JPH04140696A - High pressure core cooling system - Google Patents

High pressure core cooling system

Info

Publication number
JPH04140696A
JPH04140696A JP2263115A JP26311590A JPH04140696A JP H04140696 A JPH04140696 A JP H04140696A JP 2263115 A JP2263115 A JP 2263115A JP 26311590 A JP26311590 A JP 26311590A JP H04140696 A JPH04140696 A JP H04140696A
Authority
JP
Japan
Prior art keywords
water
suppression pool
tank
water source
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2263115A
Other languages
Japanese (ja)
Inventor
Hiroshi Sasagawa
笹川 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2263115A priority Critical patent/JPH04140696A/en
Publication of JPH04140696A publication Critical patent/JPH04140696A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To upgrade reliability and improve safety of nuclear reactor by switching water source from a suppression pool to a condensation resorvoir tank automatically in the case of abnormal temperature elevation of the suppression pool water. CONSTITUTION:Normally a condensation resorvoir tank is used as water source at first, and by the signal of low water level in the condensation resorvoir tank 5 or high water level in a suppression pool 4, a water source switch control circuit 16 completely opens an electric motor operated valve 9 and closes an electric motor operated valve 8 to switch the source for cooling water from the tank 5 to the pool 4. Next, if the suppression pool is used as water source for cooling and the temperature of the suppression pool water rises, a water temperature detector 15 detects the abnormality. When the signal of the detector 15 exceeds predetermined value and the signal of water level detector 14 in the tank 5 exceeds a predetermined value, an opening command is sent to the valve 8 and a closing command is sent to the valve 9 to automatically switch the water source for cooling from the pool 4 to the tank 5. Therefore, continuous water supply to the reactor becomes possible and the safety of the reactor is attained.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、原子炉の健全性を維持するため炉心へ冷却水
を補給する炉心冷却装置に係わり、特に沸騰水型原子炉
の高圧炉心冷却装置に関する。
Detailed Description of the Invention [Purpose of the Invention (Industrial Application Field) The present invention relates to a core cooling system that replenishes cooling water to a reactor core in order to maintain the health of a nuclear reactor. This article relates to a high-pressure core cooling system for a reactor.

(従来の技術) 沸騰水型原子炉には、原子炉の水位が異常に低下した時
原子炉の安全性を確保するため冷却水を供給する非常用
炉心冷却装置が設置されている。
(Prior Art) A boiling water reactor is equipped with an emergency core cooling system that supplies cooling water to ensure the safety of the reactor when the water level of the reactor drops abnormally.

このような非常用炉心冷却装置の一部として特に原子炉
が高圧の状態においても冷却水の供給が可能な高圧注水
系(HPCI)の高圧炉心冷却装置が設置されている。
As part of such an emergency core cooling system, a high pressure core cooling system of a high pressure water injection system (HPCI) is installed, which is capable of supplying cooling water even when the reactor is under high pressure.

第3図は従来の高圧炉心冷却装置の1つである高圧注水
系(HPCI)の系統構成図である。
FIG. 3 is a system configuration diagram of a high pressure water injection system (HPCI), which is one of the conventional high pressure core cooling systems.

図に示すように、給水系を経て原子炉1に供給された給
水はここで加熱され蒸気となり、タービンへ供給される
。タービンで仕事をした蒸気は復水器で復水となり、再
び給水系を経て原子炉に戻される。高圧炉心冷却装置の
1つである高圧注水系(HPCI)は、冷却用水源とし
て復水貯蔵タンク水またはサプレッションプール水を備
えているが通常は復水貯蔵タンク水が使用されている。
As shown in the figure, feed water supplied to the nuclear reactor 1 via the water supply system is heated here and turned into steam, which is then supplied to the turbine. The steam that has done work in the turbine becomes condensed water in the condenser and is returned to the reactor via the water supply system. A high-pressure water injection system (HPCI), which is one type of high-pressure core cooling system, is equipped with condensate storage tank water or suppression pool water as a cooling water source, but usually condensate storage tank water is used.

そして、雨水源の切換えは水源切換制御回路12によっ
て行われる。すなわち、第4図の論理開路図に示すよう
に復水貯蔵タンク水位低またはサブレッションプール水
位高によって弁9を全開し、弁8を閉じることにより冷
却用水源を復水貯蔵タンク5からサプレッションプール
4に切換える。
The rainwater source is switched by the water source switching control circuit 12. That is, as shown in the logical circuit diagram of FIG. 4, the valve 9 is fully opened when the water level of the condensate storage tank is low or the water level of the subtraction pool is high, and the cooling water source is transferred from the condensate storage tank 5 to the suppression pool by closing the valve 8. Switch to 4.

原子炉1の水位の異常低下信号またはドライウェル2の
圧力の異常高信号によって水源切替制御回路12は自動
起動して弁8または弁9を開放し、復水貯蔵タンク5の
タンク水またはサプレッションプール4のプール水をポ
ンプ7で昇圧し、弁11を開放して給水系から原子炉1
へ供給するように構成されている。またポンプ7の駆動
用タービン6は原子炉1で生じた蒸気の一部を弁10を
経て供給される。なお、圧力抑制室3内のサプレッショ
ンプール4の水位は水位検出器13で、復水貯蔵タンク
5の水位は水位検出器14で検出される。
In response to an abnormally low water level signal in the reactor 1 or an abnormally high pressure signal in the dry well 2, the water source switching control circuit 12 is automatically activated to open the valve 8 or 9, and the tank water in the condensate storage tank 5 or the suppression pool is automatically activated. Pressurize the pool water from No. 4 with pump 7, open valve 11, and transfer it from the water supply system to reactor No. 1.
It is configured to supply Further, the driving turbine 6 of the pump 7 is supplied with a portion of the steam generated in the nuclear reactor 1 via a valve 10 . The water level of the suppression pool 4 in the pressure suppression chamber 3 is detected by a water level detector 13, and the water level of the condensate storage tank 5 is detected by a water level detector 14.

ところで、機器故障などによって給水が喪失するような
過渡変化が発生し、原子炉水位が異常に低下した場合に
は、前述したように高圧注水系(HPCI)が自動起動
し、復水貯蔵タンク水を原子炉1へ供給することによっ
て原子炉の健全性を維持する。一方、炉心の崩壊熱で発
生した蒸気は、逃がし安全弁を通してサプレッションプ
ール水中へ放出され、ここで冷却凝縮されるためサプレ
ッションプール水位が上昇し、復水貯蔵タンク水位低信
号が発生するよりもかなり早い時点においてサプレッシ
ョンプール水位高信号が発生し、水源がサプレッション
プール水に切換わり、以後サブレッヨンプール水が循環
使用される。また、サプレッションプール水は、格納容
器冷却系によって冷却され、崩壊熱によるプール水温の
上昇が抑制され、原子炉の安全が確保されている。
By the way, if a transient change such as a loss of water supply occurs due to equipment failure, etc., and the reactor water level drops abnormally, the high-pressure water injection system (HPCI) will automatically start, as mentioned above, and the water in the condensate storage tank will be The integrity of the reactor is maintained by supplying it to the reactor 1. On the other hand, the steam generated by the decay heat of the core is released into the suppression pool water through the safety relief valve, where it is cooled and condensed, causing the suppression pool water level to rise much faster than the condensate storage tank water level low signal is generated. At this point, a suppression pool water level high signal is generated, the water source is switched to the suppression pool water, and the Subleon pool water is used for circulation from then on. In addition, the suppression pool water is cooled by the containment vessel cooling system, suppressing the increase in pool water temperature due to decay heat, and ensuring the safety of the reactor.

(発明が解決しようとする課題) ところで、高圧注水系(HPCI)か水源としてサプレ
ッションプール水を用いて運転している時に、格納容器
冷却系は多重化されているが、何等かの原因によってサ
プレッションプール水の冷却が出来なくなるような事態
になった場合には、サプレッションプール水温が高圧注
水系(HPCI)の設計温度以上に上昇し、最悪の場合
には高圧注水系(HPCI)の冷却水供給能力が失われ
る可能性がある。
(Problem to be Solved by the Invention) By the way, when the high pressure water injection system (HPCI) is operated using suppression pool water as a water source, the containment vessel cooling system is multiplexed, but suppression may occur due to some reason. If a situation occurs where pool water cannot be cooled, the suppression pool water temperature will rise above the design temperature of the high pressure water injection system (HPCI), and in the worst case, the cooling water supply of the high pressure water injection system (HPCI) will be interrupted. Capacity may be lost.

本発明は、上記事情に鑑みてなされたもので、その目的
はサプレッションプール水温が異常に上昇した時に、自
動的に水源をサプレッションプール水から復水貯蔵タン
ク水へ切替えるようにした高圧炉心冷却装置を提供する
ことにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a high-pressure core cooling system that automatically switches the water source from suppression pool water to condensate storage tank water when the suppression pool water temperature rises abnormally. Our goal is to provide the following.

[発明の構成] (課題を解決するための手段および手段)上記目的を達
成するために、本発明は冷却用水源としてサプレッショ
ンプール水と復水貯蔵タンク水を切替えて使用する沸騰
水型原子力プラントの高圧炉心冷却装置において、サプ
レッションプール水を冷却用水源として使用中、サプレ
ッションプール水温が設定温度以上でかつ復水貯蔵タン
ク水位が設定水位以上のとき、冷却用水源をサプレッシ
ョンプール水から復水貯蔵タンク水へ切換える水源切換
制御回路を備えたことを特徴とするものである。
[Structure of the Invention] (Means and Means for Solving the Problems) In order to achieve the above objects, the present invention provides a boiling water nuclear power plant that alternately uses suppression pool water and condensate storage tank water as a cooling water source. In a high-pressure core cooling system, when suppression pool water is used as a cooling water source, when the suppression pool water temperature is above the set temperature and the condensate storage tank water level is above the set water level, the cooling water source is changed from the suppression pool water to condensate storage. The water source is characterized by being equipped with a water source switching control circuit that switches to tank water.

(実施例) 本発明の実施例を図面について説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の構成図を示すもので、従来
例と同一部分には同一符号を付して説明する。
FIG. 1 shows a configuration diagram of an embodiment of the present invention, and the same parts as in the conventional example are given the same reference numerals and will be explained.

第り図において、給水系を経て原子炉1に供給された給
水はここで加熱され蒸気となり、タービンへ供給される
。タービンで仕事をした蒸気は復水器で復水となり、再
び給水系を経て原子炉に戻るように構成されていること
は従来と同様である。
In the figure, feed water supplied to the nuclear reactor 1 via the water supply system is heated here and turned into steam, which is then supplied to the turbine. The steam that has done work in the turbine becomes condensed water in the condenser and returns to the reactor via the water supply system, as in the conventional system.

そして、原子炉の安全性を確保するための高圧炉心冷却
装置の1つである高圧注水系(HP(1)は、後記する
第2図に示す論理条件により自動起動し、復水貯蔵タン
ク5のタンク水またはサプレッションプール4のプール
水をタービン駆動用ポンプ7で昇圧し、原子炉1へ供給
するように構成されている。
The high-pressure water injection system (HP (1), which is one of the high-pressure core cooling systems to ensure the safety of the reactor, is automatically started according to the logical conditions shown in Figure 2, which will be described later), and the condensate storage tank 5 tank water or pool water in the suppression pool 4 is pressurized by a turbine drive pump 7 and is supplied to the nuclear reactor 1.

また、ポンプ7の駆動は復水貯蔵タンク水位検出器I4
、サプレッションプール水位検出器13およびサプレッ
ションプール水温検出器15の信号により、各水源の出
口弁8.9に開閉信号を発生する水源切換制御回路15
によって切替えられる。
In addition, the pump 7 is driven by the condensate storage tank water level detector I4.
, a water source switching control circuit 15 that generates open/close signals to the outlet valves 8.9 of each water source according to signals from the suppression pool water level detector 13 and the suppression pool water temperature detector 15.
Switched by

第2図は本発明における水源切換制御回路16の作動原
理を示す論理回路図である。
FIG. 2 is a logic circuit diagram showing the operating principle of the water source switching control circuit 16 in the present invention.

通常、最初に復水貯蔵タンク水が水源として使用され、
復水貯蔵タンク5の水位低またはサプレッションプール
4の水位高の信号を受けて水源切換制御回路16によっ
て弁9を全開し、弁8を閉じることにより冷却用水源を
復水貯蔵タンク5からサプレッションプール4に切換え
られる。
Usually condensate storage tank water is used as the water source first,
In response to a signal indicating a low water level in the condensate storage tank 5 or a high water level in the suppression pool 4, the water source switching control circuit 16 fully opens the valve 9 and closes the valve 8 to switch the cooling water source from the condensate storage tank 5 to the suppression pool. It can be switched to 4.

次に、サプレッションプール水を冷却用水源として使用
している時に、サプレッションプール水温が上昇した場
合には、プール水温検出器15が異状を検出し、この水
温検出器15の信号が予め定められた設定値以上になり
かっ復水貯蔵タンク5の水位検出器14の信号が予め定
められた設定値以上の場合に弁8に対して開指令を、弁
9に対しては閉指令を出すことにより、冷却用水源をサ
プレッションプールから復水貯蔵タンクに自動的に切替
える。したかって、サプレッションプール水を水源とし
て利用している時に、サプレッションプール水温が上昇
するような事態になったとしても原子炉への冷却水の継
続的な供給が可能となり、原子炉の安全性が確保される
Next, when the suppression pool water temperature rises when the suppression pool water is used as a cooling water source, the pool water temperature detector 15 detects an abnormality, and the signal of this water temperature detector 15 is determined in advance. When the signal from the water level detector 14 of the condensate storage tank 5 exceeds a predetermined set value, an open command is issued to the valve 8, and a close command is issued to the valve 9. , automatically switches the cooling water source from the suppression pool to the condensate storage tank. Therefore, even if the suppression pool water temperature rises when the suppression pool water is used as a water source, it will be possible to continue supplying cooling water to the reactor, which will improve the safety of the reactor. Secured.

[発明の効果] 以上述べたように、本発明の高圧炉心冷却装置によれば
、サプレッションプール水温が異常上昇し、高圧炉心冷
却装置の設計温度を超える場合でも、運転員操作に頼る
ことなく自動的にサプレッションプール水から復水貯蔵
タンク水へ水源を切換えることができるので、高圧炉心
冷却装置の信頼性を高め原子炉の安全性を向上させるこ
とができる。
[Effects of the Invention] As described above, according to the high-pressure core cooling system of the present invention, even when the suppression pool water temperature rises abnormally and exceeds the design temperature of the high-pressure core cooling system, the high-pressure core cooling system automatically operates without relying on operator operations. Since the water source can be switched from the suppression pool water to the condensate storage tank water, the reliability of the high-pressure core cooling system can be increased and the safety of the reactor can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の系統構成図、第2図は本発
明の主要部である冷却用水源切替制御回路の論理回路図
、第3図は従来の高圧炉心冷却装置の系統構成図、第4
図は従来の高圧炉心冷却装置の水源切替制御回路の論理
回路図である。 1・・・原子炉 2・・・ドライウェル 3・・・圧力抑制室 4・・・サプレッションプール 5・・・復水貯蔵タンク 6・・・ポンプ駆動用タービン 7・・・ポンプ 8、 9.10.11・・・電動弁 +2.1.6・・・水源切換制御回路 1.3.14・・・水位検出器 15・・・水温検出器 (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名) 第 図 第 図
Fig. 1 is a system configuration diagram of an embodiment of the present invention, Fig. 2 is a logic circuit diagram of a cooling water source switching control circuit which is the main part of the invention, and Fig. 3 is a system configuration of a conventional high-pressure core cooling system. Figure, 4th
The figure is a logic circuit diagram of a water source switching control circuit of a conventional high-pressure core cooling system. 1... Nuclear reactor 2... Dry well 3... Pressure suppression chamber 4... Suppression pool 5... Condensate storage tank 6... Pump driving turbine 7... Pump 8, 9. 10.11...Electric valve +2.1.6...Water source switching control circuit 1.3.14...Water level detector 15...Water temperature detector (8733) Agent: Patent attorney Yoshiaki Inomata ( others
1 person) Figure Figure

Claims (1)

【特許請求の範囲】[Claims] (1)冷却用水源としてサプレッションプール水と復水
貯蔵タンク水を切替えて使用する沸騰水型原子力プラン
トの高圧炉心冷却装置において、サプレッションプール
水を冷却用水源として使用中、サプレッションプール水
温が設定温度以上でかつ復水貯蔵タンク水位が設定水位
以上のとき、冷却用水源をサプレッションプール水から
復水貯蔵タンク水へ切替える水源切換制御回路を備えた
ことを特徴とする高圧炉心冷却装置。
(1) In a high-pressure core cooling system of a boiling water nuclear power plant that uses suppression pool water and condensate storage tank water as a cooling water source by switching between them, when the suppression pool water is being used as a cooling water source, the suppression pool water temperature is lower than the set temperature. A high-pressure core cooling system characterized by comprising a water source switching control circuit that switches a cooling water source from suppression pool water to condensate storage tank water when the water level of the condensate storage tank is above a set water level.
JP2263115A 1990-10-02 1990-10-02 High pressure core cooling system Pending JPH04140696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2263115A JPH04140696A (en) 1990-10-02 1990-10-02 High pressure core cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2263115A JPH04140696A (en) 1990-10-02 1990-10-02 High pressure core cooling system

Publications (1)

Publication Number Publication Date
JPH04140696A true JPH04140696A (en) 1992-05-14

Family

ID=17385039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2263115A Pending JPH04140696A (en) 1990-10-02 1990-10-02 High pressure core cooling system

Country Status (1)

Country Link
JP (1) JPH04140696A (en)

Similar Documents

Publication Publication Date Title
US5533337A (en) Feed water supply system of power plant
US4104119A (en) Emergency feed system for cooling nuclear reactor installations
US5169595A (en) Reactor core isolation cooling system
US5349616A (en) Reactor cooling system for boiling water reactors
US4113561A (en) Valve arrangement for a nuclear plant residual heat removal system
JP4960178B2 (en) Nuclear plant safety system
US4948551A (en) Method of protecting a pressurized water nuclear reactor against failures in its emergency stop means
JP2502224B2 (en) Air operated valve
US3702281A (en) Removal of heat from a nuclear reactor under emergency conditions
JPH04140696A (en) High pressure core cooling system
JPH0498198A (en) Core cooling facility for nuclear power plant
CN111916233A (en) Small pressurized water reactor safety injection system combining passive and active functions
JP3982419B2 (en) Reactor safety equipment
JP3892193B2 (en) Reactor containment vessel water injection equipment
JPS61155997A (en) Passive type decompression device of nuclear reactor coolantsystem
JPS62237397A (en) Safety protective device for boiling water type reactor
JP2509631B2 (en) Pump controller
JPH02222878A (en) Residual heat removal system of nuclear power plant
JPH0275782A (en) Feed condensate pump minimum flow rate circulating system
JPH06201880A (en) Boric acid flowout prevention device
JPH0755984A (en) Reactor supply water equipment
CN116313174A (en) Pressurized water reactor nuclear power plant waste heat discharging system and method
JPH05119189A (en) Nuclear reactor injection water flow automatic controller
JPH08278386A (en) Reactor cooling system operation method and reactor cooling system equipment
JPS6244637B2 (en)