JPH04141297A - Ammonia-containing liquid treatment method - Google Patents

Ammonia-containing liquid treatment method

Info

Publication number
JPH04141297A
JPH04141297A JP2260610A JP26061090A JPH04141297A JP H04141297 A JPH04141297 A JP H04141297A JP 2260610 A JP2260610 A JP 2260610A JP 26061090 A JP26061090 A JP 26061090A JP H04141297 A JPH04141297 A JP H04141297A
Authority
JP
Japan
Prior art keywords
water
cleaning
ammonia
packed
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2260610A
Other languages
Japanese (ja)
Inventor
Takayuki Suzuki
隆幸 鈴木
Yuichi Fuchu
裕一 府中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP2260610A priority Critical patent/JPH04141297A/en
Publication of JPH04141297A publication Critical patent/JPH04141297A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To recover nitrification activity after cleaning a packed layer within an extremely short period by passing an ammonia-containing liquid through a fixed bed packed layer packed with a granular filter material for the contact with microbe at high space velocity(SV). CONSTITUTION:After oxygen is dissolved in ammonia-containing water 1 by aeration 8 in an aeration tank 2, the water 1 is led to a packed tower 5 in which activated carbon 3 as a granular filter material for the contact with microbe is provided on a supporting layer 4 consisting of gravels and as the liquid descends in the packed layer 6, ammonia is oxidized to nitrous acid or further to nitric acid by a nitrifying bacteria adhering to the activated carbon and the resulting water is discharged as treated water 7. The passing condition of the ammonia-containing water 1 is made to be >=20/h of SV. Under this condition, the necessary days for recover of nitrification activity after cleaning the filled layer can be shortened. In the case that filtration resistance increases owing to SS capturing and swelling by propagation of microbe on the surface of the filter, cleaning is carried out in the order of drawing water out, cleaning with air 9, simultaneously cleaning with air 9 and water 10, and cleaning with water 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アンモニア含有液の処理方法に係り、特に、
水中の比較的低濃度のアンモニアを生物学的に硝化する
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for treating an ammonia-containing liquid, and in particular,
This invention relates to a method for biologically nitrifying relatively low concentrations of ammonia in water.

〔従来の技術〕[Conventional technology]

従来、水中のアンモニアを生物学的に処理する方法とし
ては、活性汚泥法の他に、回転円盤、ハニ力ムチュウブ
、砂、アンスラサイト、活性炭、プラスチック粒子等の
生物付着媒体に硝化菌を固着せしめて利用する方法がそ
れぞれの特徴に合わせて適用化されている。
Conventional methods for biologically treating ammonia in water include the activated sludge method, as well as the method of attaching nitrifying bacteria to bioadhesive media such as rotating disks, honeymoon tubes, sand, anthracite, activated carbon, and plastic particles. The methods used are adapted to suit the characteristics of each.

この中で砂、アンスラサイト、活性炭、プラスチック粒
子等の粒状ろ材を用いる方法がろ材の洗浄が容易なため
、固定床、流動床方式のいずれも実用化されているが、
固定床方式はSS(浮遊固形物)も捕捉できるため比較
的普及率が高い。固定床方式の利用分野の一つとして、
魚の飼育水槽における魚の排泄物及び残餌等に起因する
アンモニアの硝化、SSの捕捉に利用されている。この
固定床方式の通水条件は従来5〜10m/hにおいて良
好な浄化が行われることが知られているが、この方法の
最大の問題点として充填層を洗浄したあと硝化活性が低
下し7〜10日間も硝化活性が回復しないことであった
Among these methods, methods using granular filter media such as sand, anthracite, activated carbon, and plastic particles are easier to clean, so both fixed bed and fluidized bed methods have been put into practical use.
The fixed bed method is relatively popular because it can also capture SS (suspended solids). One of the fields of application of the fixed bed method is
It is used to nitrify ammonia and capture SS caused by fish excrement and leftover food in fish breeding tanks. It is known that good purification can be achieved in the conventional fixed bed water flow conditions of 5 to 10 m/h, but the biggest problem with this method is that the nitrification activity decreases after cleaning the packed bed. The nitrification activity did not recover for ~10 days.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、前記の洗浄後の硝化活性の低下を防止し、活
性回復期間の短い固定床充填層を用いるアンモニア含有
液の処理方法を提供することを目的とする。
An object of the present invention is to provide a method for treating an ammonia-containing liquid using a fixed bed packed bed that prevents the above-mentioned decrease in nitrification activity after washing and has a short activity recovery period.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明では、微生物接触用
粒状ろ材を充填した固定床充填層に、アンモニア含有液
を通液して、鉄液に同伴される溶存酸素によって該アン
モニアを処理する方法において、該アンモニア含有液を
該充填層に空間速度207時以上で通液することを特徴
とするアンモニア含有液の処理方法としたものである。
In order to achieve the above object, the present invention provides a method of passing an ammonia-containing solution through a fixed bed packed bed filled with granular filter media for contact with microorganisms, and treating the ammonia with dissolved oxygen entrained in the iron solution. The method for treating an ammonia-containing liquid is characterized in that the ammonia-containing liquid is passed through the packed bed at a space velocity of 207 hours or more.

本発明における硝化方法では、固定床充填層は洗浄処理
を行った後での活性回復が短時間で行える。また、洗浄
処理を硝化率が30%以上に保って行うことにより、よ
り活性回復を早くできる。
In the nitrification method of the present invention, the activity of the fixed bed packed bed can be recovered in a short time after the cleaning treatment. Furthermore, by performing the cleaning treatment while maintaining the nitrification rate at 30% or more, the activity can be recovered more quickly.

また、固定床充填層に充填する微生物接触用粒状ろ材は
、粒径が0.5〜5.0 mmの範囲のものを用いるの
がよい。
Furthermore, the granular filter material for contacting microorganisms to be filled in the fixed bed packed bed preferably has a particle size in the range of 0.5 to 5.0 mm.

次に、本発明を図面を用いて詳細に説明する。Next, the present invention will be explained in detail using the drawings.

第1図は、本発明の一実施態様を示す工程図テする。第
1図において、アンモニア含有水1は、曝気槽2におい
てエアレーション8によって水中に酸素が溶存せしめら
れたのちに、砂利等の支持層4上に微生物接触用粒状ろ
材として、例えば活性炭3が充填された充填塔5に流入
し、充填層6を下降して行くに従って、活性炭に付着し
た硝化菌によって、アンモニアは亜硝酸あるいは更に硝
酸に酸化され、処理水7として排出される。アンモニア
含有水1の通水条件は5V=20/h以上とする。これ
はこの条件によって、充填層を洗浄後の硝化活性回復所
要日数を短縮することができるからである。SSの捕捉
、ろ材表面上の微生物の増殖による肥大によって、ろ過
抵抗が上昇した場合には、次の順序で洗浄を行えば良い
。水抜き一空気9洗浄−空気9と水10同時洗浄−水1
0洗浄。洗浄はそれぞれ約5〜15分間程度行えば良い
。ここで、11はガス抜き管、12は洗浄水排出管であ
る。
FIG. 1 is a process diagram showing one embodiment of the present invention. In FIG. 1, ammonia-containing water 1 has oxygen dissolved in it by aeration 8 in an aeration tank 2, and then activated carbon 3, for example, is filled on a support layer 4 such as gravel as a granular filter medium for contacting microorganisms. As the ammonia flows into the packed tower 5 and descends through the packed bed 6, it is oxidized to nitrous acid or further to nitric acid by nitrifying bacteria attached to the activated carbon, and is discharged as treated water 7. The water flow condition for the ammonia-containing water 1 is 5V=20/h or more. This is because under these conditions, the number of days required for recovery of nitrification activity after cleaning the packed bed can be shortened. If the filtration resistance increases due to the capture of SS or the growth of microorganisms on the surface of the filter medium, cleaning may be performed in the following order. Water removal - Air 9 cleaning - Air 9 and water 10 simultaneous cleaning - Water 1
0 wash. Each cleaning may be performed for approximately 5 to 15 minutes. Here, 11 is a gas vent pipe, and 12 is a washing water discharge pipe.

なお洗浄は前記以外に表面洗浄(表面洗浄には表層の洗
浄の他に、複層の場合には各層の界面洗浄も含む)と水
洗浄の組合せ、空気洗浄と水洗浄の組合せ、空気−水量
時洗浄と水洗浄の組合せでもよい。
In addition to the above, cleaning methods include combinations of surface cleaning (surface cleaning includes not only surface cleaning but also interfacial cleaning of each layer in the case of multiple layers) and water cleaning, combinations of air cleaning and water cleaning, and air-water volume. A combination of time washing and water washing may be used.

第2図は、本発明の他の実施態様を示す工程図である。FIG. 2 is a process diagram showing another embodiment of the present invention.

アンモニア含有水のアンモニア濃度が低く、処理水中の
アンモニア濃度が所定値以下の場合には第1図に示した
如く、一過性の処理を行えば良いが、アンモニア含有水
1のアンモニア濃度が高い場合には第2図に示した装置
を用いると良い。
If the ammonia concentration in the ammonia-containing water is low and the ammonia concentration in the treated water is below a predetermined value, temporary treatment may be performed as shown in Figure 1, but if the ammonia concentration in the ammonia-containing water 1 is high In this case, it is preferable to use the apparatus shown in FIG.

即ち、アンモニア含有水1は、処理水槽2′から流入す
る循環水15(処理水7の一部)とともに曝気槽2に注
入され、水中に酸素が溶解せしめられた後に充填塔5に
注入され、アンモニアが硝化される。処理水7は処理水
槽2′を経由して一部曝気槽2に循環され、再度アンモ
ニア含有水1と共にエアレーションされ、充填塔に導入
される。処理水槽2′からはアンモニア含有水1注大量
の分が放流14される。循環水量はアンモニア含有水1
のアンモニア濃度が所定値になるように設定すれば良い
That is, the ammonia-containing water 1 is injected into the aeration tank 2 together with the circulating water 15 (part of the treated water 7) flowing from the treated water tank 2', and after oxygen is dissolved in the water, it is injected into the packed tower 5. Ammonia is nitrified. Part of the treated water 7 is circulated through the treated water tank 2' to the aeration tank 2, where it is again aerated together with the ammonia-containing water 1 and introduced into the packed tower. A large amount of ammonia-containing water is discharged 14 from the treated water tank 2'. The amount of circulating water is ammonia-containing water 1
The ammonia concentration may be set to a predetermined value.

例エバ、アンモニア含有水1のアンモニア濃度が5 p
pmの場合、アンモニア含有水量の4倍の循環水15を
曝気槽2に導入することによって、曝気槽2のアンモニ
ア濃度を1 pprnにすることができる。本発明方法
はDO(溶存酸素)によってアンモニアを酸化するもの
であるから、空気によって曝気する場合(Doとして8
 ppm程度になる)には、充填層で充分の硝化を達成
するために、充填層流入水のアンモニア性窒素濃度を1
.5 ppm程度以下にしなければならない。
Example Eva, the ammonia concentration of ammonia-containing water 1 is 5 p
pm, the ammonia concentration in the aeration tank 2 can be set to 1 pprn by introducing into the aeration tank 2 circulating water 15 that is four times the amount of ammonia-containing water. Since the method of the present invention oxidizes ammonia using DO (dissolved oxygen), when aerating with air (Do is 8
ppm), in order to achieve sufficient nitrification in the packed bed, the ammonia nitrogen concentration of the inflow water to the packed bed should be reduced by 1
.. Must be around 5 ppm or less.

次に第3図について説明する。Next, FIG. 3 will be explained.

第2図で示した装置の工程図はアンモニアを排泄するよ
うな水棲生物の飼育にも利用することができる。これを
第3図に示す。第3図の魚飼育水槽16は、第2図の処
理水槽2′に相当する部分であるが、魚から排泄される
アンモニア、給餌残物から溶は出すアンモニア、SS、
BOD成分は曝気槽2を経由してろ通塔5に導入されア
ンモニアの硝化、SSの捕捉、BOD物質の酸化分解が
行われた後、処理水として魚飼青水槽16に循環される
。これによって魚に有害なアンモニアは、飼育水槽16
において所定濃度以下に抑えることができる。
The process diagram of the apparatus shown in FIG. 2 can also be used for breeding aquatic organisms that excrete ammonia. This is shown in FIG. The fish breeding tank 16 in FIG. 3 corresponds to the treatment tank 2' in FIG.
The BOD components are introduced into the filtration tower 5 via the aeration tank 2, where ammonia is nitrified, SS is captured, and BOD substances are oxidized and decomposed, and then circulated to the fish tank 16 as treated water. This removes ammonia, which is harmful to fish, from the aquarium 16.
can be suppressed to below a predetermined concentration.

〔作用〕[Effect]

本発明者等は洗浄後の硝化活性の低下を防止し、活性回
復期間を短縮することを目的として、従来の固定床の充
填塔を用い、試験、検討を行ってきた。その結果、高い
SVによる運転を行うことによって、充填層を洗浄した
後の硝化活性の低下率が減少し、かつ硝化活性回復のた
めの所要日数も短縮できることを見いだした。そしてそ
れが従来のろ過の操作因子であるLV(ろ過速度m/h
)ではなくSV(空間速度/h)に関係する事がわかっ
た。なおLV、SVは次式で示される。
The present inventors have conducted tests and studies using a conventional fixed-bed packed column with the aim of preventing a decrease in nitrification activity after washing and shortening the activity recovery period. As a result, it has been found that by operating at a high SV, the rate of decrease in nitrification activity after cleaning the packed bed can be reduced, and the number of days required for recovery of nitrification activity can also be shortened. And that is the operating factor of conventional filtration, LV (filtration rate m/h
) but was found to be related to SV (space velocity/h). Note that LV and SV are expressed by the following equations.

また、第2の要因として洗浄方法にも依存することがわ
かった。つまり、洗浄を強くし過ぎると、硝化率の回復
がおそくなり、また、洗浄か弱すぎると、処理間隔が短
かくなり、効率的ではない。したがって、適切な洗浄方
法を用いなければならない。
It was also found that the second factor is that it depends on the cleaning method. In other words, if the cleaning is too strong, recovery of the nitrification rate will be slow, and if the cleaning is too weak, the treatment interval will be shortened, which is not efficient. Therefore, appropriate cleaning methods must be used.

洗浄方法として各種検討した結果、表面洗浄と水洗浄と
の組合せや空気と水を用いる方法が有効であるが、いず
れにせよ洗浄時間が洗浄後の硝化率の回復に大きな影響
を与え、洗浄直後において、硝化率が30%以上であれ
ば硝化活性が数日間で回復することがわかった。
After examining various cleaning methods, we found that a combination of surface cleaning and water cleaning or a method using air and water is effective, but in any case, the cleaning time has a large effect on the recovery of the nitrification rate after cleaning, and It was found that nitrification activity recovered within several days if the nitrification rate was 30% or more.

なお、ここでいう硝化率とは、前記したように[除去N
Hs−N ppm/流入Nf1.−N x 100Jで
示されるものである。例えば、流入NH3−Nが1、0
 ppmで、処理水NH,−Nが0.7 ppmの場合
には、除去NH,l−Nは0.3 (=1.0−0.7
) ppmとなり、除去率は0.3/1.0xloO=
30%と計算される。
Note that the nitrification rate here refers to [removed N
Hs-N ppm/inflow Nf1. -N x 100J. For example, the inflow NH3-N is 1,0
ppm, and if the treated water NH,-N is 0.7 ppm, the removed NH,l-N is 0.3 (=1.0-0.7
) ppm, and the removal rate is 0.3/1.0xloO=
It is calculated as 30%.

したがって、洗浄時間を調節することによって洗浄直後
の硝化率を30%以上に維持すれば良いことになる。
Therefore, it is sufficient to maintain the nitrification rate immediately after cleaning at 30% or more by adjusting the cleaning time.

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に説明するが、本発
明はこれらの実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

実施例1 第1図の装置の充填塔に2〜5Mの粒状活性炭を充填し
、原水(アンモニア性窒素L Oppm 。
Example 1 A packed tower of the apparatus shown in FIG. 1 was filled with 2 to 5 M granular activated carbon, and raw water (ammoniac nitrogen L Oppm ) was packed.

BOD  2ppm 、  SS  3ppm )を曝
気槽(2001)で曝気後、直径の異なる充填塔に通水
した。
BOD 2 ppm, SS 3 ppm) was aerated in an aeration tank (2001) and then passed through packed towers with different diameters.

通水条件を第1表に示す。Water flow conditions are shown in Table 1.

第 表 第2表に、第1表の各実験の通水開始から50〜60日
後の処理水のN)13−N濃度、及び、60日後に行っ
た洗浄処理の空気洗浄(5分)−空気・水洗浄(10秒
)−水洗浄(5分)を行った後、硝化率(除去NH3−
N ppm /流入NL−NX1.00)が90%回復
するのに要した日数を測定した結果を示す。
Table 2 shows the N) 13-N concentration of the treated water 50 to 60 days after the start of water flow in each experiment in Table 1, and the air cleaning (5 minutes) of the cleaning treatment performed 60 days later. After performing air/water cleaning (10 seconds) and water cleaning (5 minutes), the nitrification rate (removed NH3-
The results of measuring the number of days required for 90% recovery of N ppm/inflow NL-NX1.00) are shown.

硝化率は、例えば流入NH,−N濃度が1.0 ppf
flで、ろ過水NH3−N ?11度が0.1 ppm
の場合には、除去NH!−NはQ、 9 ppmとなり
、硝化率は0.9/1.0xlOO=90%と計算され
る。
The nitrification rate is, for example, when the inflow NH, -N concentration is 1.0 ppf
In fl, filtered water NH3-N? 11 degrees is 0.1 ppm
In the case of , the removal NH! -N is Q, 9 ppm, and the nitrification rate is calculated as 0.9/1.0xlOO=90%.

第2表 また硝化率の回復過程を第4図に示す。第1表、第2表
及び第4図から洗浄後硝化率が90%になるまでに要す
る日数はSvの大きい実験はど早<5V20以上では大
幅に短縮されることがわかる。
Table 2 and Figure 4 show the recovery process of the nitrification rate. From Tables 1, 2, and Figure 4, it can be seen that the number of days required for the nitrification rate to reach 90% after cleaning is significantly shortened in experiments with large Sv <5V20 or more.

実施例2 第2図に示す装置を用いてNL−N 5 ppm 、 
SS  10ppm 、 BOD  12ppmの原水
を硝化処理した。原水を曝気槽(1001>に1.0m
3/日注入し、循環液とともに0.5〜1. Ommの
珪砂を充填した充填塔に導入した。充填塔流入水量、ろ
過面積、充填高等を第3表に示す。
Example 2 Using the apparatus shown in FIG. 2, NL-N 5 ppm,
Raw water with SS of 10 ppm and BOD of 12 ppm was nitrified. Transfer raw water to an aeration tank (1001> 1.0 m
3/day infusion, 0.5-1. It was introduced into a packed tower filled with 0 mm of silica sand. Table 3 shows the amount of water flowing into the packed tower, the filtration area, and the filling height.

第  3  表 通水40日後の5日間の処理水のNH,−N SSS、
BODI!度の最小値、最大値、及び46日目洗浄後の
硝化後の硝化率の回復結果を第4表に示す。
Table 3 NH, -N SSS of treated water for 5 days after 40 days of water flow,
BODI! Table 4 shows the minimum value and maximum value of the nitrification rate, and the recovery results of the nitrification rate after nitrification after cleaning on the 46th day.

第 表 実施例3 次に、洗浄条件についての実験を行った。No. table Example 3 Next, an experiment was conducted regarding cleaning conditions.

実施例1の実験胆■、■において、空気・水量時洗浄時
間を、5.10.30秒の3種類の条件で洗浄したとこ
ろ第5表の結果が得られた。
In Experiments ① and ② of Example 1, the results shown in Table 5 were obtained when cleaning was carried out under three conditions: 5, 10, and 30 seconds for the cleaning time when air and water were used.

第 表 空洗速度、水洗速度については粒状ろ材を最も効率的に
洗浄する速度が良く、ろ材の種類や粒径によって異なる
ものであるが、−船釣には、空洗速度0.2〜1.0 
Nm’/m’−分、水洗速度0.3〜1  m’/m”
・分程度である。
Regarding the air washing speed and water washing speed in Table 1, the speed that most efficiently washes granular filter media is best, and it varies depending on the type and particle size of the filter media. .0
Nm'/m'-min, water washing rate 0.3-1 m'/m"
- About a minute.

また、洗浄直後の硝化率を所定値に保つ方法として、空
気・水量時洗浄の他に、表面洗浄、空気洗浄、水洗浄の
時間を調整することも有効であり、洗浄時間を短かくす
るほど硝化率を高くすることができるが、いたずらに短
縮すると洗浄頻度が増加するので、処理対象液の種類に
対応して適正な洗浄時間を決定するのがよい。
In addition, as a method to maintain the nitrification rate at a predetermined value immediately after cleaning, it is also effective to adjust the times of surface cleaning, air cleaning, and water cleaning, in addition to cleaning with air and water volume. Although the nitrification rate can be increased, if it is shortened unnecessarily, the cleaning frequency will increase, so it is better to determine an appropriate cleaning time depending on the type of liquid to be treated.

〔発明の効果〕〔Effect of the invention〕

本発明によると、アンモニア含有液の硝化において、微
生物接触用粒状ろ材を充填した固定床充填層に、アンモ
ニア含有液を高い空間速度(SV)で通液することによ
り、充填層を洗浄した後の硝化活性を極めて短時間で回
復することができる。
According to the present invention, in the nitrification of an ammonia-containing liquid, by passing the ammonia-containing liquid at a high space velocity (SV) through a fixed bed packed bed filled with granular filter media for contact with microorganisms, the packed bed is cleaned. Nitrification activity can be restored in an extremely short time.

特に、洗浄方法として、空気・水量時洗浄方法を用いて
短時間で硝化率を30%以上に維持して行うことにより
、より効果を発揮することができる。
In particular, the cleaning method can be more effective by using an air/water cleaning method to maintain the nitrification rate at 30% or more in a short period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施態様を示す工程図、第2図は
、本発明の他の実施態様を示す工程図、第3図は、第2
図の変形例を示す工程図、第4図は、硝化率の回復過程
を示すグラフである。
Fig. 1 is a process diagram showing one embodiment of the present invention, Fig. 2 is a process diagram showing another embodiment of the present invention, and Fig. 3 is a process diagram showing a second embodiment of the present invention.
FIG. 4, which is a process diagram showing a modification of the figure, is a graph showing the recovery process of the nitrification rate.

Claims (1)

【特許請求の範囲】 1、微生物接触用粒状ろ材を充填した固定床充填層に、
アンモニア含有液を通液して、該液に同伴される溶存酸
素によって該アンモニアを処理する方法において、該ア
ンモニア含有液を該充填層に空間速度20/時以上で通
液することを特徴とするアンモニア含有液の処理方法。 2、前記固定床充填層の洗浄処理は、硝化率が30%以
上になるように行うことを特徴とする請求項1記載のア
ンモニア含有液の処理方法。
[Claims] 1. A fixed bed packed bed filled with granular filter media for contact with microorganisms,
A method of passing an ammonia-containing liquid through the liquid and treating the ammonia with dissolved oxygen entrained in the liquid, characterized by passing the ammonia-containing liquid through the packed bed at a space velocity of 20/hour or more. Method for treating ammonia-containing liquid. 2. The method for treating an ammonia-containing liquid according to claim 1, wherein the cleaning treatment of the fixed bed packed bed is performed so that the nitrification rate is 30% or more.
JP2260610A 1990-10-01 1990-10-01 Ammonia-containing liquid treatment method Pending JPH04141297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2260610A JPH04141297A (en) 1990-10-01 1990-10-01 Ammonia-containing liquid treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2260610A JPH04141297A (en) 1990-10-01 1990-10-01 Ammonia-containing liquid treatment method

Publications (1)

Publication Number Publication Date
JPH04141297A true JPH04141297A (en) 1992-05-14

Family

ID=17350326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2260610A Pending JPH04141297A (en) 1990-10-01 1990-10-01 Ammonia-containing liquid treatment method

Country Status (1)

Country Link
JP (1) JPH04141297A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020068712A (en) * 2001-02-22 2002-08-28 조웅현 A waste water treatment plant
KR100403288B1 (en) * 2000-10-18 2003-10-30 대한민국 A treatment method of wastewater with low concentration of ammonia by the type of non-aeration nitrification
KR100444333B1 (en) * 2000-12-19 2004-08-16 주식회사 효성 Method for Eliminating Nitrogen of Ammonia by use of Nitrification Reactor
JP2011020059A (en) * 2009-07-16 2011-02-03 Kanaiwa:Kk Water treatment apparatus and water treatment method
CN106268639A (en) * 2016-08-25 2017-01-04 浙江沁园水处理科技有限公司 A kind of preparation method of the nano-MgO activated carbon of Adsorption of Heavy Metals
CN107417913A (en) * 2017-08-22 2017-12-01 广东工业大学 A kind of method of heavy metal in organic microporous polymer of nanometer and absorption drinking water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403288B1 (en) * 2000-10-18 2003-10-30 대한민국 A treatment method of wastewater with low concentration of ammonia by the type of non-aeration nitrification
KR100444333B1 (en) * 2000-12-19 2004-08-16 주식회사 효성 Method for Eliminating Nitrogen of Ammonia by use of Nitrification Reactor
KR20020068712A (en) * 2001-02-22 2002-08-28 조웅현 A waste water treatment plant
JP2011020059A (en) * 2009-07-16 2011-02-03 Kanaiwa:Kk Water treatment apparatus and water treatment method
CN106268639A (en) * 2016-08-25 2017-01-04 浙江沁园水处理科技有限公司 A kind of preparation method of the nano-MgO activated carbon of Adsorption of Heavy Metals
CN107417913A (en) * 2017-08-22 2017-12-01 广东工业大学 A kind of method of heavy metal in organic microporous polymer of nanometer and absorption drinking water
CN107417913B (en) * 2017-08-22 2020-04-14 广东工业大学 Nano organic microporous polymer and method for adsorbing heavy metals in drinking water

Similar Documents

Publication Publication Date Title
JP3665838B2 (en) Fish farming equipment
JPH04141297A (en) Ammonia-containing liquid treatment method
JP3391057B2 (en) Biological nitrogen removal equipment
JP2584386B2 (en) Biological filtration method and device
JP3203291B2 (en) Removal method of ammonia nitrogen from raw water for tap water
JPH0461993A (en) Method and apparatus for biological nitration and denitrification of organic polluted water
JP4838872B2 (en) Water treatment apparatus and water treatment method
JP2684495B2 (en) Advanced purification equipment for organic wastewater
JPH0596291A (en) Water filtering method and apparatus therefor
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
JPH08141587A (en) Method and apparatus for treating waste water
JP2882045B2 (en) Backwash control method for downflow type biological activated carbon treatment tower
JP4403704B2 (en) Biofilm filtration apparatus and treatment method
JP2609181B2 (en) Biological nitrification denitrification method and apparatus for organic wastewater
JPH0338289A (en) Biologically activated carbon water-treatment apparatus
JPS62225294A (en) Biological denitrification device
JPS5935679B2 (en) Advanced treatment method for organic wastewater
JP2565429B2 (en) Method and apparatus for biological nitrification denitrification of organic wastewater
JPH07171587A (en) Method and apparatus for treating organic sewage
JP2005177601A (en) Method and apparatus for cleaning water
JP3721592B2 (en) Biological filtration method
JP2565453B2 (en) Upflow biological nitrification denitrification method and apparatus
JPS626878B2 (en)
JPH0884998A (en) Organic sewage treatment device
JPH05138185A (en) Treatment of organic sewage and equipment