JP2882045B2 - Backwash control method for downflow type biological activated carbon treatment tower - Google Patents

Backwash control method for downflow type biological activated carbon treatment tower

Info

Publication number
JP2882045B2
JP2882045B2 JP2331450A JP33145090A JP2882045B2 JP 2882045 B2 JP2882045 B2 JP 2882045B2 JP 2331450 A JP2331450 A JP 2331450A JP 33145090 A JP33145090 A JP 33145090A JP 2882045 B2 JP2882045 B2 JP 2882045B2
Authority
JP
Japan
Prior art keywords
activated carbon
backwashing
water
treatment
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2331450A
Other languages
Japanese (ja)
Other versions
JPH04197484A (en
Inventor
昌男 藤生
弘志 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2331450A priority Critical patent/JP2882045B2/en
Publication of JPH04197484A publication Critical patent/JPH04197484A/en
Application granted granted Critical
Publication of JP2882045B2 publication Critical patent/JP2882045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は、高度浄水処理における下向式生物活性炭処
理塔の活性炭の間隙の目詰まりを除去するための逆洗制
御方法に関する。
The present invention relates to a backwashing control method for removing clogging of a gap of activated carbon in a downflow type biological activated carbon treatment tower in advanced water purification treatment.

B.発明の概要 本発明は、高度浄水施設の活性炭処理塔を用いた下向
流式生物活性炭処理において、活性炭処理中の活性炭処
理塔内水位が所定レベルに達したことをレベル計により
検出して自動的に逆洗を開始し、逆洗時の活性炭の膨張
レベルを界面計により検出してこの膨張レベルを一定に
保持するように逆洗用処理水流速を自動制御し、逆洗を
効率よく自動的に行いうるようにしたものである。
B. Summary of the Invention In the present invention, in a downflow type biological activated carbon treatment using an activated carbon treatment tower of an advanced water purification facility, the level meter detects that the water level in the activated carbon treatment tower during the activated carbon treatment has reached a predetermined level. Automatically starts backwashing, detects the expansion level of activated carbon at the time of backwashing with an interface meter, and automatically controls the flow rate of the backwashing treatment water to maintain this expansion level at a constant level. It is often done automatically.

C.従来の技術 現在、一般的に行われている浄水プロセスを第2図に
ついて説明する。河川,湖沼から取水した原水が着水井
Aに入る。次に、原水中の濁質成分(砂,粘土,藻類糖
の有機物等)を除去する目的で凝集剤を注入・混合する
混和池Bをへてフロック形成池Cに入る。フロック形成
池Cでは、攪拌力と滞留時間により徐々にフロックを成
長させる。最大成長したフロックは沈澱池Dに入り分離
され、更に沈澱池Dで除去できない微フロックを濾過池
Eで除去する。
C. Prior Art A water purification process that is currently generally performed will be described with reference to FIG. Raw water taken from rivers and lakes enters landing well A. Next, the mixture enters the floc formation pond C through the mixing pond B in which the coagulant is injected and mixed for the purpose of removing the turbid components (sand, clay, organic substances of algal sugar, etc.) in the raw water. In the floc formation pond C, the floc is gradually grown by the stirring force and the residence time. The floc which has grown to the maximum enters the sedimentation basin D and is separated. Further, the fine floc which cannot be removed by the sedimentation basin D is removed by the filtration basin E.

このプロセスで殺藻処理,鉄,マンガン,色度分解・
除去を目的とした塩素処理が組み込まれている。特に、
大都市近郊においては、河川・湖沼の汚濁が著しく、ア
ンモニアの含有率が高く、更に発ガン性物質のTHM(ト
リハロメタン)の前駆物質であるフミン質を含む色度成
分も高い。高含有の両者に塩素処理を行った場合、アン
モニアと反応してクロラミンを生成し、必要以上の塩素
を消費してしまう。その結果、塩素注入率が高くなりTH
M生成能(THMFP)が増大する。この様な背景から近年で
は、一般的な浄水プロセスに上述した物質の除去目的と
して高度処理を組み込む方式が行われる様になってき
た。
In this process, algicidal treatment, iron, manganese, chromaticity decomposition,
Chlorination for removal is incorporated. In particular,
In the suburbs of large cities, rivers and lakes are extremely polluted, have a high ammonia content, and have high chromaticity components including humic substances, which are precursors to the carcinogenic substance THM (trihalomethane). When chlorination is performed on both of the high contents, they react with ammonia to produce chloramine and consume more chlorine than necessary. As a result, the chlorine injection rate increases and TH
Increases the ability to produce M (THMFP). Against this background, in recent years, a method of incorporating advanced treatment into a general water purification process for the purpose of removing the above-mentioned substances has been used.

高度処理には、塩素処理の代替としてのオゾン単独処
理と健康に有害な微量物質を除去するための活性炭単独
処理がある。更に、この両者の特徴を活かした組合せ処
理もある。Fは両者の組合せ処理を行う高度水処理シス
テムで、活性炭処理塔Gとオゾン接触塔から構成されて
いる。しかしながら、アンモニアに関しては両者の処理
を行ってもほとんど除去できなく、除去するためには生
物処理(主に硝化菌等)を行わなければならない。現在
行われている生物処理は、取水した原水に空気を送り曝
気処理(好気処理)によって微生物を繁殖させ、微生物
の代謝能によってアンモニアを除去している。しかしな
がら、この方式では浄水場の施設に余裕があれば良好な
方式であるが、施設に制限がある場合、この方式を採用
できない。その結果、最良の手段として考えられた方式
が生物活性炭処理であった。
Advanced treatments include ozone treatment alone as an alternative to chlorination and activated carbon treatment to remove trace substances harmful to health. Further, there is a combination process utilizing the characteristics of both. F is an advanced water treatment system that performs a combined treatment of the two, and is composed of an activated carbon treatment tower G and an ozone contact tower. However, ammonia can hardly be removed even when both treatments are performed, and biological treatment (mainly nitrifying bacteria) must be performed to remove ammonia. In the biological treatment currently being performed, air is sent to raw water that has been withdrawn, microorganisms are propagated by aeration treatment (aerobic treatment), and ammonia is removed by the metabolic ability of microorganisms. However, this method is a good method if there is room in the facilities of the water purification plant, but this method cannot be adopted if the facilities are limited. As a result, the method considered as the best means was biological activated carbon treatment.

生物活性炭処理は、高度処理プロセスにおける活性炭
処理の変法で活性炭表面に微生物を繁殖させ、流入水中
のアンモニアを除去し、更に微量有機物も吸着・除去で
きる。この方法は、未だ確立されていない。即ち活性炭
の吸着性(破過:目的対象物質の除去しきい値をこえた
時の通水総量または一定通水量における通水時間)には
限度があり、いかに高効率で長寿命を維持できるかが課
題となっている。
Biological activated carbon treatment is a modification of the activated carbon treatment in the advanced treatment process, in which microorganisms are propagated on the activated carbon surface, ammonia in the inflow water is removed, and trace organic substances can be adsorbed and removed. This method has not been established yet. In other words, there is a limit to the adsorptivity of activated carbon (breakthrough: total water flow when the target substance removal threshold is exceeded or water flow time at a constant water flow), and how highly efficient and long life can be maintained. Is an issue.

この生物活性炭処理法としては、大別すると処理目的
水を活性炭処理塔の上方から通水する下向流式固定床と
下方から通水する上向流式流動床とがある。それぞれの
特徴としては、前者が目的対象物質の除去効率が高い反
面、SS成分等によるろ床の閉塞が起こりやすく洗浄周期
が短い。一方、後者は目的対象物質の除去効率が前者と
比較して低い反面、SS成分等によるろ床の閉塞が起きに
くく、両者には一長一短がある。ろ床の閉塞では、充填
した活性炭の間隙が目詰まりを起こして水頭が上昇し、
通水能力が低下する。
This biological activated carbon treatment method is roughly classified into a downward fixed bed through which the target water is passed from above the activated carbon treatment tower and an upward flow bed through which water is passed from below. As for each feature, the former has high removal efficiency of the target substance, but the filter bed is easily clogged by SS components and the like, and the cleaning cycle is short. On the other hand, the latter has lower removal efficiency of the target substance than the former, but is less likely to cause clogging of the filter bed due to SS components and the like, and both have advantages and disadvantages. When the filter bed is clogged, the gap between the filled activated carbons becomes clogged and the head rises,
Water flow capacity is reduced.

特に活性炭処理に必要不可欠となる逆洗プロセスの制
御方法は、活性炭処理塔の運転管理上重要な技術であ
る。
In particular, the control method of the backwash process, which is indispensable for the activated carbon treatment, is an important technique for operation management of the activated carbon treatment tower.

高度浄水施設において、下向流式生物活性炭処理を用
いる場合、通水の経過とともに活性炭層に蓄積される懸
濁物質及び、活性炭粒子表面に付着する生物膜などによ
り流れの抵抗がしだいに増加する。これは、活性炭充填
部上方の水位の上昇として確認される。このように損失
水頭が大きくなると、通水しにくくなるため、活性炭充
填層を洗浄し、流れの抵抗を減少させる逆洗操作が必要
になる。逆洗の頻度は、活性炭処理水量,処理水中の懸
濁物質等の性質,濃度,活性炭粒子の大きさなどに依存
する。
When using a downflow type biological activated carbon treatment in an advanced water purification facility, the flow resistance gradually increases due to suspended substances accumulated in the activated carbon layer and the biofilm attached to the activated carbon particle surface as water flows. . This is confirmed as a rise in the water level above the activated carbon filling section. When the head loss becomes large in this way, it becomes difficult to pass water, so that a backwashing operation for washing the activated carbon packed bed and reducing flow resistance is required. The frequency of backwashing depends on the amount of activated carbon treated water, the nature of suspended substances in the treated water, the concentration, the size of activated carbon particles, and the like.

第3図は従来の下向流式活性炭処理に逆洗洗浄方式と
して水洗浄を用いた活性炭処理装置の説明図である。第
3図において、通常の処理フローは処理塔流入水14を活
性炭処理塔1の上部より流入させて、活性炭支持部3に
より保持された固定層である活性炭充填部2を流下させ
ることにより、有機物質等の除去物質を吸着させて水質
を浄化させる。この活性炭充填部2を通過した処理水は
処理水集水部13に流入し、処理塔処理水16として流出す
る。活性水処理塔1への流入を継続すると、活性炭充填
部2への処理塔流入水14の中の有機物等の吸着等によ
り、流下抵抗が増加し、活性炭充填部2上部の水位が上
昇する。この水位が設定水位レベルに達したことを維持
管理者が確認し、逆洗操作をシステム制御部12により行
わせる。
FIG. 3 is an explanatory view of an activated carbon treatment apparatus using water washing as a backwash washing method in a conventional downflow activated carbon treatment. In FIG. 3, the normal treatment flow is as follows. The treatment tower inflow water 14 flows in from the upper part of the activated carbon treatment tower 1 and the activated carbon filling part 2 which is a fixed bed held by the activated carbon support part 3 flows down. A water substance is purified by adsorbing a substance such as a substance to be removed. The treated water that has passed through the activated carbon filling section 2 flows into the treated water collecting section 13 and flows out as treated water 16 in the treatment tower. When the flow into the activated water treatment tower 1 is continued, the flow resistance is increased due to the adsorption of organic substances and the like in the treatment tower inflow water 14 into the activated carbon filling section 2, and the water level above the activated carbon filling section 2 rises. The maintenance manager confirms that the water level has reached the set water level, and causes the system control unit 12 to perform a backwash operation.

この逆洗時の動作について次に説明する。 The operation at the time of the backwash will be described below.

逆洗開始とともに、流入水電動弁8と処理水電動弁9
を閉じるとともに、逆洗ポンプ10を運転し、活性炭処理
塔1の下方より逆洗用の処理塔処理水15を流入させるこ
とにより、水流で活性炭充填部2を膨張させ活性炭粒子
を流動化させて、活性炭充填部2の洗浄を行う。洗浄排
水は活性炭処理塔1上部から逆洗時排水18として排出さ
れる。この際、逆洗時の逆洗洗浄速度は使用する活性炭
によって異なり、通常、活性炭充填部2の膨張の程度、
すなわち、層膨張率を30〜40%にして行われる。例え
ば、水温20℃,層膨張率40%とすれば逆流洗浄速度は、
平均粒径1.5〜1.7mmの石炭系粒状活性炭の場合約50m/hr
となる。
At the start of backwashing, the inflow water electric valve 8 and the treated water electric valve 9
, The backwash pump 10 is operated, and the treated water 15 for backwashing flows into the activated carbon treating tower 1 from below the activated carbon treating tower 1, thereby expanding the activated carbon filling unit 2 with the water flow to fluidize the activated carbon particles. Then, the activated carbon filling unit 2 is washed. The washing wastewater is discharged from the upper part of the activated carbon treatment tower 1 as wastewater 18 during backwashing. At this time, the backwashing speed at the time of backwashing differs depending on the activated carbon to be used.
That is, the expansion is performed at a layer expansion rate of 30 to 40%. For example, if the water temperature is 20 ° C and the layer expansion rate is 40%, the backwashing speed is
Approximately 50 m / hr for coal-based granular activated carbon with an average particle size of 1.5 to 1.7 mm
Becomes

逆洗時には、逆流洗浄速度をシステム制御部12に、あ
らかじめ設定しておき、逆洗水流量測定部17と逆洗ポン
プ制御部11とにより、この設定値になるように逆洗ポン
プ制御部11が逆洗ポンプ10の電動機回転数を制御する。
At the time of backwashing, the backwashing speed is set in the system control unit 12 in advance, and the backwashing pump control unit 11 is controlled by the backwashing water flow rate measuring unit 17 and the backwashing pump control unit 11 so as to have this set value. Controls the motor speed of the backwash pump 10.

D.発明が解決しようとする課題 しかしながら、従来の活性炭処理システムでは、以下
のような問題点がある。
D. Problems to be Solved by the Invention However, the conventional activated carbon treatment system has the following problems.

(1)逆洗の時期を、維持管理者が確認する必要があ
り、注意を怠ると通水不能になる可能性がある。また、
損失水頭が上限値に達するかどうかにかかわらず定期的
に逆洗を行う場合でも、通常運転時に損失水頭が上限値
を越えないようにチェックが必要になる。
(1) It is necessary for the maintenance manager to confirm the time of backwashing, and if care is not taken, water may not be able to pass. Also,
Even when backwashing is performed periodically regardless of whether the head loss reaches the upper limit, it is necessary to check that the head loss does not exceed the upper limit during normal operation.

(2)逆洗洗浄時に逆流洗浄速度を設定値に調節するだ
けでは、層膨張率を30〜40%に設定できない場合があ
る。これは、層膨張率が逆流洗浄速度のみではなく水温
の影響も受けるからである。
(2) In some cases, the layer expansion rate cannot be set to 30 to 40% simply by adjusting the backwashing speed to the set value at the time of backwashing. This is because the layer expansion coefficient is affected not only by the backwashing speed but also by the water temperature.

(第4図参照,文献名:高度浄水施設技術資料(活性炭
処理施設)昭和63年3月,日本水道協会) また、層膨張率を大きくすると、逆洗による除去効果
以上に洗浄水を必要とするため、効率が悪く、逆に層膨
張率を小さくしすぎると、逆洗の効果が得られなくな
る。
(Refer to Fig. 4, Document name: Technical data of advanced water purification facility (Activated carbon treatment facility) March 1988, Japan Water Works Association) Also, if the bed expansion rate is increased, washing water is required more than the removal effect by backwashing. Therefore, if the efficiency is poor, and if the coefficient of layer expansion is too small, the effect of backwashing cannot be obtained.

本発明は従来の技術の有するこのような問題点に鑑み
てなされたものであり、その目的とするところは、処理
塔の活性炭の間隙が目詰まると自動的に逆洗を開始する
と共に、所定の層膨張率を維持するように逆洗流速を自
動調節し、効率のよい逆洗が自動的に行いうるようにし
た下向流式生物活性炭処理塔の逆洗制御方法を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to automatically start backwashing when a gap in activated carbon of a treatment tower is clogged. The present invention is to provide a backwashing control method for a downflow type bioactive carbon treatment tower in which a backwash flow rate is automatically adjusted so as to maintain a bed expansion coefficient, and an efficient backwash can be automatically performed. .

E.課題を解決するための手段 上記目的を達成するために、本発明における下向流式
生物活性炭処理塔の逆洗制御方法は、高度浄水施設の活
性炭処理塔を用いた下向流式生物活性炭処理において、
活性炭処理中の活性炭処理塔内水位が所定レベルに達し
たことをレベル計により検出して自動的に逆洗を開始
し、逆洗時の活性炭の膨張レベルを界面計により検出し
てこの膨張レベルを一定に保持するように逆洗用処理水
流速を自動制御するようにしたものである。
E. Means for Solving the Problems To achieve the above object, a method for controlling backwashing of a downflow type biological activated carbon treatment tower according to the present invention comprises a downflow type biological activated carbon treatment tower using an activated carbon treatment tower of an advanced water purification facility. In activated carbon treatment,
The level meter detects that the water level in the activated carbon treatment tower has reached a predetermined level during activated carbon treatment, and automatically starts backwashing. The expansion level of activated carbon during backwashing is detected by an interface meter and this expansion level is detected. The backwashing treatment water flow rate is automatically controlled so as to keep the water constant.

F.作用 活性炭処理塔内に充填されている活性炭の間隙が目詰
まりすると、処理塔内を通る流入水の流れが悪くなり、
水位が上昇するので、この水位をレベル計により検出す
ることにより自動的に逆洗用処理水を流し逆洗を開始す
る。逆洗が始まると活性炭充填部が膨張する。この膨張
レベルを検出してこの膨張レベルが一定となるように逆
洗用処理水流量を制御すれば、一定の効率で逆洗を行う
ことができる。しかして、界面計のレベル検出位置を適
当に設定することにより効率のよい逆洗を自動的に行う
ことができる。
F. Action If the gap of the activated carbon filled in the activated carbon treatment tower is clogged, the flow of inflow water through the treatment tower becomes worse,
Since the water level rises, by detecting this water level with a level meter, the backwashing treatment water is automatically flowed to start backwashing. When backwashing starts, the activated carbon filling section expands. By detecting the expansion level and controlling the flow rate of the backwashing treatment water so that the expansion level is constant, the backwash can be performed with a constant efficiency. Thus, efficient backwashing can be automatically performed by appropriately setting the level detection position of the interface meter.

G.実施例 本発明の実施例について第1図を参照して説明する。G. Embodiment An embodiment of the present invention will be described with reference to FIG.

第1図は活性炭処理装置の構成図を示す。なお、前記
第3図に示したものと同一構成部分は、同一符号を付し
てその重複する説明を省略する。
FIG. 1 shows a configuration diagram of an activated carbon treatment device. The same components as those shown in FIG. 3 are denoted by the same reference numerals, and the description thereof will not be repeated.

第1図において、4は活性炭処理塔1の上部の逆洗時
水位の設定位置に設けたレベル計検出部、5は同レベル
計変換器、6は同塔1の上部の逆洗時流動化する活性炭
界面設定位置に設けた界面計検出部、7は同界面計変換
器で、変換器5及び7の出力はシステム制御部12に引き
込まれている。次にこの活性炭処理装置の動作について
説明する。
In FIG. 1, reference numeral 4 denotes a level meter detecting portion provided at a position for setting a water level at the time of backwashing on the upper part of the activated carbon treatment tower 1; 5, a level meter converter; The interface meter detecting unit 7 provided at the activated carbon interface setting position is a converter for the interface meter, and the outputs of the converters 5 and 7 are drawn into the system control unit 12. Next, the operation of the activated carbon processing apparatus will be described.

流入水電動弁8と処理水電動弁を開けて処理塔流入水
14を活性炭処理塔1の上部より流入させ、活性炭支持部
3により保持されている活性炭充填部2を流下させるこ
とにより、有機物質等の除去物質を吸着等によって、水
質を浄化させる。この活性炭充填部2を通過した処理水
は、処理水集水部13に流入し、処理塔処理水16として流
出する。活性炭処理塔1への処理塔流入水14の供給の継
過とともに活性炭充填部2への懸濁物質の蓄積及び吸着
量が増加し、活性炭充填部2での圧力損失も増加し、こ
れが活性炭充填部2上部の水位上昇としてあらわれる。
この水位をあらかじめ、位置を設定してあるレベル計検
出部4により検知した時点を逆洗の開始とする。レベル
計検出部4で検出されレベル計変換部5によって変換さ
れたレベル検出信号はシステム制御部12へ送られ、この
信号を逆洗開始信号として、逆洗操作が自動的に開始さ
れる。
Open the inflow water motorized valve 8 and the treated water motorized valve to open the treatment tower
14 is introduced from the upper part of the activated carbon treatment tower 1 and the activated carbon filling part 2 held by the activated carbon support part 3 is caused to flow down, thereby purifying the water quality by adsorption or the like of a removed substance such as an organic substance. The treated water that has passed through the activated carbon filling section 2 flows into the treated water collecting section 13 and exits as treated tower treated water 16. As the supply of the treatment tower inflow water 14 to the activated carbon treatment tower 1 continues, the accumulation and adsorption of suspended substances in the activated carbon filling section 2 increase, and the pressure loss in the activated carbon filling section 2 also increases. Appears as a rise in the water level at the top of part 2.
The point at which this water level is detected by the level meter detecting unit 4 whose position has been set in advance is defined as the start of backwashing. The level detection signal detected by the level meter detection unit 4 and converted by the level meter conversion unit 5 is sent to the system control unit 12, and the backwash operation is automatically started using this signal as a backwash start signal.

逆洗開始とともに、流入水電動弁8と処理水電動弁9
を閉じるとともに逆洗ポンプ10を運転し、活性炭処理塔
1の下方より、逆洗用の処理塔処理水15を流入させるこ
とにより活性炭充填部2の洗浄を行う。洗浄排水は、活
性炭処理塔1上部から逆洗時排水18として排出される。
この際の逆洗時の逆洗洗浄速度は、活性炭充填部2の逆
洗により流動化した活性炭界面を界面計検出部で検出
し、界面計変換器5からの信号をシステム制御部12で受
け、この信号により、逆洗ポンプ10と逆洗ポンプ制御部
11により、逆洗流量を制御し、逆洗洗浄速度を調節す
る。これにより活性炭界面が一定レベルに保たれる。ま
た、逆洗水流量測定部17により測定された流速の値はシ
ステム制御部12において、あらかじめ設定された上下限
値の範囲内かどうか判断し、異常の場合には警報を出力
する。
At the start of backwashing, the inflow water electric valve 8 and the treated water electric valve 9
Is closed and the backwashing pump 10 is operated to wash the activated carbon filling unit 2 by flowing treated water 15 for backwashing from the bottom of the activated carbon treating tower 1. The washing wastewater is discharged from the upper part of the activated carbon treatment tower 1 as wastewater 18 during backwashing.
At this time, the backwashing speed at the time of backwashing is such that the activated carbon interface fluidized by the backwashing of the activated carbon filling unit 2 is detected by the interface meter detection unit, and the signal from the interface meter converter 5 is received by the system control unit 12. The backwash pump 10 and the backwash pump control unit
11 controls the backwash flow rate and adjusts the backwash speed. This keeps the activated carbon interface at a constant level. In addition, the system control unit 12 determines whether the value of the flow velocity measured by the backwash water flow rate measuring unit 17 is within a range of a preset upper and lower limit value, and outputs an alarm if abnormal.

逆洗操作を所要時間継続させた後、逆洗ポンプ10を停
止し、処理水電動弁9を開き、活性炭の沈降と洗浄水の
排出を行わせてから、流入水電動弁8を開き通水を開始
する。
After the backwash operation is continued for a required time, the backwash pump 10 is stopped, the treated water electric valve 9 is opened, the sedimentation of the activated carbon and the discharge of the wash water are performed, and then the inflow water electric valve 8 is opened to supply water. To start.

なお、界面計検出部6を固定方式ではなく、可動方式
とすれば、任意の層膨張率による逆洗操作が可能とな
る。
If the interferometer detector 6 is of a movable type instead of a fixed type, a backwashing operation with an arbitrary layer expansion coefficient is possible.

H.発明の効果 本発明は、上述のとおり構成されているので、次に記
載する効果を奏する。
H. Effects of the Invention Since the present invention is configured as described above, the following effects can be obtained.

(1)活性炭充填部が目詰まりを水位により検出して自
動的に逆洗を行うことができる。
(1) The activated carbon filling section can detect clogging based on the water level and automatically perform backwashing.

(2)逆洗は界面計により活性炭の層膨張率を維持する
ように逆洗流速を自動調節して行うので、効率のよい逆
洗を自動的に行うことができる。
(2) Since the backwashing is performed by automatically adjusting the backwashing flow rate by an interface meter so as to maintain the layer expansion coefficient of the activated carbon, efficient backwashing can be performed automatically.

(3)上記(1),(2)を組合せたことにより逆洗操
作の自動化が可能である。
(3) By combining the above (1) and (2), the backwash operation can be automated.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例に使用される活性炭処理装置の
構成図、第2図は浄水場の構成説明図、第3図は従来活
性炭処理装置の構成図、第4図は逆洗時活性炭膨張率を
示すグラフである。 1……活性炭処理塔、2……活性炭充填部、3……活性
炭支持部、4……レベル計検出部、5……レベル計変換
器、6……界面計検出部、7……界面計変換器、8……
流入水電動弁、9……処理水電動弁、10……逆洗ポン
プ、11……逆洗ポンプ制御部、12……システム制御部、
13……処理水集水部、14……処理塔流入水、15……逆洗
用処理水、16……処理塔処理水、17……逆洗水流量測定
部、18……逆洗時排水。
FIG. 1 is a configuration diagram of an activated carbon treatment device used in an embodiment of the present invention, FIG. 2 is an explanatory diagram of a configuration of a water purification plant, FIG. 3 is a configuration diagram of a conventional activated carbon treatment device, and FIG. It is a graph which shows an activated carbon expansion coefficient. DESCRIPTION OF SYMBOLS 1 ... Activated-carbon processing tower, 2 ... Activated-carbon filling part, 3 ... Activated-carbon support part, 4 ... Level meter detection part, 5 ... Level meter converter, 6 ... Interface meter detection part, 7 ... Interface meter Transducer, 8 ...
Inflow water electric valve, 9 ... treated water electric valve, 10 ... backwash pump, 11 ... backwash pump control unit, 12 ... system control unit
13 ... treated water collecting section, 14 ... treated tower inflow water, 15 ... treated water for backwash, 16 ... treated tower treated water, 17 ... backwash water flow measuring section, 18 ... backwashing Drainage.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C02F 1/28,3/06 Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) C02F 1 / 28,3 / 06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高度浄水施設の活性炭処理塔を用いた下向
流式生物活性炭処理において、 活性炭処理中の活性炭処理塔内水位が所定レベルに達し
たことをレベル計により検出して自動的に逆洗を開始
し、逆洗時の活性炭の膨張レベルを界面計により検出し
てこの膨張レベルを一定に保持するように逆洗用処理水
流速を自動制御することを特徴とした下流式生物活性炭
処理塔の逆洗制御方法。
In a downflow type biological activated carbon treatment using an activated carbon treatment tower of an advanced water purification facility, a level meter detects that the water level in the activated carbon treatment tower during the activated carbon treatment has reached a predetermined level, and automatically detects the water level. A downstream bioactive carbon characterized by automatically starting backwashing, detecting the expansion level of activated carbon during backwashing with an interface meter, and automatically controlling the flow rate of the backwashing treatment water so as to keep the expansion level constant. Control method for backwashing of treatment tower.
JP2331450A 1990-11-29 1990-11-29 Backwash control method for downflow type biological activated carbon treatment tower Expired - Fee Related JP2882045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2331450A JP2882045B2 (en) 1990-11-29 1990-11-29 Backwash control method for downflow type biological activated carbon treatment tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2331450A JP2882045B2 (en) 1990-11-29 1990-11-29 Backwash control method for downflow type biological activated carbon treatment tower

Publications (2)

Publication Number Publication Date
JPH04197484A JPH04197484A (en) 1992-07-17
JP2882045B2 true JP2882045B2 (en) 1999-04-12

Family

ID=18243789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2331450A Expired - Fee Related JP2882045B2 (en) 1990-11-29 1990-11-29 Backwash control method for downflow type biological activated carbon treatment tower

Country Status (1)

Country Link
JP (1) JP2882045B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358167B1 (en) * 1999-02-09 2002-10-25 엘지건설 주식회사 An equipment and method for the automatic backwashing of activated carbon process
KR20030021022A (en) * 2001-09-05 2003-03-12 주식회사 유니테크 A sewage water treatment system and method, using activated carbon fiber
JP6556419B2 (en) * 2013-09-25 2019-08-07 三菱重工エンジニアリング株式会社 Purification device and purification device backwash method

Also Published As

Publication number Publication date
JPH04197484A (en) 1992-07-17

Similar Documents

Publication Publication Date Title
JPH089037B2 (en) Biological contactor for water purification and its control method for drinking water production
KR101826085B1 (en) Upflow type continuous backwash filtering device with no return flow
Letterman An overview of filtration
JP3698678B2 (en) Fine sand slow filtration equipment
JP2882045B2 (en) Backwash control method for downflow type biological activated carbon treatment tower
JP2003103275A (en) Cleaning treatment method for manganese-containing water
JP2584386B2 (en) Biological filtration method and device
JP2003290784A (en) Iron and manganese remover and method for the same
JP3388378B2 (en) Filtration equipment
JP3419640B2 (en) Filtration device and filtration method
JP2592356B2 (en) Organic sewage biological filtration equipment
JPS5876182A (en) Biological water purifier
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
JP3149465B2 (en) Automatic backwash control method for biological activated carbon treatment tower
JPS59105894A (en) Purification of water containing organic substance and apparatus therefor
JPH04141297A (en) Ammonia-containing liquid treatment method
JPS61287494A (en) Method for continuously filtering water
JP7269148B2 (en) Filtration treatment method and filtration device
JP2000197895A (en) Water purifying treatment method and apparatus
JPH0338289A (en) Biologically activated carbon water-treatment apparatus
JPH0487688A (en) Method for washing biologically activated carbon treating tower
JPH0418988A (en) Biomembrane filter device for organic sewage
JP4915054B2 (en) Organic wastewater treatment equipment
JP3388379B2 (en) Filtration equipment
JPH08196812A (en) Filtering device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees