JP3203291B2 - Removal method of ammonia nitrogen from raw water for tap water - Google Patents

Removal method of ammonia nitrogen from raw water for tap water

Info

Publication number
JP3203291B2
JP3203291B2 JP18472994A JP18472994A JP3203291B2 JP 3203291 B2 JP3203291 B2 JP 3203291B2 JP 18472994 A JP18472994 A JP 18472994A JP 18472994 A JP18472994 A JP 18472994A JP 3203291 B2 JP3203291 B2 JP 3203291B2
Authority
JP
Japan
Prior art keywords
water
raw water
tower
ammonia nitrogen
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18472994A
Other languages
Japanese (ja)
Other versions
JPH0847697A (en
Inventor
英一 神田
靖彦 和田
邦敏 相馬
保美 五十嵐
正 小林
Original Assignee
東洋瓦斯機工株式会社
北栄建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋瓦斯機工株式会社, 北栄建設株式会社 filed Critical 東洋瓦斯機工株式会社
Priority to JP18472994A priority Critical patent/JP3203291B2/en
Publication of JPH0847697A publication Critical patent/JPH0847697A/en
Application granted granted Critical
Publication of JP3203291B2 publication Critical patent/JP3203291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水道用原水の処理方法、
特に、水道用原水中のアンモニア性窒素を除去する新規
な浄化処理方法に関する。
The present invention relates to a method for treating raw water for tap water,
In particular, it relates to a novel purification treatment method for removing ammonia nitrogen in raw water for tap water.

【0002】[0002]

【従来の技術及びその課題】水道水用の原水として地下
水が使用されるが、通常はそのままでは水道水として供
給できないため、濾過や薬液処理を施した後、水道法で
要求されている水質基準を満たした上で供給されてい
る。
2. Description of the Related Art Groundwater is used as raw water for tap water, but it cannot be supplied as it is as it is, so after filtering or chemical treatment, water quality standards required by the Water Supply Law are applied. It is supplied after satisfying.

【0003】原水の薬液処理の主なものとして、地下水
の殺菌を目的とする塩素注入(塩素処理法)が挙げられ
るが、その際、地下水中に含まれるアンモニア性窒素の
存在が大きな問題となる。アンモニア性窒素は、塩素と
反応して最終的には窒素ガスとなって空中に放散される
が、この反応の過程で塩素の半分以上は殺菌に無効な塩
素イオンとなってしまう。
[0003] The main chemical treatment of raw water is chlorination (chlorination) for sterilizing groundwater. At that time, the presence of ammonia nitrogen contained in the groundwater is a major problem. . Ammoniacal nitrogen reacts with chlorine and eventually becomes nitrogen gas and is released into the air. In the course of this reaction, more than half of the chlorine becomes chlorine ions that are ineffective for sterilization.

【0004】そこで、アンモニア性窒素と反応する塩素
の分を見越して、多めの塩素を注入すればよいのである
が、水道用原水中のアンモニア性窒素濃度は0.5〜
3.0ppm程度の範囲で変動し、一定濃度の原水が処
理対象となるわけではない。一般に塩素処理法では、原
水中のアンモニア性窒素濃度の約10倍の塩素を必要と
するが、多量の塩素が処理水中に存在すると有機物と塩
素との反応により、発ガン性物質であるトリハロメタン
が生成するため、アンモニア性窒素濃度にあわせて過不
足なく塩素注入量を変動させる必要がある。このため、
原水中のアンモニア性窒素濃度を定期的に測定して塩素
注入量を調整するための人件費や設備費等のコストが非
常に大きくなる。しかも処理水中の遊離塩素濃度は0.
1〜1.0ppm程度の範囲にコントロールしなければ
ならないため、非常に精度の高い制御装置が必要とされ
る。
Therefore, it is sufficient to inject a large amount of chlorine in anticipation of the amount of chlorine which reacts with ammonia nitrogen.
Raw water of a constant concentration fluctuates in the range of about 3.0 ppm and is not necessarily treated. Generally, the chlorination method requires about 10 times the amount of ammonia nitrogen in the raw water. In order to produce chlorine, it is necessary to vary the chlorine injection amount without excess or deficiency in accordance with the ammonia nitrogen concentration. For this reason,
Costs such as labor and equipment costs for adjusting the amount of chlorine injection by periodically measuring the concentration of ammonia nitrogen in raw water become extremely large. In addition, the free chlorine concentration in the treated water is 0.
Since control must be performed in the range of about 1 to 1.0 ppm, a very accurate control device is required.

【0005】また、水道水用の原水からアンモニア性窒
素を除去する方法としては、硝化菌の働きを利用してア
ンモニア性窒素を硝酸性窒素に酸化させる、いわゆる生
物処理法も知られている。生物処理法は、硝化菌を含む
水中の汚泥、水中に固定した硝化菌支持物、或いは硝化
菌を担持する担体により、原水中のアンモニア性窒素を
硝酸に酸化し、次いで塩素による殺菌を行なうものであ
る。生物処理法の方式として、浸漬濾床方式、回転円板
方式、生物濾過方式等があり、また硝化菌の担体として
砂、プラスチック構造物、活性炭等が知られている。し
かしながら、これらの担体を用いた場合は硝化菌の繁殖
が不充分で、効率の良い硝化作用を行なわないことが多
く、また、設備の維持管理の点でも問題が多かった。
As a method for removing ammonia nitrogen from raw water for tap water, a so-called biological treatment method in which ammonia nitrogen is oxidized to nitrate nitrogen utilizing the action of nitrifying bacteria is also known. The biological treatment method involves oxidizing ammonia nitrogen in raw water to nitric acid by using sludge in water containing nitrifying bacteria, a nitrifying bacteria support fixed in water, or a carrier carrying nitrifying bacteria, followed by sterilization with chlorine. It is. Examples of the biological treatment method include an immersion filter bed method, a rotating disk method, and a biological filtration method. Sand, plastic structures, activated carbon, and the like are known as carriers for nitrifying bacteria. However, when these carriers are used, the proliferation of nitrifying bacteria is insufficient, so that efficient nitrification is often not performed, and there are many problems in terms of maintenance of facilities.

【0006】[0006]

【課題を解決するための手段】本発明者らはこのような
問題点を解決するため研究を重ねた結果、殺菌処理をし
たかきの殻体、特に次亜塩素酸ソーダによる薬液処理を
行ったかき殻粉砕物を使用することにより、複雑な計装
化設備や維持管理を必要とせずに水道用原水中のアンモ
ニア性窒素を効果的に除去できることを見出し、本発明
を完成したのである。
Means for Solving the Problems As a result of repeated studies to solve such problems, the present inventors have found that a oyster shell that has been sterilized, especially a chemical that has been treated with a chemical solution using sodium hypochlorite. The present inventors have found that the use of the crushed shell can effectively remove ammonia nitrogen in raw water for tap water without requiring complicated instrumentation equipment and maintenance and management, and completed the present invention.

【0007】すなわち本発明は、かきの殻体を粉砕して
得られたシェルビーズを次亜塩素酸ソーダにより殺菌処
理し、殺菌処理されたシェルビーズを塔又は槽に充填
し、当該塔又は槽内において硝化菌を繁殖させた後、水
道用原水を前記塔又は槽に通水し、当該塔又は槽内の硝
化菌により、前記水道用原水中のアンモニア性窒素を硝
酸性窒素に酸化させることを特徴とする水道用原水中の
アンモニア性窒素除去方法を提供するものである。
That is, according to the present invention, shell beads obtained by pulverizing an oyster shell are sterilized with sodium hypochlorite, and the sterilized shell beads are filled in a tower or a tank. After propagating the nitrifying bacteria in the water, the raw water for water supply is passed through the tower or the tank, and the nitrifying bacteria in the tower or the tank oxidize the ammonia nitrogen in the raw water for water supply to nitrate nitrogen. It is intended to provide a method for removing ammoniacal nitrogen in raw water for tap water characterized by the following.

【0008】本発明の方法につき詳述する。本発明に使
用されるシェルビーズは、炭酸カルシウムを主成分とす
るものであるが、かき殻を水洗後適当な粉砕機で粉砕
し、篩別して粒度3〜50mm、好ましくは5〜15m
mの粗砕物としたものである。これを次亜塩素酸ソーダ
水溶液中に浸漬して殺菌処理する。殺菌は、殺菌処理後
のシェルビーズを純水に浸漬し溶解成分を抽出した時、
抽出液が水道法に定める水質試験により亜硝酸性窒素が
検出されない様な程度に行うことが肝要である。次亜塩
素酸ソーダ水溶液の濃度は、一般に0.01〜1%程度
が適当である。
The method of the present invention will be described in detail. The shell beads used in the present invention are mainly composed of calcium carbonate, but after washing the husks with water, pulverizing them with a suitable pulverizer and sieving to obtain a particle size of 3 to 50 mm, preferably 5 to 15 m.
m. This is immersed in an aqueous solution of sodium hypochlorite for sterilization. Sterilization, when immersing shell beads after sterilization treatment in pure water to extract dissolved components,
It is important to perform the extraction to such an extent that nitrite nitrogen is not detected by the water quality test specified in the Water Supply Law. In general, the concentration of the aqueous sodium hypochlorite solution is suitably about 0.01 to 1%.

【0009】上記の如く、薬液処理したシェルビーズを
次亜塩素酸ソーダが認められなくなるまで水洗して得ら
れた殺菌済のシェルビーズを塔又は槽に充填する。
[0009] As described above, the shell beads treated with the chemical solution are washed with water until sodium hypochlorite is no longer observed, and the sterilized shell beads obtained are filled in a tower or a tank.

【0010】シェルビーズの充填量は、原水の水質や設
備の規模等を考慮して適宜決定でき、特に限定はない
が、シェルビーズ1m3(かさ容量) あたり、4.0〜1
0.0m3 /h程度が目安となる。また、シェルビーズ
を充填する塔又は槽の大きさ並びに形状は、通常の化工
設計により適正条件を定めればよい。
[0010] The amount of shell beads to be filled can be appropriately determined in consideration of the quality of raw water, the scale of equipment, and the like. There is no particular limitation, but 4.0 to 1 per m 3 (bulk capacity) of shell beads.
The standard is about 0.0m 3 / h. Further, the size and shape of the tower or tank filled with the shell beads may be determined under appropriate conditions by ordinary chemical design.

【0011】なお本発明においてシェルビーズの粒度を
3mm乃至50mmの範囲に選定したのは、シェルビー
ズの特性上これ以上大きな粒度のものでは嵩ばって充填
塔又は槽が大きくなりすぎ、またシェルビーズの接触表
面積が小さいため通水速度が小さくなる。一方これ以上
小さな粒度のものでは通水抵抗が増大し、圧力をかける
と微粉のものが流出するおそれがあり、そのため処理水
が白濁する場合もあって好ましくないからである。
In the present invention, the particle size of the shell beads is selected to be in the range of 3 mm to 50 mm because of the characteristics of the shell beads, if the particle size is larger than this, the packing tower or the tank becomes too bulky and the shell beads become too large. The contact surface area is small, so that the water flow rate is low. On the other hand, if the particle size is smaller than this, the water flow resistance increases, and if a pressure is applied, the fine powder may flow out, and the treated water may become cloudy, which is not preferable.

【0012】次に本発明において次亜塩素酸ソーダ水溶
液でシェルビーズを殺菌処理するのは、他の殺菌処理
法、例えば熱処理による方法では、むらやけを生じシェ
ルビーズの強度が低下し、また塩酸などの酸による処理
ではシェルビーズが溶解してしまうため好ましくない
が、次亜塩素酸ソーダ水溶液による処理ではかかる欠点
がなく、容易に所望の殺菌処理を行い得るからである。
Next, in the present invention, shell beads are sterilized with an aqueous solution of sodium hypochlorite in other sterilization methods, for example, a heat treatment method, resulting in unevenness and reduced strength of the shell beads, Although treatment with an acid such as this dissolves the shell beads, it is not preferable. However, treatment with an aqueous solution of sodium hypochlorite does not have such a disadvantage, and a desired sterilization treatment can be easily performed.

【0013】上記の粒度に粉砕されたシェルビーズを使
用することにより、充填層中に空隙が多くでき、この空
隙中に硝化菌のコロニーが発生し、シェルビーズ表面に
付着した硝化菌と共に硝化効率を高める。またシェルビ
ーズは偏平に積み重なるため、このシェルビーズ層を原
水が通過する際に、原水と硝化菌の接触頻度が高くな
る。
[0013] By using the shell beads crushed to the above particle size, voids are formed in the packed bed, colonies of nitrifying bacteria are generated in the voids, and the nitrification efficiency is increased together with the nitrifying bacteria adhering to the surface of the shell beads. Enhance. In addition, since the shell beads are stacked flat, the frequency of contact between the raw water and the nitrifying bacteria increases when the raw water passes through the shell bead layer.

【0014】本発明で用いられるシェルビーズはかき殻
を粉砕して得られるものであるが、他の貝殻と比較して
かき殻は粉砕が容易であって所望の粒度のものが容易に
得られ、また生長の過程に対応して殻体が層状を形成し
ており、これがため薬液が内部まで浸透し、1回の浸漬
処理で目的とする殺菌処理を行い得る。また、かき殻は
多孔質であり、しかもその孔が硝化菌を捕捉し担持する
のに好適な大きさであるため、他の貝殻に比べて硝化菌
の繁殖には有利である。
The shell beads used in the present invention are obtained by pulverizing oysters. Compared with other shells, oyster hulls are easier to pulverize, and the desired particle size can be easily obtained. In addition, the shell forms a layered structure corresponding to the growth process, so that the chemical solution penetrates into the inside, and the target sterilization treatment can be performed by one dipping treatment. In addition, the oyster shell is porous, and its pores have a size suitable for capturing and supporting nitrifying bacteria, so that it is more advantageous for the propagation of nitrifying bacteria than other shells.

【0015】また、独立栄養細菌である硝化菌は、アン
モニア性窒素の他に微量のリン、カリ、カルシウム、マ
グネシウム等を必要とするが、シェルビーズを充填した
塔や槽中に原水を通水することによってシェルビーズ中
のこれらの栄養素が溶出し、硝化菌の育成に適切な条件
をつくり出すものと考えられる。
[0015] Nitrifying bacteria, which are autotrophic bacteria, require trace amounts of phosphorus, potassium, calcium, magnesium, etc. in addition to ammonia nitrogen, but pass raw water through a tower or tank filled with shell beads. By doing so, these nutrients in the shell beads are eluted, and it is considered that conditions suitable for growing nitrifying bacteria are created.

【0016】更に、従来の担体を用いた方法では、硝化
菌がアンモニア性窒素を酸化することにより生じる硝酸
のために処理水のpHが低下するが、本発明ではシェル
ビーズ中のアルカリ分により硝酸が中和され、処理水の
pHの低下を防止できる。従って、装置内のpHは硝化
菌の最適pH範囲である7.0〜7.5に保たれ、特に
pH調整のための設備を必要としない。
Further, in the conventional method using a carrier, the pH of the treated water is lowered due to nitric acid generated by nitrifying bacteria oxidizing ammoniacal nitrogen. In the present invention, however, nitric acid is reduced by alkali content in the shell beads. Is neutralized, and a decrease in the pH of the treated water can be prevented. Therefore, the pH in the apparatus is maintained at 7.0 to 7.5, which is the optimum pH range for nitrifying bacteria, and no special equipment for pH adjustment is required.

【0017】次に、シェルビーズが充填された塔又は槽
内において硝化菌を十分繁殖させる。硝化菌の繁殖は、
原水や別途用意した水を塔又は槽内に通水して塔又は槽
内に水を満たし、そこに硝化菌培養液を添加して暫く放
置すればよい。硝化菌の添加量は特に限定しない。硝化
菌の繁殖具合は、塔又は槽から排出されるアンモニア性
窒素濃度を検知することにより知ることができる。
Next, nitrifying bacteria are sufficiently propagated in a tower or a tank filled with shell beads. The growth of nitrifying bacteria
Raw water or separately prepared water may be passed through the tower or tank to fill the tower or tank with water, and the nitrifying bacteria culture solution may be added thereto and left for a while. The amount of nitrifying bacteria added is not particularly limited. The state of reproduction of nitrifying bacteria can be known by detecting the concentration of ammonia nitrogen discharged from a tower or a tank.

【0018】また、本発明においては、前記のごときシ
ェルビーズを充填した塔や槽に、地下水等の水道用原水
を通水して硝化菌による処理を行う前に、原水を曝気槽
に通水して当該原水中の溶存酸素濃度を増加させるのが
好ましい。原水中の溶存酸素濃度が低いと硝化菌の繁殖
が不充分となり好ましくない。なお、曝気処理の方法は
曝気槽を用いる等公知の方法で良く、また、曝気処理の
程度も適宜決定すればよい。
In the present invention, the raw water is passed through a tower or a tank filled with the shell beads as described above, and the raw water is passed through an aeration tank before the treatment with nitrifying bacteria is performed by passing raw water for tap water such as groundwater. Then, it is preferable to increase the dissolved oxygen concentration in the raw water. If the concentration of dissolved oxygen in the raw water is low, the proliferation of nitrifying bacteria becomes insufficient, which is not preferable. The method of the aeration treatment may be a known method such as using an aeration tank, and the degree of the aeration treatment may be appropriately determined.

【0019】更に、本発明においては、硝化菌が十分繁
殖するまで水道用原水を曝気処理をする装置、例えば曝
気槽とシェルビーズが充填された塔又は槽の間を循環さ
せることが工程や設備の面から好ましい。
Furthermore, in the present invention, an apparatus for aerating the raw water for water supply, for example, circulating between an aeration tank and a tower or a tank filled with shell beads, until a nitrifying bacterium is sufficiently propagated. It is preferable from the viewpoint of.

【0020】硝化菌がシェルビーズを充填した塔又は槽
内で十分繁殖したら、水道用原水を通水して処理を行な
うが、原水の流速あるいは塔又は槽内の滞留時間は、処
理水中のアンモニア性窒素濃度が塩素滅菌工程に支障の
ないレベルとなるように加減する必要がある。
When the nitrifying bacteria have sufficiently propagated in a tower or tank filled with shell beads, the treatment is performed by passing raw water for water supply. The flow rate of the raw water or the residence time in the tower or tank depends on the ammonia in the treated water. It is necessary to adjust the nitrogen concentration to a level that does not interfere with the chlorine sterilization process.

【0021】本発明のアンモニア性窒素除去方法は、塩
素滅菌工程の前に本発明の浄化処理を実施するのが好ま
しい。
In the method of removing ammonia nitrogen according to the present invention, it is preferable to carry out the purification treatment of the present invention before the chlorine sterilization step.

【0022】本発明による方法によれば、原水中のアン
モニア性窒素を効果的に硝酸性窒素に酸化させることが
できる。また、本発明の方法では原水中のアンモニア性
窒素濃度が変動しても、処理水中のアンモニア性窒素濃
度の変動が非常に少ないため、殺菌用の塩素注入量も一
定量を保つことができる。更に、原水の処理によって消
費されたシェルビーズも、単に補充するのみで容易に安
定した連続運転がなし得るので、本発明は非常に有用な
発明である。
According to the method of the present invention, ammonia nitrogen in raw water can be effectively oxidized to nitrate nitrogen. Further, according to the method of the present invention, even if the ammonia nitrogen concentration in the raw water varies, the variation of the ammonia nitrogen concentration in the treated water is very small, so that the chlorine injection amount for sterilization can be kept constant. Furthermore, the present invention is a very useful invention because stable continuous operation can be easily achieved simply by replenishing shell beads consumed by the treatment of raw water.

【0023】また、かきは養殖されており、大量に消費
される貝類であり、その殻体の処分が問題となっている
が、本発明はそのような廃棄物の有効活用ともなり、環
境改善の見地からも意義ある発明である。
Also, oysters are cultivated, are shellfish that are consumed in large quantities, and disposal of their shells is a problem. However, the present invention also makes effective use of such wastes to improve the environment. It is a significant invention from the viewpoint of the present invention.

【0024】[0024]

【実施例】以下実施例にて本発明を説明するが、本発明
はこれらの実施例に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0025】実施例1 かき殻を水洗し、粉砕機により粉砕し、篩分により5m
m乃至20mmの粒度のシェルビーズを選び出した。こ
のシェルビーズ40kgを0.03%次亜塩素酸ソーダ
溶液200リットル中に一昼夜浸漬し、次いで次亜塩素
酸ソーダが認められなくなるまで水洗した。なお、使用
したシェルビーズ中のCaCO3 含量は94〜95%で
あった。
Example 1 The oysters were washed with water, pulverized by a pulverizer, and sieved to 5 m.
Shell beads having a particle size of m to 20 mm were selected. 40 kg of the shell beads were immersed in 200 l of a 0.03% sodium hypochlorite solution for 24 hours, and then washed with water until no sodium hypochlorite was observed. The CaCO 3 content in the used shell beads was 94 to 95%.

【0026】かくして得られたシェルビーズ34kgを
内径250mm、長さ1300mmの塩化ビニル製の塔
内に充填した。この塔に地下水を通水し塔内に水を満た
した後、硝化菌培養液を投入した。本実施例では図1に
示す装置を用い、硝化菌が十分繁殖するまで原水を塔と
曝気槽の間を循環させた。原水の循環は、塔から排出さ
れるアンモニア性窒素濃度が、原水のアンモニア性窒素
濃度の1/8程度となるまで行なった。
34 kg of the thus obtained shell beads were packed in a vinyl chloride tower having an inner diameter of 250 mm and a length of 1300 mm. After groundwater was passed through this tower to fill the tower with water, a nitrifying bacteria culture solution was added. In this example, the apparatus shown in FIG. 1 was used, and the raw water was circulated between the tower and the aeration tank until the nitrifying bacteria proliferated sufficiently. The raw water was circulated until the concentration of ammonia nitrogen discharged from the tower became about 1/8 of the concentration of ammonia nitrogen in the raw water.

【0027】このようにして塔内での硝化菌の繁殖を確
認した後、本実施例では原水をシェルビーズを充填した
塔に通水する前に、曝気槽に通水して溶存酸素濃度を高
めた。原水と曝気処理水の溶存酸素濃度を表1に示す。
After confirming the growth of nitrifying bacteria in the tower in this way, in this embodiment, before passing the raw water through the tower filled with shell beads, the raw water is passed through an aeration tank to reduce the dissolved oxygen concentration. Enhanced. Table 1 shows the dissolved oxygen concentrations of the raw water and the aerated water.

【0028】[0028]

【表1】 [Table 1]

【0029】上記の曝気処理を行いながら、原水を
(1)0.3m3/h、(2)0.6m3/h、(3)
0.9m3 /hの流速で原水を塔に通水し、浄化処理し
た。処理された水は、アンモニア性窒素が顕著に低減し
ており、何れも水道法に定める水質試験に適合したが、
試験結果中、主要項目を表2に示す。
[0029] while the aeration process of the above, the raw water (1) 0.3m 3 /h,(2)0.6m 3 / h, (3)
Raw water was passed through the tower at a flow rate of 0.9 m 3 / h for purification treatment. In the treated water, the amount of ammonia nitrogen was remarkably reduced, and all passed the water quality test specified by the Water Supply Law.
Table 2 shows the main items in the test results.

【0030】[0030]

【表2】 [Table 2]

【0031】本実施例に使用した装置を図1に示す。ま
たこの装置の若干の説明を行うと次の通りである。図1
に示す実施装置は曝気槽1、シェルビーズ充填塔3、流
量計6等とそれらを結ぶ配管系によって構成される。曝
気槽1にはエアーコンプレッサー5により空気が吹き込
まれているが、これは原水中の溶存酸素濃度を上昇さ
せ、硝化菌の繁殖を促進するためである。充填塔3は塩
化ビニル製で、シェルビーズ2が密に充填される。ま
た、充填層の前後及び層内の圧力を知るために圧力計7
を取り付けてあり、圧力損失を知ることができる。曝気
処理された原水は移送ポンプ8により流量計6を経て塔
3へ通水される。また、本装置は塔上部と曝気槽を結ぶ
配管を備えており、硝化菌が十分繁殖するまで原水を循
環させることができる。なお計測器類やポンプは、一般
市販品を使用すればよく、塩化ビニル製の配管系には弁
が設けられ、流量の調節が行なわれる。処理対象となる
地下水は、この装置内を充填塔の下部から通過し、塔内
の硝化菌によりアンモニア性窒素が除去され、処理水は
塔上部から排出される。
FIG. 1 shows the apparatus used in this embodiment. A brief description of this device is as follows. FIG.
Is constituted by an aeration tank 1, a shell beads packed tower 3, a flow meter 6, etc. and a piping system connecting them. Air is blown into the aeration tank 1 by the air compressor 5 in order to increase the concentration of dissolved oxygen in the raw water and promote the growth of nitrifying bacteria. The packed tower 3 is made of vinyl chloride, and the shell beads 2 are densely packed. In addition, a pressure gauge 7 is used to know the pressure before and after the packed bed and in the packed bed.
Is attached so that the pressure loss can be known. The raw water subjected to the aeration treatment is passed to the tower 3 through the flow meter 6 by the transfer pump 8. In addition, this apparatus is provided with a pipe connecting the upper part of the tower and the aeration tank, and can circulate raw water until nitrifying bacteria sufficiently propagate. As the measuring instruments and pumps, general commercial products may be used, and a valve is provided in a piping system made of vinyl chloride to adjust the flow rate. The groundwater to be treated passes through the apparatus from the lower part of the packed tower, the nitrifying bacteria in the tower remove ammonia nitrogen, and the treated water is discharged from the upper part of the tower.

【0032】比較例1 上記の実施例において、シェルビーズ充填塔に通水する
前の曝気処理を行わずに原水を処理したところ、何れの
流速の場合も全くアンモニア性窒素の除去は行われなか
った。
Comparative Example 1 In the above example, when the raw water was treated without performing aeration before passing through the shell beads packed tower, no ammonia nitrogen was removed at any flow rate. Was.

【0033】比較例2 上記の実施例において、シェルビーズの代わりに、活性
炭を充填して同様に処理したところ、アンモニア性窒素
濃度は0.3m3 /h通水の場合は原水の90%、0.
6m3 /h通水の場合は原水の40%程度の除去率しか
得られなかった。
Comparative Example 2 In the above example, activated carbon was filled in place of the shell beads, and the same treatment was performed. When the ammonia nitrogen concentration was 0.3 m 3 / h, water flow was 90%, 0.
In the case of 6 m 3 / h water flow, only about 40% removal rate of raw water was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の方法に使用される装置の実施例を示
す系統図である。
FIG. 1 is a system diagram showing an embodiment of an apparatus used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1…曝気槽 2…シェルビーズ 3…シェルビーズ充填塔 4…取水ポンプ 5…エアーコンプレッサー 6…流量計 7…圧力計 8…移送ポンプ DESCRIPTION OF SYMBOLS 1 ... Aeration tank 2 ... Shell beads 3 ... Shell beads filling tower 4 ... Water intake pump 5 ... Air compressor 6 ... Flow meter 7 ... Pressure gauge 8 ... Transfer pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 五十嵐 保美 新潟県新潟市沼垂東5丁目2番3号 (72)発明者 小林 正 新潟県新潟市栄町3丁目4794番地 (56)参考文献 特開 平4−141297(JP,A) 特公 平2−32954(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C02F 3/28 - 3/34 C02F 3/02 - 3/10 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yasumi Igarashi 5-2-2-3, Numarihigashi, Niigata City, Niigata Prefecture (72) Inventor Tadashi 3479-4 Sakaemachi, Niigata City, Niigata Prefecture (56) References JP 4-141297 (JP, A) JP 2-32954 (JP, B2) (58) Field surveyed (Int. Cl. 7 , DB name) C02F 3/28-3/34 C02F 3/02-3 /Ten

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 かきの殻体を粉砕して得られたシェルビ
ーズを次亜塩素酸ソーダにより殺菌処理し、殺菌処理さ
れたシェルビーズを塔又は槽に充填し、当該塔又は槽内
において硝化菌を繁殖させた後、水道用原水を前記塔又
は槽に通水し、当該塔又は槽内の硝化菌により、前記水
道用原水中のアンモニア性窒素を硝酸性窒素に酸化させ
ることを特徴とする水道用原水中のアンモニア性窒素除
去方法。
1. A shell bead obtained by pulverizing an oyster shell is sterilized with sodium hypochlorite, and the sterilized shell beads are filled in a tower or a tank, and nitrified in the tower or the tank. After propagating the bacteria, the raw water for tap water is passed through the tower or the tank, and nitrifying bacteria in the tower or the tank are used to oxidize the ammonia nitrogen in the raw water for tap water to nitrate nitrogen. To remove ammonia nitrogen from raw tap water.
【請求項2】 シェルビーズの粒度範囲が3mm乃至5
0mmにある請求項1記載の水道用原水中のアンモニア
性窒素除去方法。
2. The shell beads having a particle size range of 3 mm to 5 mm.
2. The method for removing ammoniacal nitrogen from tap water according to claim 1, wherein the distance is 0 mm.
【請求項3】 シェルビーズが充填された塔又は槽に通
水する前に、水道用原水を曝気処理して、当該水道用原
水中の溶存酸素濃度を高めることを特徴とする請求項1
又は2記載の水道用原水中のアンモニア性窒素除去方
法。
3. The water supply raw water is aerated to increase the concentration of dissolved oxygen in the water supply raw water before passing through the tower or tank filled with the shell beads.
Or the method for removing ammonia nitrogen from raw water for tap water according to 2 above.
【請求項4】 硝化菌が十分繁殖するまで水道用原水
を、曝気処理をする装置とシェルビーズが充填された塔
又は槽の間を循環させることを特徴とする請求項1〜3
の何れか1項記載の水道用原水中のアンモニア性窒素除
去方法。
4. The raw water for water supply is circulated between a device for aeration treatment and a tower or a tank filled with shell beads until nitrifying bacteria sufficiently propagate.
The method for removing ammonia nitrogen from raw water for tap water according to any one of the above items.
JP18472994A 1994-08-05 1994-08-05 Removal method of ammonia nitrogen from raw water for tap water Expired - Fee Related JP3203291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18472994A JP3203291B2 (en) 1994-08-05 1994-08-05 Removal method of ammonia nitrogen from raw water for tap water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18472994A JP3203291B2 (en) 1994-08-05 1994-08-05 Removal method of ammonia nitrogen from raw water for tap water

Publications (2)

Publication Number Publication Date
JPH0847697A JPH0847697A (en) 1996-02-20
JP3203291B2 true JP3203291B2 (en) 2001-08-27

Family

ID=16158349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18472994A Expired - Fee Related JP3203291B2 (en) 1994-08-05 1994-08-05 Removal method of ammonia nitrogen from raw water for tap water

Country Status (1)

Country Link
JP (1) JP3203291B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3789351A1 (en) * 2019-09-04 2021-03-10 Wen-Lung Chin Water deodorizer and method for making it

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403288B1 (en) * 2000-10-18 2003-10-30 대한민국 A treatment method of wastewater with low concentration of ammonia by the type of non-aeration nitrification
KR100444333B1 (en) * 2000-12-19 2004-08-16 주식회사 효성 Method for Eliminating Nitrogen of Ammonia by use of Nitrification Reactor
JP2006142283A (en) * 2004-10-19 2006-06-08 Hokuei Kensetsu Kk Water purification system
CN100441522C (en) * 2005-08-02 2008-12-10 马守祥 Oyster case active filtering material for sewage treatment and preparation method thereof
JP4976032B2 (en) * 2006-03-27 2012-07-18 三井造船環境エンジニアリング株式会社 Organic wastewater treatment method
JP6156821B2 (en) * 2013-08-29 2017-07-05 国立研究開発法人農業・食品産業技術総合研究機構 Manufacturing method of inorganic fertilizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3789351A1 (en) * 2019-09-04 2021-03-10 Wen-Lung Chin Water deodorizer and method for making it

Also Published As

Publication number Publication date
JPH0847697A (en) 1996-02-20

Similar Documents

Publication Publication Date Title
JPH05169091A (en) Substrate of biomass for nitration, reactor for performing aerobic nitration of refuse by using said substrate and biological method for it, and method for removing nitrogen compound
JP2017209647A (en) Inclusion carrier of microorganism for water treatment, water treatment method and manufacturing method of inclusion carrier
JP3203291B2 (en) Removal method of ammonia nitrogen from raw water for tap water
JP4092454B2 (en) Water treatment method
CN106966501A (en) A kind of modified rice husk filling biofilter and denitrification process
JP3383504B2 (en) Organic wastewater treatment method and treatment device
JP4838872B2 (en) Water treatment apparatus and water treatment method
CA2073216A1 (en) Process for denitrifying water using metallic iron and installation for implementing same
Conroy et al. Effect of sodium chloride concentration on removal of chemical oxygen demand and ammonia from turkey processing wastewater in sand bioreactors
JP2006272080A (en) Ultrahigh-level method for treating water and water treatment system to be used therein
JPH04141297A (en) Ammonia-containing liquid treatment method
JPH0818037B2 (en) Wastewater microbial treatment equipment
JPH06496A (en) Advanced treatment of sewage
JP3385074B2 (en) Microbial treatment of wastewater containing oils and fats
JPH0611440B2 (en) Sewage treatment method
JP2947684B2 (en) Nitrogen removal equipment
JPS6124079B2 (en)
JPH0929285A (en) Advanced treatment method for wastewater and device therefor
JP2952125B2 (en) Surfactant-containing water treatment equipment
JPS63123496A (en) Treatment of sewage
Hadei et al. A survey on the performance of moving bed biofilm reactor and rapid sand filter in wastewater treatment
JPS6274496A (en) Method for treating waste water
JP3721592B2 (en) Biological filtration method
JPS5867396A (en) Removing method for nitrogen and phosphorus in waste water
CN117209069A (en) Method for preparing composite material for purifying black and odorous water body and application

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees