JPH04141514A - Method and device for laser beam quenching - Google Patents

Method and device for laser beam quenching

Info

Publication number
JPH04141514A
JPH04141514A JP2263738A JP26373890A JPH04141514A JP H04141514 A JPH04141514 A JP H04141514A JP 2263738 A JP2263738 A JP 2263738A JP 26373890 A JP26373890 A JP 26373890A JP H04141514 A JPH04141514 A JP H04141514A
Authority
JP
Japan
Prior art keywords
optical system
hardened
hole
laser
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2263738A
Other languages
Japanese (ja)
Inventor
Takashi Ishide
孝 石出
Masahiko Mega
雅彦 妻鹿
Haruo Shirata
白田 春雄
Risuke Nayama
理介 名山
Susumu Shono
正野 進
Naoki Muramatsu
直樹 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2263738A priority Critical patent/JPH04141514A/en
Publication of JPH04141514A publication Critical patent/JPH04141514A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute a quenching treatment to inner peripheral face of a hole having fine diameter with good accuracy by irradiating the inner peripheral face in the hole with laser beam injected in the hole formed in an object to be quenched through a reflecting optical system, and rotating the face to be irradiated to an optical axis and shifting it to the beam axial direction. CONSTITUTION:In the hole 12 formed in the object 11 to be quenched, a light transmitting passage 13, condensing optical system 14 and the reflecting optical system 15 are disposed. The laser beam 16 emitted from the light transmitting passage 13 irradiates the inner peripheral face in the hole 12 in the object 11 with the reflecting optical system 15 while condensing the beams with a condensing optical system 14. Then, by rotating the object 11 or the reflecting optical system 15 to the optical axis and also shifting to the optical axial direction, the laser beam quenching 17 as spiral-state is executed to the inner peripheral face in the hole 12 in the object 11. By this method, the uniform laser beam quenching is executed to the inner peripheral face in the hole.

Description

【発明の詳細な説明】[Detailed description of the invention]

く産業上の利用分針〉 本発明は鉄繭@料なとの被焼入哨1対象物に形成されj
′−穴内周面の1・−ザ焼入れ方法及びその装Vに関す
る。 〈従来の技術〉 鉄鋼材料の表向焼入れ法には、従来より火炎焼入れ法、
高周波焼入れ法などがある。ところが、これらの焼入れ
方法は鉄鋼材料に形成さil、t:直径が15m以下の
細径穴の内周面の焼入れを行うことは囚粒である。前述
した火炎焼入れ法、高周波焼入れ法などにはノズルやコ
イルなどの部材に寸法的な制約があり、細径穴の内周面
の焼入かには適用することがで艶ない。 そのため、従来、細径穴の内周面の焼入れは浸炭焼入ボ
1によって鉄鋼材料の全ての表面を硬化させていた。 〈発明が解決1ノようとする課題〉 上述した従来の浸炭焼入れ法による鉄鋼材料の表面硬化
処理にあっては、処fl! @ Iz部品全体に歪みが
生じてしまうという問題点がある・そのため、歪みを解
圧するために後加Tが必要となり、加工性やコストの面
で好*1゜くなかった。 また、浸炭焼入れ法ではその過程で一括して行わわ、バ
ッチ処理であろt】め、一つのバッチの処理には比較的
施工時間を要し、且つ、有る程度多数の部品個数を処理
しないと一つ当たりのコストが割高となり、迅速な部品
確保を行うことができないという問題点があった。 本発明はこのような問題点を解決するものであって、作
業性の向上を図ったレーザ焼入れ方法及びその装置を提
供することを目的とする。 〈課題を解決するための手段〉 上述の目的を達成するための本発明のレーザ焼入れ方法
は、被焼入れ対象物に形成された穴内に光伝送路と集光
光学系と反射光学系を配設し、前記光伝送路の先端部か
ら射出されたレーザ光を前記集光光学系によって平行光
化あるいは集光化して前記反射光学系によって前記被焼
入れ対象物の穴内周面に照射する一方、前記被焼入れ対
象物あるいは反射光学系を光軸に対して回転させると共
に光軸方向に移動させることで前記被焼入れ対象物の穴
内周面にスパイラル状のレーザ焼入れを行うことを特徴
とするものである。 そして、本発明のレーザ焼入れ装置は、被焼入れ対象物
に形成された穴内に配設され先端部からレーザ光を射出
する光伝送路と、前記穴内に配設され射出されたレーザ
光を平行光化あるいは集光化する集光光学系と、平行光
化あるいは集光化されたレーザ光を前記被焼入れ対象物
の穴内周面にスパイラル状に照射する反射光学系とを具
えたことを特徴とするものである。 また、とのレーザ焼入れ装置は、光伝送路と集光光学系
と反射光学系とをレーザ光を透過可能なハウジングにて
一体に保持し、該ハウジングを被焼入れ対象物の穴内に
挿脱自在に支持したことを特徴とするものである。 また、本発明のレーザ焼入れ方法は、被焼入れ対象物に
形成された穴内に光伝送路と集光光学系と円錐反射面を
有する反射光学系を配設し、前記光伝送路の先端部から
射出されたレーザ光を前記集光光学系によって平行光化
あるいは集光化して前記反射光学系によって前記被焼入
れ対象物の穴内周面に放射状に照射する一方、前記被焼
入れ対象物あるいは前記反射光学系を光軸方向に移動さ
せることで前記被焼入れ対象物の穴内周面にレーザ焼入
れを行うことを特徴とするものである。 そして、本発明のレーザ焼入れ装置は、被焼入れ対象物
に形成された穴内に配設され先端部からレーザ光を射出
する光伝送路と、前記穴内に配設され射出されたレーザ
光を平行光化あるいは集光化する集光光学系と、前記穴
内に配設され平行光化あるいは集光化されたレーザ光を
前記被焼入れ対象物の穴内周面に放射状に照射する円錐
反射面を有し前記被焼入れ対象物に対して光軸方向に相
対移動自在な反射光学系とを具えたことを特徴とするも
のである。 また、とのレーザ焼入れ装置は、光伝送路と集光光学系
と反射光学系とをレーザ光を透過可能なハウジングにて
一体に保持し、該ハウジングを被焼入れ対象物の穴内に
挿脱自在に支持したことを特徴とするものである。 更に、とのレーザ焼入れ装置は、光伝送路と集光光学系
とをレーザ光を透過可能なハウジングにて一体に保持し
、該ハウジングを被焼入れ対象物の一方の穴端部に挿脱
自在に支持すると共に、反射光学系を他方の穴端部に挿
脱自在に支持したことを特徴とするものである。 また、本発明のレーザ焼入れ方法は、被焼入れ対象物に
形成された穴内に光伝送路と円錐射出面を有する集光光
学系と円錐反射面を有する反射光学系を配設し、前記光
伝送路の先端部から射出されたレーザ光を前記集光光学
系によって平行光化あるいは集光化して前記反射光学系
によって前記被焼入れ対象物の穴内周面に放射状に照射
する一方、前記被焼入れ対象物あるいは反射光学系を光
軸方向に移動させることで前記被焼入れ対象物の穴内周
面にレーザ焼入れを行うことを特徴とするものである。 、 また、本発明のレーザ焼入れ方法は、被焼入れ対象物に
形成された穴内に光伝送路と集光光学系と円錐反射面を
有する反射光学系を配設し、前記光伝送路の先端部から
射出された1ノーザ光な前記無光光学系によって平行光
化あるいLt集光化して前記反射光学系によって前記被
焼入れ対象物の穴内周面に放射状に照射する一方、前記
被焼入!!1対象物あるいは反射光学系を光軸方向に移
動させろど共に該被焼入れ対象物を前記穴の中心に対し
て回転させることで誠被焼入れ対象物の穴内B画にレー
ザ焼入れを行うことを特徴とするものである。 く作 用〉 光伝送路から射出されたレーザ光は飽充光学系によって
平行光化あるいは集光化して反射光学系によって被焼入
れ対象物の穴内周面に照射され、その照射された部分に
加熱焼入れ部を形成する。このとき、被焼入れ対象物あ
るいは反射光学系のいずれか一方を相対回転させると共
に光軸方向に移@させることで被焼入れ対象物の穴内周
面εこスパイラル状のレーザ焼入れが行われる。 まt′:、、反射光学系が円銘反射向を有することで、
平行光化あるいは集光化された1・−ザ光は反射光学系
の円錐反射面によって被焼入れ対象物の穴内周面に放射
状に照射され、環状の加熱焼入れ部を形成する。乙のと
鯵、被焼入れ対lk物あるいは反射光学系を光軸方向に
移動させることでレーザ焼入れが行わ濾する。 Yに、集光光学系が円錐射出面を有することで、レーザ
光のリング状モードの集光を行い、これを反射光学系の
円錐反射面によって被焼入れ対象物の穴内周面に放射状
に照射し、球状の加熱焼入れ部を形成する。このとき、
環状の加熱焼入れ部の幅が比較的狭くなってエネルギー
密度が大きくなり、良好なレーザ焼入れが行われる。 まブニ、レーザ光を反射光学系の円錐反射面によって被
焼入れ対象物の穴内周面に放射状に照射するときに、被
焼入れ対象物あるいは反射光学系を光一方向に移動させ
ると共に被焼入れ対象物を穴の中心に対して回転させる
ことで、穴内周面に均一なレーザ焼入わが行われる。 <:11!  施 例〉 以下、図耐に基づいて本発明の実施例を詳細に脱刷する
。 第1図及び12図に本発明の館yの実施例に係るレーザ
焼入れ方法を表す概略な示し、第3図及び露4図にそれ
e実施するt二めの具体的なレーザ焼入れ装置、嬉5図
及び第6図にその変形例を示す。 本実施例のレーザ焼入れ方法は、第1図及び第2図に示
すように、被焼入れ対象物11に形成された大工2内に
光伝送11X3とか先光学系14と反射光学系15を配
「する。そして、光伝送路18の先端部から射出された
レーザ光16を集光光学系141こよって平行光化する
と共に集光化して反射光学系】5によって穴1zの内周
面に照射し、被焼入れ対象物11あるいは反射光学系1
5e光軸に対して回転されると共に光軸方向に移動させ
て穴12の内局耐にスパイラル状の加熱焼入わ部】、7
を形成することでレーザ焼入れを行うものである。 その具体的なレーザ焼入れ装置は、第3顆及び第4図に
示すように、ハウジング31が中空形状をなし、レーザ
光16を透過できるようになっている。このハウジング
31は基端部にコネクタ32、チ1.−ブ38が取付け
られ、被焼入れ対象物11の穴12の一方の端部(第3
図及び第4図左端)に対して挿脱自在に片持支持されて
いる。 ハウジング31にはその中央部に沿ってレンズホルダ3
4が貫通しており、l/ンズホルダ34の内部には光フ
ァイバ35が支持されている。そして、レンズホルダ3
4には光ファイバ35の先端部の前方に位置してコリメ
ートレンズ36と集光レンズ37が取付けられている。 更に、このレンズ36.37の前方には傾斜反射面38
が形成された折り返しミラー39がOリング40を介し
て取付けられている。 なお、ハウジング31及びレンズホルダ34にはそれぞ
れレーザ光16が通過する開口が形成され、ハウジング
31の開口にはガスケット41が取付けられている。ま
た、ハウジング31とレンズホルダ34の間には冷却水
@42が取付けられている。 而して、被焼入れ対象物11の穴12の内周面にレーザ
焼入れ加工を施す場合には、まず、穴12内にハウジン
グ31を挿入する。 そして、光ファイバ31の先端部からレーザ光16を射
出し、コリメートレンズ36によって平行光化すると共
に集光レンズ37によって集光化する。集光されたレー
ザ光16は折り返しミラー39によって穴12の内周面
に照射され、加熱焼入れ部17が形成される。 このとき、被焼入れ対象物11に対して折り返しミラー
39を光軸に対して回転させながら光軸方向に移動させ
る。すると、光により形成された円状の熱源が穴12の
内周面に沿ってスパイラル状に移動し、この熱源が移動
した領域は光による加熱とその後の部品の熱容量による
自己冷却作用により、穴12の内周面の近傍のみ所定の
最高温度まで加熱され、その後、冷却されるという温度
変化をたどる。乙の最高到達温度が材料の変態濃度以上
で溶融点以下となれば、その領域は変態硬化するからレ
ーザパワーや移動速度、レーザ光の集光度を適度に変化
させることにより、焼入れ厚さを制御することができる
。 このようにして被焼入れ対象物110穴12の内周面に
レーザ焼入れ加工が行われる。 なお、レーザ光の熱への変換効率を上昇させるためにグ
ラファイト等の塗布剤を被焼入れ対象物11の穴12の
内周面に塗布してもよい。 また、前述の実施例のようにデイフォーカス法による焼
入れ処理以外に、折り返しミラー39の前段にシリント
リルレンズやカライドスコープ、結像光学系等を配置す
る乙とにより、線状あるいはき形状の熱源によってスパ
イラル焼入れ処理でもよい。 更に、スパイラル焼入れ処理のときに、加熱焼入れ部1
7の間隔は折9返しミラー39の回転速度と移動速度を
適度に設定することで冨々変化させることができる。そ
して、この場合、折り返しミラー39の回転と移動はハ
ウジング31全体をもって行ってもよい。 実施例として、50M445材に対し、内径13鵬の丸
穴を形成し、soow、軸方向挿引速度10 m/wi
n N回転速度24.5 rpmで焼入れを行った結果
、焼入れ幅2.7閣、深さ0.3鵬焼入れ間隔(軸方向
の距離)1.7−のスパイラル状の硬化部(母材的30
0hvに対し硬化11700HV)を得ることができた
。 第5図及び第6図に示す別のレーザ焼入れ装置は、被焼
入れ対象物11の大12が貫通孔である場合に使用され
るものである。即ち、中空形状をなすハウジング51に
はその中央部に光ファイバ52が支持され、その前方に
位冒してレンズホルダ53を介してコリメートレンズ5
4と集光レンズ55が取付けられている。そして、この
ハウジング5は被焼入れ対象物11の穴12の一方の端
部(第5図及び第6図左端)に対して挿脱自在に片持支
持されている。 一方、ハウジング51に対向して傾斜反射面56が形成
された折り返しミラー57が配置され、基端部にアダプ
タ58が固定され、0リング59を介してコネクタマウ
ント60が取付けられている。更に、コネクタ61、チ
ューブ62が取付けられ、被焼入れ対象物11の穴12
の他方の端S(第5図及び第6図右端)に対して挿脱自
在に片持支持されている。また、折や返しミラー57に
は冷却水導入用管63が接続され、冷却水路64が形成
されている。 而して、被焼入れ対象物11の穴12の内周面にレーザ
焼入れ加工を施す場合には、まず、穴12内に一方から
ハウジング51を挿入すると共に他方から折り返しミラ
ー57を押入する。そして、光ファイバ52の先端部か
らレーザ光1Gを射出し、Pi−】/ンズ54゜55に
よって集光化し、折り返しミラー57によって穴12の
内周面に照射され、加熱焼入れ部21が形成されろ。 このとき、被焼入れ対象物11に対して折り返し波ラー
57を光軸に対して回転さ1rながら光軸方向に移動さ
れることで、被焼入へ対象物11の穴1zの内R西にス
パイラル状のレーザ焼入fi加工が行われる。 飾7図乃至第9図に本発明の篤2の実施例に係るレーザ
焼入れ方法を表す概略を示し、第10図乃至第13図に
そわを実施するための具体的な1/−ザ焼入れ装置、第
14閲及び第15図にその変形側を示す。なお、前述の
各実施例ど同一の機能を有する部材には同一の符号を付
して重複する説明は省略する。 本夾施例のレーザ焼入な方法は、第7図乃乃至第9図に
示すように、被焼入れ対象物11の穴12内に光伝送路
13と集光光学系18と円錐反射面19を有する反射光
学系20を配設する。そして、光伝送路13の先端部か
ら射Ijjされt:レーザ光16を集光光学系18によ
って平行光化あるいは集光化して反射光学系20(ごよ
って穴12の内周面ζこ放射状tこ照射し、被焼入れ対
象物11あるいは反射光学系20te光軸方向に移動さ
することで被焼入れ対象物11の穴内周面にレーザ焼入
れを行うものである。 その具体的なレーザ焼入れ1!11は、第11図乃至第
13図に示すように、中空形状のハウジング31が被焼
入れ対象物J、1の穴12の一方の端部に対して挿脱自
在に片持支持されている。 ハウジング31には光ファイバ35が支持さ11、その
前方に位
Minute hand for industrial use> The present invention is a minute hand formed on an object to be incinerated with an iron cocoon.
1.- The method of hardening the inner circumferential surface of the hole and the method thereof. <Conventional technology> Surface hardening methods for steel materials have traditionally been flame hardening methods,
Examples include induction hardening. However, in these hardening methods, it is difficult to harden the inner circumferential surface of a small hole with a diameter of 15 m or less formed in a steel material. The above-mentioned flame hardening method, induction hardening method, etc. have dimensional restrictions on members such as nozzles and coils, and cannot be applied to hardening the inner peripheral surface of a small diameter hole. Therefore, conventionally, the inner circumferential surface of a small diameter hole was hardened by using a carburizing hardening bolt 1 to harden the entire surface of the steel material. <Problems to be solved by the invention> In surface hardening treatment of steel materials by the conventional carburizing and quenching method described above, the process fl! @ Iz There is a problem that distortion occurs in the entire part. Therefore, post-addition T is required to relieve the distortion, which is not favorable in terms of workability and cost. In addition, in the carburizing and quenching method, the process is carried out all at once, so it is a batch process, so it takes a relatively long time to process one batch, and a certain number of parts must be processed. There was a problem in that the cost per unit was relatively high and parts could not be quickly secured. The present invention is intended to solve these problems, and an object of the present invention is to provide a laser hardening method and an apparatus therefor that improve workability. <Means for Solving the Problems> The laser hardening method of the present invention for achieving the above-mentioned object includes disposing an optical transmission path, a condensing optical system, and a reflecting optical system in a hole formed in an object to be hardened. The laser beam emitted from the tip of the optical transmission path is collimated or condensed by the condensing optical system and irradiated onto the inner circumferential surface of the hole of the object to be hardened by the reflective optical system; The method is characterized in that spiral-shaped laser hardening is performed on the inner peripheral surface of the hole of the object to be hardened by rotating the object to be hardened or the reflective optical system with respect to the optical axis and moving it in the direction of the optical axis. . The laser hardening device of the present invention includes an optical transmission path that is disposed in a hole formed in the object to be hardened and emits a laser beam from its tip, and an optical transmission path that is disposed in the hole and converts the emitted laser beam into a parallel beam. The method is characterized by comprising a condensing optical system that converts or condenses the laser beam, and a reflective optical system that irradiates the inner peripheral surface of the hole of the object to be hardened in a spiral manner with the collimated or condensed laser beam. It is something to do. In addition, the laser hardening device of 2008 holds the optical transmission path, the condensing optical system, and the reflective optical system together in a housing that can transmit laser light, and the housing can be inserted into and removed from the hole in the object to be hardened. It is characterized by its support. Further, in the laser hardening method of the present invention, an optical transmission path, a condensing optical system, and a reflection optical system having a conical reflection surface are disposed in a hole formed in the object to be hardened, and from the tip of the optical transmission path, The emitted laser beam is collimated or condensed by the condensing optical system and radially irradiated onto the inner circumferential surface of the hole of the object to be hardened by the reflection optical system, while the object to be hardened or the reflection optical system The present invention is characterized in that laser hardening is performed on the inner peripheral surface of the hole of the object to be hardened by moving the system in the optical axis direction. The laser hardening device of the present invention includes an optical transmission path that is disposed in a hole formed in the object to be hardened and emits a laser beam from its tip, and an optical transmission path that is disposed in the hole and converts the emitted laser beam into a parallel beam. a condensing optical system that converts or condenses light, and a conical reflecting surface that is disposed in the hole and radially irradiates the inner peripheral surface of the hole of the object to be hardened with the collimated or condensed laser beam. The present invention is characterized in that it includes a reflective optical system that is movable relative to the object to be hardened in the optical axis direction. In addition, the laser hardening device of 2008 holds the optical transmission path, the condensing optical system, and the reflective optical system together in a housing that can transmit laser light, and the housing can be inserted into and removed from the hole in the object to be hardened. It is characterized by its support. Furthermore, the laser hardening device of 2008 holds the optical transmission line and the condensing optical system together in a housing that can transmit laser light, and the housing can be freely inserted into and removed from one end of the hole of the object to be hardened. The reflective optical system is supported at the end of the other hole so as to be freely insertable and removable. Further, the laser hardening method of the present invention includes disposing an optical transmission path, a condensing optical system having a conical exit surface, and a reflecting optical system having a conical reflecting surface in a hole formed in the object to be hardened. The laser beam emitted from the tip of the path is collimated or condensed by the condensing optical system, and is radially irradiated onto the inner peripheral surface of the hole of the object to be hardened by the reflecting optical system. This method is characterized in that laser hardening is performed on the inner peripheral surface of the hole of the object to be hardened by moving the object or the reflective optical system in the optical axis direction. Further, in the laser hardening method of the present invention, an optical transmission path, a condensing optical system, and a reflective optical system having a conical reflective surface are disposed in a hole formed in an object to be hardened, and the tip of the optical transmission path is One nose light emitted from the lightless optical system is collimated or condensed by the lightless optical system, and is irradiated radially onto the inner peripheral surface of the hole of the object to be hardened by the reflective optical system. ! 1. Laser hardening is performed on the B area of the hole of the object to be hardened by moving the object or the reflective optical system in the optical axis direction and simultaneously rotating the object to be hardened with respect to the center of the hole. That is. The laser beam emitted from the optical transmission path is collimated or condensed by the saturation optical system, and is irradiated onto the inner peripheral surface of the hole of the object to be hardened by the reflective optical system, and the irradiated part is heated and hardened. form a section. At this time, by relatively rotating either the object to be hardened or the reflective optical system and moving it in the optical axis direction, spiral laser hardening of the inner circumferential surface of the hole of the object to be hardened is performed. Mat':,, since the reflective optical system has a circular reflection direction,
The collimated or condensed 1.-the light is radially irradiated onto the inner circumferential surface of the hole of the object to be hardened by the conical reflection surface of the reflection optical system, thereby forming an annular heated and hardened portion. Laser hardening is performed by moving the object to be hardened or the reflective optical system in the optical axis direction. At Y, the condensing optical system has a conical exit surface, which condenses the ring-shaped laser beam, and irradiates it radially onto the inner peripheral surface of the hole of the object to be hardened using the conical reflective surface of the reflective optical system. Then, a spherical heat-quenched part is formed. At this time,
The width of the annular heat-hardened portion is relatively narrow, the energy density is increased, and good laser hardening is performed. When the laser beam is radially irradiated onto the inner peripheral surface of the hole of the object to be hardened by the conical reflecting surface of the reflective optical system, the object to be hardened or the reflective optical system is moved in one direction of the light, and the object to be hardened is By rotating about the center of the hole, uniform laser hardening is performed on the inner peripheral surface of the hole. <:11! Examples> Hereinafter, examples of the present invention will be described in detail based on illustrations. 1 and 12 schematically show a laser hardening method according to an embodiment of the present invention, and FIGS. 3 and 4 show a second specific laser hardening apparatus for carrying out the method. Modifications thereof are shown in FIGS. 5 and 6. In the laser hardening method of this embodiment, as shown in FIGS. 1 and 2, an optical transmission 11X3, a forward optical system 14, and a reflective optical system 15 are arranged in a carpenter 2 formed on an object 11 to be hardened. Then, the laser beam 16 emitted from the tip of the optical transmission line 18 is collimated and condensed by the condensing optical system 141, and is irradiated onto the inner circumferential surface of the hole 1z by the reflective optical system 5. , the object to be hardened 11 or the reflective optical system 1
5e Rotated with respect to the optical axis and moved in the optical axis direction to form a spiral heating hardened portion inside the hole 12], 7
Laser hardening is performed by forming. In the specific laser hardening device, as shown in the third condyle and FIG. 4, the housing 31 has a hollow shape and can transmit the laser beam 16. This housing 31 has a connector 32 at the proximal end, and 1. - The tube 38 is attached to one end (the third
It is supported in a cantilever manner so as to be freely insertable and removable. The housing 31 has a lens holder 3 along its center.
4 passes through the lens holder 34, and an optical fiber 35 is supported inside the l/lens holder 34. And lens holder 3
4, a collimating lens 36 and a condensing lens 37 are attached to the front end of the optical fiber 35. Furthermore, an inclined reflective surface 38 is provided in front of this lens 36,37.
A folding mirror 39 is attached via an O-ring 40. Note that the housing 31 and the lens holder 34 each have an opening through which the laser beam 16 passes, and a gasket 41 is attached to the opening of the housing 31. Further, cooling water @42 is installed between the housing 31 and the lens holder 34. When performing laser hardening on the inner peripheral surface of the hole 12 of the object to be hardened 11, the housing 31 is first inserted into the hole 12. Then, the laser beam 16 is emitted from the tip of the optical fiber 31, collimated by the collimating lens 36, and condensed by the condensing lens 37. The focused laser beam 16 is irradiated onto the inner circumferential surface of the hole 12 by a folding mirror 39, and a heat-hardened portion 17 is formed. At this time, the folding mirror 39 is moved in the optical axis direction with respect to the object 11 to be hardened while being rotated with respect to the optical axis. Then, the circular heat source formed by the light moves in a spiral shape along the inner peripheral surface of the hole 12, and the area to which this heat source moves is heated by the light and then self-cooled by the heat capacity of the parts, causing the hole to close. A temperature change is followed in which only the vicinity of the inner circumferential surface of No. 12 is heated to a predetermined maximum temperature, and then cooled. If the maximum temperature of B is higher than the transformation concentration of the material and lower than the melting point, that area will undergo transformation hardening, so the quenching thickness can be controlled by appropriately changing the laser power, moving speed, and laser beam focusing degree. can do. In this way, the laser hardening process is performed on the inner peripheral surface of the hole 12 of the object to be hardened 110. Note that a coating agent such as graphite may be applied to the inner peripheral surface of the hole 12 of the object to be hardened 11 in order to increase the conversion efficiency of laser light into heat. In addition to the hardening process using the day focus method as in the above-mentioned embodiments, linear or square-shaped Spiral quenching may be used depending on the heat source. Furthermore, during the spiral quenching process, the heating quenching part 1
The interval 7 can be varied widely by appropriately setting the rotational speed and moving speed of the folding mirror 39. In this case, the entire housing 31 may be used to rotate and move the folding mirror 39. As an example, a round hole with an inner diameter of 13 mm was formed in 50M445 material, and the axial insertion speed was 10 m/wi.
As a result of hardening at a rotational speed of 24.5 rpm, a spiral hardened part (base metal 30
It was possible to obtain a cure of 11,700 HV) compared to 0 HV. Another laser hardening apparatus shown in FIGS. 5 and 6 is used when the large part 12 of the object 11 to be hardened is a through hole. That is, an optical fiber 52 is supported in the center of a hollow housing 51, and a collimating lens 5 is placed in front of the housing 51 through a lens holder 53.
4 and a condenser lens 55 are attached. The housing 5 is cantilevered to one end (the left end in FIGS. 5 and 6) of the hole 12 of the object 11 to be hardened so as to be insertable and removable. On the other hand, a folding mirror 57 having an inclined reflective surface 56 is disposed facing the housing 51, an adapter 58 is fixed to the base end, and a connector mount 60 is attached via an O-ring 59. Furthermore, a connector 61 and a tube 62 are attached to the hole 12 of the object to be hardened 11.
It is cantilevered to the other end S (the right end in FIGS. 5 and 6) so that it can be inserted and removed. Further, a cooling water introduction pipe 63 is connected to the folding mirror 57, and a cooling water channel 64 is formed. When performing laser hardening on the inner peripheral surface of the hole 12 of the object to be hardened 11, first, the housing 51 is inserted into the hole 12 from one side, and the folding mirror 57 is pushed in from the other side. Then, 1G of laser light is emitted from the tip of the optical fiber 52, condensed by the Pi-]/ lenses 54 and 55, and irradiated onto the inner circumferential surface of the hole 12 by the folding mirror 57, thereby forming the heat-hardened part 21. reactor. At this time, by moving the folding waver 57 toward the object 11 to be hardened in the direction of the optical axis while rotating 1r with respect to the optical axis, the waveform 57 is moved toward the inner R west of the hole 1z of the object 11 to be hardened. Spiral laser hardening fi processing is performed. Figures 7 to 9 schematically show the laser hardening method according to the second embodiment of the present invention, and Figures 10 to 13 show a specific 1/-ther hardening apparatus for performing the warping. , the modified side is shown in Fig. 14 and Fig. 15. It should be noted that members having the same functions in each of the above-described embodiments are given the same reference numerals and redundant explanations will be omitted. In the laser hardening method of this embodiment, as shown in FIGS. 7 to 9, an optical transmission path 13, a condensing optical system 18, and a conical reflecting surface 19 are placed in a hole 12 of an object 11 to be hardened. A reflective optical system 20 is provided. Then, the laser beam 16 is emitted from the tip of the optical transmission path 13 and is collimated or condensed by the condensing optical system 18, and the reflected optical system 20 (thereby, the inner circumferential surface of the hole 12 By irradiating this and moving the object to be hardened 11 or the reflective optical system 20te in the optical axis direction, laser hardening is performed on the inner peripheral surface of the hole in the object to be hardened 11. Specific laser hardening 1!11 As shown in FIGS. 11 to 13, a hollow housing 31 is cantilevered and removably inserted into one end of the hole 12 of the object to be hardened J, 1. An optical fiber 35 is supported by 31 and is positioned in front of it.

【してコリメートレンズ36がレンズホルダ3
4によって取付けら幻、このレンズ36の前方には円錐
状の反射面71が形成された円錐ミラー72が取付けら
ズ1ている。 なお、レンズホルダ、ダ34にはガスを排出するガス孔
73が形成されることで、冷却ガス還路74が般けられ
、また、ハウジング31の先端部にはフィン75が設け
らitている。 面して、被焼入t1対象物11の穴12の内8面にレー
ザ焼入れ加工を施す場合には、まず、穴!z内にハウジ
ング31を挿入する。 そして、光ファイバ31の先端部からレーザ光16を射
出し、コリメートレンズ36によ1て平行光化17、レ
ーザ光16は円錐ミラー72!i:よ7て穴12の内周
面に放射状に照射され、加熱焼入ね部21が形成される
。 このとき、被焼入れ対象物11に対して円絃赴う−72
を光軸方向ξζ移動させる。すると、光によφ形成され
i:R状の熱源が穴12に沿って移動し、被焼入れ対象
物11の穴12の内周面にレーザ焼入れ加工が行われる
。 実施例として、S CM 445材に対し、内径13「
の丸穴を形成し、920W、熱源幅約2IllIIで焼
入滅1を行)た結果、厚さ0.3Nの円環状の硬化部(
母材約3001iv弱に対し硬化部650 BY)を得
ることがでかな。 第14図及び第15図に示す別のレーザ焼入れ装置は、
被焼入れ対象物11の穴12が貫通孔である場合に使用
されるものであり、ハウジング51に光ファイバ52と
フリメートレンズ54が取付けられ、このハウジング5
1は被焼入1対象物110穴12の一方の端部に対して
挿脱自在に片持支持さズ1ている。 一方、ハウジング511こ対向して円鍍状の反射向76
が形成された円錐ミラー77が配置され、内部に冷却水
導入用銅パイヅ63が接続され、冷却水路64が形成さ
れ、ている。 而して、被焼入れ対象物110穴12の内周面にし〜ザ
焼入れ加工を施す場合には、J・ず、穴】、2内に一方
からハウジング51を挿入すると共に他方から円釘ミラ
ー77を挿入する。そして、光ファイバ52からレーザ
光16をレンズ54と円錐ミラー77によって穴12の
内周面に照射し、このと艶、被焼入れ対象物11に対し
て円錐ミラー77を光軸方向に移動させることで、大1
2の内周面に環状の加熱焼入れ部21が形成されてレー
ザ焼入れ加工が行われる。 第16図乃至第18図に本発明の第3の実施例に係るレ
ーザ焼入れ方法の概略を示す。 本実施例のレーザ焼入れ方法は、第16図及び第17図
に示すように、被焼入れ対象物11の穴12内に光伝送
41B(光ファイバ35)と円錐射出面22を有する集
光光学系23(コリメートレンズ36、アクシコンレン
ズ81)と円錐反射面19 (反射N71)を有する反
射光学系20(円錐ミラー72)を配設する。 そして、光伝送路13の先端部から射出されたレーザ光
16を集光光学系23によって平行光化すると共に集光
化して反射光学系2゜によって被焼入れ対象物11の穴
12内周面に放射状に照射する。 このとき、アクシコンレンズ81によって集光化された
レーザ光16は反射光学系20によって被焼入れ対象物
11の穴12内周面に放a状に照射されるが、アクシコ
ンレンズ81の射出面は円錐形状をなしているため、第
18図に示すように、円錐ミラー72の頂点に光を集中
させずに環状の加熱焼入れ部21の幅を比較的狭くする
ことで、エネルギー密度を大きくすることができる。 そして、円錐ミラー72を光軸方向に移動させることで
環状の熱源が穴12に沿って移動してレーザ焼入れ加工
が行われる。 第19図及び第20図に本発明の第4の実施例に係るレ
ーザ焼入れ方法の概略を示す。 本実施例のレーザ焼入れ方法は、第19図及び第20図
に示すように、被焼入れ対象物11の穴12内に光伝送
路13(光ファイバ35)と集光光学系18(コリメー
トレンズ36)と円錐反射面19(反射面71)を有す
る反射光学系20(円錐ミラー72)を配設する。 そして、射出されたレーザ光16をコリメートレンズ8
6によって平行光化して反射光学系20によって被焼入
れ対象物11の穴12内周面に放射状に照射する。 このとき、被焼入れ対象物11あるいは反射光学系20
を光軸方向に移動させると共に被焼入れ対象物11を穴
12の中心に対して回転させることで、環状の熱源が穴
12に沿って移動してレーザ焼入れ加工が行われる。 このように環状の熱源が穴12に沿って移動するときに
被焼入れ対象物11を回転させるので、円錐ミラー72
の中心と穴12の中心がずれて設定されていたとしても
、全周にわたって均一な焼入れ処理が行われる。 〈発明の効果〉 以上、実施例を挙げて詳細に説明したように本発明のレ
ーザ焼入れ方法及び装置によれば、光伝送路から射出さ
れたレーザ光が集光光学系並びに反射光学系によって被
焼入れ対象物の穴内周面に照射されて加熱焼入れ部を形
成する一方、被焼入れ対象物あるいは反射光学系のいず
れか一方を相対回転させると共に光軸方向に移動させる
ことで被焼入れ対象物の穴内周面にスパイラル状のレー
ザ焼入れを行うようにしたので、細径穴の内周面の焼入
れ処理が精度良く可能となり、工数を低減することがで
きると共にバッチ処理を単品ごとにライン処理でき納期
管理を春易とすることができる。 また、反射光学系に円錐反射面を設け、平行光化あるい
は集光化されたレーザ光をこの円錐反射面によって被焼
入れ対象物の穴内周面に放射状に照射して環状の加熱焼
入れ部を形成しレーザ焼入れ行うようにしたので、細径
穴の内周面の焼入れ処理を簡単に且つ精度良く行うこと
ができ、工数を低減することができる。 その結果、レーザ焼入れ処理の作業性を向上させること
ができる。 更に、集光光学系に円錐射出面を設け、し−ザ光のリン
グ状モードの皇光を行い、これを反射光学系の円錐反射
面によって被焼入九対峡物の穴内周面に放射状に照射し
て環状の加熱焼入れ部な形成しレーザ焼入れ行うように
したので、環状の加熱焼入れ部の幅が比較的狭くなって
エネルギー密度な大さ(することができると共に飾光光
学系の破損や溶融を防止し、安定した良好な1./−ザ
焼入れを行うことができる。 求に、レーザ光を反射光学系の円錐反射面によって放射
状に照射するときに被焼入れ対献物あるいは反射光学系
を光軸方向に移動させると共に被焼入れ対象物を穴の中
心に対して回転させるようにしたので、穴内周面に均一
なレーザ焼入i1を行うことかで%石。
[The collimating lens 36 is attached to the lens holder 3.]
A conical mirror 72 having a conical reflecting surface 71 is mounted in front of the lens 36. Note that a cooling gas return path 74 is opened by forming a gas hole 73 for discharging gas in the lens holder holder 34, and a fin 75 is provided at the tip of the housing 31. . When laser hardening is performed on the eight surfaces of the hole 12 of the object 11 to be hardened t1, first, the hole! Insert the housing 31 into the z. Then, the laser beam 16 is emitted from the tip of the optical fiber 31, and is converted into parallel light 17 by the collimating lens 36, and the laser beam 16 is reflected by the conical mirror 72! i: The inner peripheral surface of the hole 12 is irradiated radially to form a heat-hardened portion 21. At this time, a circular string is applied to the object 11 to be quenched.
is moved in the optical axis direction ξζ. Then, the i:R-shaped heat source formed by the light moves along the hole 12, and laser hardening is performed on the inner peripheral surface of the hole 12 of the object 11 to be hardened. As an example, for S CM 445 material, an inner diameter of 13"
As a result, a circular hardened part with a thickness of 0.3N (
I wonder if it is possible to obtain a hardened part of 650 BY) for the base material of about 3001 IV. Another laser hardening device shown in FIGS. 14 and 15 is
This is used when the hole 12 of the object to be hardened 11 is a through hole, and an optical fiber 52 and a frimate lens 54 are attached to a housing 51.
1 is supported by a cantilever on one end of a hole 12 in which an object to be hardened 110 can be freely inserted and removed. On the other hand, the circular reflection direction 76 is opposite to the housing 511.
A conical mirror 77 is disposed in which a cooling water introduction copper pipe 63 is connected, and a cooling water channel 64 is formed. When the inner peripheral surface of the hole 12 of the object to be hardened is subjected to the hardening process, the housing 51 is inserted into the hole 2 from one side, and the circular nail mirror 77 is inserted from the other side. Insert. Then, the laser beam 16 is irradiated from the optical fiber 52 to the inner peripheral surface of the hole 12 through the lens 54 and the conical mirror 77, and the conical mirror 77 is then moved in the optical axis direction relative to the object 11 to be polished and hardened. So, 1 large
An annular heat-hardened portion 21 is formed on the inner circumferential surface of 2, and laser hardening processing is performed. 16 to 18 schematically show a laser hardening method according to a third embodiment of the present invention. As shown in FIGS. 16 and 17, the laser hardening method of this embodiment uses a condensing optical system having a light transmission 41B (optical fiber 35) and a conical exit surface 22 in the hole 12 of the object to be hardened 11. 23 (collimating lens 36, axicon lens 81) and a reflective optical system 20 (conical mirror 72) having a conical reflective surface 19 (reflection N71). The laser beam 16 emitted from the tip of the optical transmission path 13 is parallelized and condensed by the condensing optical system 23, and is applied to the inner peripheral surface of the hole 12 of the object to be hardened 11 by the reflective optical system 2°. Irradiates radially. At this time, the laser beam 16 focused by the axicon lens 81 is radially irradiated onto the inner peripheral surface of the hole 12 of the object to be hardened 11 by the reflective optical system 20, but the exit surface of the axicon lens 81 Since it has a conical shape, as shown in FIG. 18, the energy density is increased by making the width of the annular heating and hardening part 21 relatively narrow without concentrating the light on the apex of the conical mirror 72. be able to. Then, by moving the conical mirror 72 in the optical axis direction, the annular heat source moves along the hole 12 and laser hardening processing is performed. 19 and 20 schematically show a laser hardening method according to a fourth embodiment of the present invention. In the laser hardening method of this embodiment, as shown in FIGS. 19 and 20, an optical transmission line 13 (optical fiber 35) and a condensing optical system 18 (collimating lens 36 ) and a reflective optical system 20 (conical mirror 72) having a conical reflective surface 19 (reflective surface 71). Then, the emitted laser beam 16 is converted into a collimating lens 8.
6, the parallel light is made into parallel light and is irradiated radially onto the inner peripheral surface of the hole 12 of the object 11 to be hardened by the reflective optical system 20. At this time, the object to be hardened 11 or the reflective optical system 20
By moving the object 11 in the optical axis direction and rotating the object 11 to be hardened with respect to the center of the hole 12, the annular heat source moves along the hole 12 and laser hardening is performed. Since the annular heat source rotates the object 11 to be hardened as it moves along the hole 12, the conical mirror 72
Even if the center of the hole 12 and the center of the hole 12 are set to be offset from each other, uniform hardening treatment is performed over the entire circumference. <Effects of the Invention> As described above in detail with reference to examples, according to the laser hardening method and apparatus of the present invention, the laser beam emitted from the optical transmission path is covered by the condensing optical system and the reflecting optical system. The inner peripheral surface of the hole of the object to be hardened is irradiated to form a heated hardened part, while the object to be hardened or the reflective optical system is relatively rotated and moved in the optical axis direction to form a heated part inside the hole of the object to be hardened. By performing spiral laser hardening on the circumferential surface, it is possible to harden the inner peripheral surface of a small diameter hole with high precision, reducing man-hours, and batch processing can be performed on a line for each individual item, allowing delivery date management. can be taken as spring. In addition, a conical reflective surface is provided in the reflective optical system, and the conical reflective surface irradiates the parallel or condensed laser beam radially onto the inner peripheral surface of the hole of the object to be hardened to form an annular heated and hardened part. Since the laser hardening is performed, the hardening process of the inner circumferential surface of the small diameter hole can be easily and accurately performed, and the number of man-hours can be reduced. As a result, the workability of the laser hardening process can be improved. Furthermore, a conical exit surface is provided in the condensing optical system to emit a ring-shaped mode of laser light, which is then radially applied to the inner peripheral surface of the hole of the object to be hardened by the conical reflective surface of the reflective optical system. Since the annular heat-hardened part is formed by laser irradiation, the width of the annular heat-hardened part becomes relatively narrow and the energy density increases (as well as damage to the decorative optical system). It is possible to perform stable and good laser hardening by preventing melting or melting. By moving the system in the optical axis direction and rotating the object to be hardened with respect to the center of the hole, uniform laser hardening can be performed on the inner peripheral surface of the hole.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例に係るレーザ焼入れ方法
を表す概略図、第2図は第1図のπ−U断面図、第3図
はそれを実施するための具体的なレーザ焼入れ装置の構
成図、剪4図ばその断面図、第5図はその変形例に係ろ
レーザ焼入れ装置の構成図、第6図はその断面図、第7
図は本発明の第2の実施側孔こ係るレーザ焼入れ方法を
表す概略図、第8閃1.i第7図の■−■断面図、第9
図は焼入かの進行状態を表す説明図、第10図はそ嘘1
を実施するための具体的なレーザ焼入れ騎費の構成図、
第11図はその断面図、第12閏は第i5、図のxi 
−xi Wft面図、簗13図は第1 x15ffl)
X’J[−Xl[i面図、節141utの変形例に係る
レーザ焼入れ装置の構成図、第15閏はその断面図、第
16図は本発明の第3の実施例に係ろレーザ焼入か、方
法の概略図、第17図は第16図のX■−X■断面閲、
第18図は焼入れの進行状態を表す説明図、第19図は
本発明の第4の実施例に係るレーザ焼入れ方法の概略図
、第20図は第19図のxx −xx断面図である。 図 面 中、 11は被焼入れ対象物、 12は穴、 3は光伝送路、 4.18p23は集光光学系、 5.20は反射光学系、 6はレーザ光、 7.21は加熱焼入れ部、 9は円錐反射面、 2は円錐射出面である。 特許出販人 三菱重工業株式会社 代    理    人
FIG. 1 is a schematic diagram showing the laser hardening method according to the first embodiment of the present invention, FIG. 2 is a π-U cross-sectional view of FIG. 1, and FIG. 3 is a specific laser for implementing the method. Fig. 5 is a block diagram of a laser hardening apparatus according to a modification thereof, Fig. 6 is a cross-sectional view thereof, and Fig. 7 is a block diagram of the hardening device.
The figure is a schematic diagram showing the laser hardening method according to the second embodiment of the present invention. i Figure 7 ■-■ sectional view, No. 9
The figure is an explanatory diagram showing the progress of quenching, and Figure 10 is 1
A configuration diagram of a specific laser hardening kit for carrying out the
Figure 11 is its cross-sectional view, the 12th leap is i5, and the xi in Figure
-xi Wft view, 13th view is 1st x15ffl)
X'J [-Xl A schematic diagram of the method, Figure 17 is a cross-sectional view of Figure 16,
FIG. 18 is an explanatory diagram showing the progress of hardening, FIG. 19 is a schematic diagram of a laser hardening method according to a fourth embodiment of the present invention, and FIG. 20 is a sectional view taken along line xx-xx in FIG. 19. In the drawing, 11 is the object to be hardened, 12 is the hole, 3 is the optical transmission line, 4.18p23 is the condensing optical system, 5.20 is the reflective optical system, 6 is the laser beam, 7.21 is the heating hardening part , 9 is a conical reflection surface, and 2 is a conical exit surface. Patent seller Mitsubishi Heavy Industries, Ltd. Agent

Claims (9)

【特許請求の範囲】[Claims] (1)被焼入れ対象物に形成された穴内に光伝送路と集
光光学系と反射光学系を配設し、前記光伝送路の先端部
から射出されたレーザ光を前記集光光学系によって平行
光化あるいは集光化して前記反射光学系によって前記被
焼入れ対象物の穴内周面に照射する一方、前記被焼入れ
対象物あるいは反射光学系を光軸に対して回転させると
共に光軸方向に移動させることで前記被焼入れ対象物の
穴内周面にスパイラル状のレーザ焼入れを行うことを特
徴とするレーザ焼入れ方法。
(1) An optical transmission path, a condensing optical system, and a reflective optical system are arranged in a hole formed in the object to be hardened, and the laser beam emitted from the tip of the optical transmission path is transmitted by the condensing optical system. While collimating or condensing the light and irradiating it onto the inner peripheral surface of the hole of the object to be hardened by the reflective optical system, the object to be hardened or the reflective optical system is rotated with respect to the optical axis and moved in the optical axis direction. A laser hardening method characterized by performing spiral-shaped laser hardening on the inner peripheral surface of the hole of the object to be hardened.
(2)被焼入れ対象物に形成された穴内に配設され先端
部からレーザ光を射出する光伝送路と、前記穴内に配設
され射出されたレーザ光を平行光化あるいは集光化する
集光光学系と、平行光化あるいは集光化されたレーザ光
を前記被焼入れ対象物の穴内周面にスパイラル状に照射
する反射光学系とを具えたことを特徴とするレーザ焼入
れ装置。
(2) An optical transmission line disposed in a hole formed in the object to be hardened to emit laser light from the tip, and a condenser disposed in the hole to collimate or condense the emitted laser light. A laser hardening apparatus comprising: a light optical system; and a reflective optical system that irradiates parallel or focused laser light onto the inner peripheral surface of the hole of the object to be hardened in a spiral manner.
(3)前記請求項(2)記載のレーザ焼入れ装置におい
て、光伝送路と集光光学系と反射光学系とをレーザ光を
透過可能なハウジングにて一体に保持し、該ハウジング
を被焼入れ対象物の穴内に挿脱自在に支持したことを特
徴とするレーザ焼入れ装置。
(3) In the laser hardening apparatus according to claim (2), the optical transmission path, the condensing optical system, and the reflective optical system are integrally held in a housing that can transmit laser light, and the housing is the object to be hardened. A laser hardening device characterized by being supported so that it can be inserted into and removed from a hole in an object.
(4)被焼入れ対象物に形成された穴内に光伝送路と集
光光学系と円錐反射面を有する反射光学系を配設し、前
記光伝送路の先端部から射出されたレーザ光を前記集光
光学系によって平行光化あるいは集光化して前記反射光
学系によって前記被焼入れ対象物の穴内周面に放射状に
照射する一方、前記被焼入れ対象物あるいは前記反射光
学系を光軸方向に移動させることで前記被焼入れ対象物
の穴内周面にレーザ焼入れを行うことを特徴とするレー
ザ焼入れ方法。
(4) An optical transmission path, a condensing optical system, and a reflection optical system having a conical reflection surface are arranged in the hole formed in the object to be hardened, and the laser beam emitted from the tip of the optical transmission path is directed to the The light is collimated or condensed by a condensing optical system and radially irradiated onto the inner peripheral surface of the hole of the object to be hardened by the reflective optical system, while moving the object to be hardened or the reflective optical system in the optical axis direction. A laser hardening method characterized by performing laser hardening on the inner peripheral surface of the hole of the object to be hardened.
(5)被焼入れ対象物に形成された穴内に配設され先端
部からレーザ光を射出する光伝送路と、前記穴内に配設
され射出されたレーザ光を平行光化あるいは集光化する
集光光学系と、前記穴内に配設され平行光化あるいは集
光化されたレーザ光を前記被焼入れ対象物の穴内周面に
放射状に照射する円錐反射面を有し前記被焼入れ対象物
に対して光軸方向に相対移動自在な反射光学系とを具え
たことを特徴とするレーザ焼入れ装置。
(5) An optical transmission line disposed in a hole formed in the object to be hardened to emit laser light from the tip, and a condenser disposed in the hole to collimate or condense the emitted laser light. a light optical system, and a conical reflecting surface disposed in the hole to radially irradiate the inner circumferential surface of the hole of the object to be hardened with a collimated or condensed laser beam; A laser hardening device characterized by comprising a reflective optical system that is relatively movable in the optical axis direction.
(6)前記請求項(5)記載のレーザ焼入れ装置におい
て、光伝送路と集光光学系と反射光学系とをレーザ光を
透過可能なハウジングにて一体に保持し、該ハウジング
を被焼入れ対象物の穴内に挿脱自在に支持したことを特
徴とするレーザ焼入れ装置。
(6) In the laser hardening apparatus according to claim (5), the optical transmission path, the condensing optical system, and the reflective optical system are integrally held in a housing that can transmit laser light, and the housing is the object to be hardened. A laser hardening device characterized by being supported so that it can be inserted into and removed from a hole in an object.
(7)前記請求項(5)記載のレーザ焼入れ装置におい
て、光伝送路と集光光学系とをレーザ光を透過可能なハ
ウジングにて一体に保持し、該ハウジングを被焼入れ対
象物の一方の穴端部に挿脱自在に支持すると共に、反射
光学系を他方の穴端部に挿脱自在に支持したことを特徴
とするレーザ焼入れ装置。
(7) In the laser hardening apparatus according to claim (5), the optical transmission path and the condensing optical system are held together by a housing that can transmit laser light, and the housing is attached to one of the objects to be hardened. A laser hardening device characterized in that a laser hardening device is supported at an end of a hole so as to be freely inserted and removed, and a reflective optical system is supported at an end of the other hole so that it can be inserted and removed.
(8)被焼入れ対象物に形成された穴内に光伝送路と円
錐射出面を有する集光光学系と円錐反射面を有する反射
光学系を配設し、前記光伝送路の先端部から射出された
レーザ光を前記集光光学系によって平行光化あるいは集
光化して前記反射光学系によって前記被焼入れ対象物の
穴内周面に放射状に照射する一方、前記被焼入れ対象物
あるいは反射光学系を光軸方向に移動させることで前記
被焼入れ対象物の穴内周面にレーザ焼入れを行うことを
特徴とするレーザ焼入れ方法。
(8) A light transmission path, a condensing optical system having a conical exit surface, and a reflection optical system having a conical reflection surface are disposed in the hole formed in the object to be hardened, and the light beam is emitted from the tip of the light transmission path. The laser beam is collimated or focused by the condensing optical system, and is radially irradiated onto the inner peripheral surface of the hole of the object to be hardened by the reflecting optical system, while the object to be hardened or the reflecting optical system is collimated or focused by the reflecting optical system. A laser hardening method characterized by performing laser hardening on the inner peripheral surface of the hole of the object to be hardened by moving the object in the axial direction.
(9)被焼入れ対象物に形成された穴内に光伝送路と集
光光学系と円錐反射面を有する反射光学系を配設し、前
記光伝送路の先端部から射出されたレーザ光を前記集光
光学系によって平行光化あるいは集光化して前記反射光
学系によって前記被焼入れ対象物の穴内周面に放射状に
照射する一方、前記被焼入れ対象物あるいは反射光学系
を光軸方向に移動させると共に該被焼入れ対象物を前記
穴の中心に対して回転させることで該被焼入れ対象物の
穴内周面にレーザ焼入れを行うことを特徴とするレーザ
焼入れ方法。
(9) An optical transmission path, a condensing optical system, and a reflection optical system having a conical reflection surface are arranged in the hole formed in the object to be hardened, and the laser beam emitted from the tip of the optical transmission path is directed to the The light is collimated or condensed by the condensing optical system and radially irradiated onto the inner peripheral surface of the hole of the object to be hardened by the reflective optical system, while the object to be hardened or the reflective optical system is moved in the optical axis direction. A laser hardening method characterized in that the inner peripheral surface of the hole of the object to be hardened is laser hardened by rotating the object to be hardened with respect to the center of the hole.
JP2263738A 1990-10-03 1990-10-03 Method and device for laser beam quenching Pending JPH04141514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2263738A JPH04141514A (en) 1990-10-03 1990-10-03 Method and device for laser beam quenching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2263738A JPH04141514A (en) 1990-10-03 1990-10-03 Method and device for laser beam quenching

Publications (1)

Publication Number Publication Date
JPH04141514A true JPH04141514A (en) 1992-05-15

Family

ID=17393605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2263738A Pending JPH04141514A (en) 1990-10-03 1990-10-03 Method and device for laser beam quenching

Country Status (1)

Country Link
JP (1) JPH04141514A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007031282A1 (en) * 2005-09-14 2007-03-22 Heckler & Koch Gmbh Reflector arrangement provided with a laser beam reflecting head and a guiding device, device and method for hardening internal surfaces of a workpiece
JP2011520748A (en) * 2008-04-30 2011-07-21 コーニング インコーポレイテッド Laser cutting with a curved trajectory
DE102016121707A1 (en) * 2016-11-14 2018-05-17 ECO Holding 1 GmbH Method for machining an inner surface of a valve bush, valve bush and device for machining an inner surface of a valve bush

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007031282A1 (en) * 2005-09-14 2007-03-22 Heckler & Koch Gmbh Reflector arrangement provided with a laser beam reflecting head and a guiding device, device and method for hardening internal surfaces of a workpiece
JP2011520748A (en) * 2008-04-30 2011-07-21 コーニング インコーポレイテッド Laser cutting with a curved trajectory
DE102016121707A1 (en) * 2016-11-14 2018-05-17 ECO Holding 1 GmbH Method for machining an inner surface of a valve bush, valve bush and device for machining an inner surface of a valve bush

Similar Documents

Publication Publication Date Title
US5012066A (en) Method of and apparatus for manufacturing eyeless suture needle
JPH07227686A (en) Optical transmitter device and light irradiation method
JPH02284783A (en) Holder
JPH04251214A (en) Apparatus for homogenizing distribution of heterogeneous light of laser beam
EP0676653A1 (en) Fiber optical coupler
JPS6045247B2 (en) Heat treatment method for steel product surfaces using high energy beams
JPH0124202B2 (en)
JPH04141514A (en) Method and device for laser beam quenching
JP2683158B2 (en) Power controlled split laser system
JP2664625B2 (en) Laser cutting method and apparatus
CN1949007B (en) Light guide and light struck apparatus
JP2003340588A (en) Method for processing inside transparent material and its device
JPH01191801A (en) Condenser lens
JPH0819881A (en) Laser beam device for heating of tubular body
JPH06142965A (en) Heating device
JP2001009580A (en) Laser light condensing device
JPH04143092A (en) Laser beam machine
RU2241767C1 (en) Method for laser processing of conical surfaces
CN215328221U (en) Improved laser quenching machining head
JPS63232937A (en) Polishing method
JP2003080389A (en) Device and method for laser beam machining and method for manufacturing product having laser beam machined work
JPH04361884A (en) Method and device for quenching by laser beam
JPH03170616A (en) Laser beam optical instrument for heating inner face of pipe
JP2000271773A (en) Laser beam emitting optical system
GB2316187A (en) Laser optical fibre transmission system with adjustable angle of incidence