, characterized in that a forced cooling device is arranged in which the following elements are arranged alternately.

【0010】0010

【作  用】本発明では、仕上圧延後の工程でフランジ
を強制冷却する方法を採用するのが第1のポイントであ
るが、これは本発明者の研究によると冷却中に発生する
ウエブ波は弾性座屈であり、たとえ水冷中にウエブ波が
生じたとしても室温まで冷える間にウエブの圧縮熱応力
が座屈応力以下になればウエブ波が消えることを見出し
たことによる。すなわち、前出した特開平1−2050
28号には“水冷中にウエブ波が発生してはならない”
と記載されているが、実際は水冷中のウエブ波と冷却後
の室温におけるウエブ波とは無関係であり、室温のウエ
ブ波防止のために水冷直後のフランジとウエブの温度差
の下限値を規定することは意味がないのである。しかし
ながら、強制冷却をし過ぎるとフランジ表面がMS 点
以下の温度になり、この場合にはマルテンサイト組織が
生成してフランジの靱性が劣化する。そこで、本発明の
第2のポイントとしてフランジ表面温度をMS 点より
も低下しないように強制冷却をする条件を付加する必要
がある。ただしこの場合、MS 点は化学成分などの鋼
種によって決まることになる。
[Function] The first point of the present invention is to adopt a method of forced cooling of the flange in the process after finish rolling, and according to research by the present inventor, the web waves generated during cooling are This is elastic buckling, and is based on the discovery that even if web waves are generated during water cooling, the web waves will disappear if the compressive thermal stress of the web becomes less than the buckling stress while cooling to room temperature. In other words, the previously mentioned Unexamined Patent Publication No. 1-2050
No. 28 states that “web waves must not be generated during water cooling”
However, in reality, the web waves during water cooling are unrelated to the web waves at room temperature after cooling, and in order to prevent web waves at room temperature, a lower limit value of the temperature difference between the flange and the web immediately after water cooling is specified. That makes no sense. However, if forced cooling is performed too much, the temperature of the flange surface becomes below the MS point, and in this case, a martensitic structure is generated and the toughness of the flange is deteriorated. Therefore, as the second point of the present invention, it is necessary to add conditions for forced cooling so that the flange surface temperature does not fall below the MS point. However, in this case, the MS point will be determined by the type of steel, including its chemical composition.

【0011】一方、冷却後の室温でウエブ波を発生させ
ないためには、強制冷却中のフランジとウエブの板厚方
向の平均温度差ΔT、すなわちフランジ平均温度とウエ
ブ平均温度との差をある限界値ΔTc 以下にする必要
があり、これが本発明の第3のポイントである。なお、
この限界温度差ΔTc は鋼種およびH形鋼の断面寸法
によって決まるものである。そこで、この平均温度差Δ
Tを限界温度差ΔTc 以下にするには肉厚の厚いフラ
ンジを強制冷却すればよいが、短時間で効率的にフラン
ジ平均温度を下げるにはフランジ表面温度を材質劣化を
起こさないMS 点に保持すればよい。しかしながら、
実際にフランジ表面温度をMS 点近傍に保持するには
高度な冷却技術が要求され、50℃程度の誤差が予想さ
れる。そこで、本発明の第4のポイントは強制冷却中の
フランジ表面温度の上限値を{MS 点+50℃}とし
たことである。 なお、強制冷却中のフランジ表面温度の上限値が{MS
 点+50℃}を超える場合は、冷却に要する時間の大
幅な増加による強制冷却装置の大型化を招き製造コスト
が増加すること、薄肉ウエブの温度が低下し過ぎてウエ
ブの材質劣化(靭性劣化)を生じることなどの問題が起
こる。
On the other hand, in order to prevent web waves from occurring at room temperature after cooling, the average temperature difference ΔT in the thickness direction between the flange and the web during forced cooling, that is, the difference between the flange average temperature and the web average temperature, must be set to a certain limit. It is necessary to make the value ΔTc or less, which is the third point of the present invention. In addition,
This critical temperature difference ΔTc is determined by the steel type and the cross-sectional dimensions of the H-section steel. Therefore, this average temperature difference Δ
To make T less than the critical temperature difference ΔTc, thick-walled flanges can be forcedly cooled, but in order to efficiently reduce the average flange temperature in a short time, the flange surface temperature should be maintained at the MS point where material deterioration does not occur. do it. however,
In reality, maintaining the flange surface temperature near the MS point requires advanced cooling technology, and an error of about 50°C is expected. Therefore, the fourth point of the present invention is that the upper limit of the flange surface temperature during forced cooling is set to {MS point +50° C.}. Note that the upper limit of the flange surface temperature during forced cooling is {MS
If the temperature exceeds +50°C, the time required for cooling will significantly increase, which will increase the size of the forced cooling equipment and increase production costs, and the temperature of the thin web will drop too much and the material quality of the web will deteriorate (deterioration of toughness). Problems such as the occurrence of

【0012】つぎに、本発明に用いられる製造装置の構
成について説明すると、図1に示すように、粗圧延機4
,エッジングミル5,仕上圧延機6,強制冷却装置7と
配置されており、熱間圧延されたH形鋼10は最終段階
では矢示方向に移動する。そして、強制冷却装置7は複
数に小さく分かれたバンク7a,7b,7c,7d,7
e…7nよりなり、これら各バンク7a,…には図2に
示すように、テーブルローラ9上のサイドガイド11側
面に冷却ノズル8が多数配置されており、それぞれ冷却
水の流量調節ができるようになっている。
Next, the configuration of the manufacturing apparatus used in the present invention will be explained. As shown in FIG.
, an edging mill 5, a finishing mill 6, and a forced cooling device 7, and the hot-rolled H-beam 10 moves in the direction of the arrow in the final stage. The forced cooling device 7 is divided into a plurality of small banks 7a, 7b, 7c, 7d, 7.
As shown in FIG. 2, each bank 7a,... has a large number of cooling nozzles 8 arranged on the side surface of the side guide 11 on the table roller 9, so that the flow rate of the cooling water can be adjusted. It has become.

【0013】そこで、強制冷却装置7において、たとえ
ば7a,7c,7e…を強水冷バンクとし、7b,7d
…を弱水冷バンクとして交互に配置するようにして、仕
上圧延機6で仕上圧延を終えたH形鋼10を強制冷却装
置7の各バンクで強水冷と弱水冷とを繰り返し、フラン
ジ表面温度がMS 点以上でかつ{MS 点+50℃}
以下の温度範囲に入るように制御する。そして、フラン
ジとウエブの平均温度差ΔTが限界温度差ΔTc 以下
になった時点で水冷を停止する。
Therefore, in the forced cooling device 7, for example, 7a, 7c, 7e... are made into strong water cooling banks, and 7b, 7d are made into strong water cooling banks.
... are arranged alternately as weak water-cooled banks, and the H-shaped steel 10 that has finished finish rolling in the finish rolling mill 6 is repeatedly cooled with strong water and weak water in each bank of the forced cooling device 7, and the flange surface temperature is Above the MS point and {MS point +50℃}
Control the temperature to be within the following temperature range. Then, water cooling is stopped when the average temperature difference ΔT between the flange and the web becomes equal to or less than the limit temperature difference ΔTc.

【0014】図3は強水冷バンク7a,7c,7e、弱
水冷バンク7b,7dからなる5バンクの強制冷却装置
7を用いて、交互に強水冷と弱水冷を繰り返したときの
フランジ表面温度TF とフランジ平均温度TFave
,ウエブ平均温度TWaveの時間的推移を模式的に示
した特性図であり、図示のようにフランジ表面温度TF
 をMS 点と{MS 点+50℃}の間で制御するの
である。その結果、フランジ平均温度TFaveとウエ
ブ平均温度TWaveとの温度差ΔTが制御されること
になる。なお、強制冷却装置7の入出側は空冷とされる
FIG. 3 shows the flange surface temperature TF when strong water cooling and weak water cooling are alternately repeated using a 5-bank forced cooling device 7 consisting of strong water cooling banks 7a, 7c, 7e and weak water cooling banks 7b, 7d. and flange average temperature TFave
, is a characteristic diagram schematically showing the time course of the web average temperature TWave, and as shown in the figure, the flange surface temperature TF
is controlled between the MS point and {MS point +50°C}. As a result, the temperature difference ΔT between the flange average temperature TFave and the web average temperature TWave is controlled. Note that the input and output sides of the forced cooling device 7 are air-cooled.

【0015】[0015]

【実施例】転炉で溶製された後連続鋳造されたC:0.
16wt%, Mn:1.35wt%を主成分とした鋼
種SM50のビームブランクを用いて、ウエブ高さ 5
50mm,フランジ幅 200mm,ウエブ厚6mm,
フランジ厚16mm( 550× 200×6×16)
の薄肉ウエブH形鋼に熱間圧延した。この際、仕上圧延
機6の出側に設けられた強制冷却装置7は5バンクとし
、前出図5に示すように強水冷と弱水冷とを繰り返した
[Example] C: 0.0 mm was melted in a converter and then continuously cast.
Using a beam blank of steel type SM50 whose main components are Mn: 16 wt% and Mn: 1.35 wt%, the web height was 5.
50mm, flange width 200mm, web thickness 6mm,
Flange thickness 16mm (550 x 200 x 6 x 16)
It was hot rolled into a thin-walled H-beam steel. At this time, the forced cooling device 7 provided on the exit side of the finishing rolling mill 6 had five banks, and strong water cooling and weak water cooling were repeated as shown in FIG. 5 above.

【0016】製造されたH形鋼についてフランジ表面で
のマルテンサイト生成の有無およびウエブ波の発生の有
無について調査した結果を表1に示した。ここで、比較
のために従来の強水冷のみと無処理で空冷のみとを同時
に行い、それらの調査結果を従来例1,2として表1に
併せて示した。なお、このH形鋼のMS 点(下限値T
LL)は435 ℃であるから、その上限値TUL(=
MS 点+50℃)は485 ℃であり、したがってフ
ランジ表面温度TF は435 〜485℃の範囲内に
あればよいことになる。
Table 1 shows the results of an investigation on the presence or absence of martensite formation on the flange surface of the produced H-section steel and the presence or absence of web waves. Here, for comparison, only conventional strong water cooling and only air cooling without treatment were performed at the same time, and the investigation results are also shown in Table 1 as Conventional Examples 1 and 2. In addition, the MS point (lower limit T
LL) is 435°C, so its upper limit TUL(=
MS point +50°C) is 485°C, so the flange surface temperature TF should be within the range of 435 to 485°C.

【0017】[0017]

【表1】[Table 1]

【0018】この表1より明らかなように、本発明例で
は水冷停止直後の平均温度差ΔTを10℃以内になるよ
うにすれば、材質劣化およびウエブ波のないH形鋼の製
造が可能であるのに対し、従来例1,2ではいずれも不
可能であることがわかる。なお、上記した実施例におい
て鋼種および断面形状が変わる場合は、MS 点および
水冷停止時の限界温度差ΔTC が変化するのみである
から、それらに応じて強制冷却を行うようにすればよい
As is clear from Table 1, in the example of the present invention, if the average temperature difference ΔT immediately after water cooling is stopped is within 10°C, it is possible to manufacture H-beam steel without material deterioration or web waves. However, it can be seen that this is not possible in Conventional Examples 1 and 2. In addition, if the steel type and cross-sectional shape are changed in the above-described embodiments, only the MS point and the critical temperature difference ΔTC at the time of water cooling stop are changed, so forced cooling may be performed accordingly.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、ウ
エブ波の発生がなくかつフランジ部の靱性の劣化のない
薄肉ウエブH形鋼を安価に製造することができるから、
その工業的価値は大である。
As explained above, according to the present invention, it is possible to inexpensively manufacture a thin-walled web H-beam steel without generating web waves or deteriorating the toughness of the flange portion.
Its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例の構成を示す平面図である。FIG. 1 is a plan view showing the configuration of an embodiment of the present invention.

【図2】本発明に用いられる冷却ゾーンの断面図である
FIG. 2 is a cross-sectional view of a cooling zone used in the present invention.

【図3】本発明を適用したときのH形鋼の各部温度推移
を示す特性図である。
FIG. 3 is a characteristic diagram showing temperature changes at various parts of the H-section steel when the present invention is applied.

【図4】従来のH形鋼の断面図である。FIG. 4 is a cross-sectional view of a conventional H-section steel.

【図5】H形鋼への応力の作用の説明図である。FIG. 5 is an explanatory diagram of the effect of stress on H-beam steel.

【符号の説明】[Explanation of symbols]

1  フランジ 2  ウエブ 4  粗圧延機 5  エッジングミル 6  仕上圧延機 7  強制冷却装置 8  冷却ノズル 9  テーブルローラ 10  H形鋼 11  サイドガイド 1 Flange 2. Web 4 Rough rolling mill 5 Edging mill 6 Finishing rolling mill 7. Forced cooling device 8 Cooling nozzle 9 Table roller 10 H-beam steel 11 Side guide

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  H形鋼の最終仕上圧延後の工程でフラ
ンジを強制冷却して薄肉ウエブH形鋼を製造する方法に
おいて、フランジ表面温度をマルテンサイト変態開始温
度のMS 点以上でかつ{MS 点+50℃}以下の温
度範囲に入るようにフランジを強制冷却し、予め鋼種お
よび断面寸法によって決定されたフランジとウエブの板
厚方向の平均温度差の上限値よりも小さくなった時点で
強制冷却を停止することを特徴とする薄肉ウエブH形鋼
の製造方法。
Claim 1: A method for manufacturing a thin-walled H-section steel by forcedly cooling the flange in a process after final finish rolling of the H-section steel, wherein the flange surface temperature is set to a temperature equal to or higher than the MS point of the martensitic transformation start temperature, and {MS The flange is forcibly cooled so that the temperature falls within the temperature range of +50℃}, and the forced cooling is performed when the average temperature difference in the thickness direction between the flange and the web becomes smaller than the upper limit value determined in advance by the steel type and cross-sectional dimensions. A method for manufacturing a thin-walled web H-beam steel, characterized by stopping the process.
【請求項2】  粗圧延機とエッジングミルと仕上圧延
機とからなるH形鋼の製造装置において、前記仕上圧延
機の出側に強水冷バンクと弱水冷バンクとを交互に配列
してなる強制冷却装置を配置したことを特徴とする薄肉
ウエブH形鋼の製造装置。
2. An H-section steel manufacturing apparatus comprising a rough rolling mill, an edging mill, and a finishing mill, wherein strong water-cooled banks and weak water-cooled banks are alternately arranged on the exit side of the finishing mill. A manufacturing device for thin-walled web H-beam steel, characterized in that a cooling device is provided.
JP3034607A 1991-02-28 1991-02-28 Method and apparatus for manufacturing thin web H-section steel Expired - Fee Related JP2771042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3034607A JP2771042B2 (en) 1991-02-28 1991-02-28 Method and apparatus for manufacturing thin web H-section steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3034607A JP2771042B2 (en) 1991-02-28 1991-02-28 Method and apparatus for manufacturing thin web H-section steel

Publications (2)

Publication Number Publication Date
JPH04274801A true JPH04274801A (en) 1992-09-30
JP2771042B2 JP2771042B2 (en) 1998-07-02

Family

ID=12419051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3034607A Expired - Fee Related JP2771042B2 (en) 1991-02-28 1991-02-28 Method and apparatus for manufacturing thin web H-section steel

Country Status (1)

Country Link
JP (1) JP2771042B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235216A (en) * 1991-01-09 1992-08-24 Kawasaki Steel Corp Method and apparatus for producing thin web h-steel beam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235216A (en) * 1991-01-09 1992-08-24 Kawasaki Steel Corp Method and apparatus for producing thin web h-steel beam

Also Published As

Publication number Publication date
JP2771042B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
JP5130221B2 (en) Manufacturing method of multi-phase structure hot strip
TWI743724B (en) Angular steel pipe, its manufacturing method and building structure
JP2016160474A (en) Hot rolled steel sheet and method for producing the same
JP6813140B1 (en) Square steel pipe and its manufacturing method, and building structures
JP4581645B2 (en) Manufacturing method of thin web high strength H-section steel
JP4552731B2 (en) Hot rolling method for steel strip
CN113453816B (en) Square steel pipe, method for producing same, and building structure
JP4529517B2 (en) High carbon steel plate manufacturing method and manufacturing equipment
JPH04274801A (en) Method and device for manufacturing thin web h-beam
JPH04235216A (en) Method and apparatus for producing thin web h-steel beam
JP2005298962A (en) Method for manufacturing high-strength steel plate superior in workability
JP2001162305A (en) Manufacturing method of steel tube
CN114269953A (en) Manufacturing equipment and manufacturing method of thick steel plate
JP3241444B2 (en) Manufacturing method of H-section steel rich in toughness and strength
JPH075962B2 (en) Method for manufacturing thin web H-section steel
JPS60200913A (en) Manufacture of high tensile invert superior in weldability
JP4715179B2 (en) Manufacturing method of high-tensile steel plate with excellent workability
JP2005074480A (en) Facility for producing hot-rolled steel plate, and its production method
JP2021188105A (en) Rectangular steel tube and its manufacturing method, as well as building structure
JP2020157364A (en) Manufacturing method for h section steel
JP2001129607A (en) Method of and device for manufacturing-shaped steel
JPH0892648A (en) Production of martensitic stainless steel oil well pipe
JPH05345915A (en) Production of thin web wide flange shape excellent in workability and reduced in yield ratio
JPS62104601A (en) Production of thin walled web wide flange beam
JPH0696746B2 (en) Shaped steel manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees