JPH0275782A - Feed condensate pump minimum flow rate circulating system - Google Patents

Feed condensate pump minimum flow rate circulating system

Info

Publication number
JPH0275782A
JPH0275782A JP63226253A JP22625388A JPH0275782A JP H0275782 A JPH0275782 A JP H0275782A JP 63226253 A JP63226253 A JP 63226253A JP 22625388 A JP22625388 A JP 22625388A JP H0275782 A JPH0275782 A JP H0275782A
Authority
JP
Japan
Prior art keywords
flow rate
minimum flow
pumps
regulating valve
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63226253A
Other languages
Japanese (ja)
Inventor
Masaaki Matsumoto
政明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63226253A priority Critical patent/JPH0275782A/en
Publication of JPH0275782A publication Critical patent/JPH0275782A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To suppress the fluctuation in a level of a reactor to an allowable range and to ensure a necessary minimum flow rate of a high pressure condensate pump by a method wherein, in an atomic power plant, when a reactor feed pump is stopped, by means of the delivery pressure of a condensate pump, a minimum flow rate is circulated. CONSTITUTION:The other end of a circulating water pipe 10 branched from the delivery side of an M/DRFP 9 is connected to a condenser 3, and a regulating valve 11 is located in this route. The regulating valve 11 has capacity capable of handling 700ton/h at a delivery pressure of approximate 150kg/cm<2>. A second regulating valve 12 is provided in parallel to the regulating valve 11. The regulating valve 12 has capacity capable of handling a necessary minimum flow rate of 700ton/h equivalent to those of two high pressure condensate pumps 5 at a delivery pressure of approximate 50kg/cm<2> of a high pressure condensate pump 5 in cooperation with the regulating valve 11. During normal running, solely through the opening and closing motion of the regulating valve 11, the fluctuation in a level of a reactor 1 can be suppressed to a value within an allowable range. However, when an abnormal state, e.g., the stop of all reactor feed pumps, occurs, a necessary minimum flow rate equivalent to those of the two high pressure condensate pumps can be ensured by means of the regulating valve 12.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は原子力発電プラントに係り、特に原子炉給水ポ
ンプが電動機駆動1台、タービン駆動2台の構成からな
るものにおいて、それらの全部が停止した場合に復水ポ
ンプの吐出圧力により最少流量を循環させるために設け
られる給復水ポンプ最少流量循環系統に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a nuclear power plant, and particularly in a reactor feed water pump configured with one electric motor-driven pump and two turbine-driven pumps. The present invention relates to a feed condensate pump minimum flow circulation system that is provided to circulate the minimum flow rate by the discharge pressure of the condensate pump when all of them are stopped.

(従来の技術) 原子炉給水ポンプ駆動方式は電動機駆動によるものと、
タービン駆動によるものとの組合わせによっている。こ
のうち、電動機駆動の原子炉給水ポンプはタービン駆動
の原子炉給水ポンプが使用できないプラント起動時、ま
たは停止時のために、あるいはタービン駆動のものが故
障した場合の予備として用いるために設置されており、
1台のみの働きによってこれらの必要とされるすべての
要求に応えられるのが望ましいと考えられている。
(Conventional technology) The reactor feed water pump drive system is based on electric motor drive.
This is done in combination with a turbine-driven system. Of these, electric motor-driven reactor feed water pumps are installed for use during plant start-up or shutdown when turbine-driven reactor feed water pumps cannot be used, or as a backup in case the turbine-driven reactor feed pump fails. Ori,
It is considered desirable to be able to meet all of these requirements by the operation of only one machine.

第3図は電動機駆動1台、タービン駆動2台の構成から
なる原子力発電プラントについて示している。すなわち
、原子炉1で発生した蒸気はタービン2に送られて膨張
を遂げ、このとき発電機(図示せず)が回されて電気出
力を生じさせる。
FIG. 3 shows a nuclear power plant consisting of one electric motor drive and two turbine drive units. That is, steam generated in the nuclear reactor 1 is sent to the turbine 2 and expanded, and at this time a generator (not shown) is turned to generate electrical output.

タービン2にて膨張した蒸気は復水器3に導かれ、そこ
で外部から供給される冷却水によって冷却されて復水と
なる。この復水は低圧復水ポンプ4によって抽出され、
さらに高圧復水ポンプ5によって昇圧されて低圧給水加
熱器6に送られ、そこでタービン2からの抽気によって
加熱されて温度上昇が図られる。この温度上昇した復水
はタービン駆動原子炉給水ポンプ7(以下T/DRFP
7と称する)にてさらに昇圧され、原子炉給水として高
圧給水加熱器8に送られて所定の温度まで加熱され、原
子炉1に送給される。ここで、電動機駆動原子炉給水ポ
ンプ9(以下M/DRFP9と称する)はT/DRFP
7と並列に設けられ、T/DRFP7の故障の際には直
ちに起動できるように待機の状態に置かれる。
The steam expanded in the turbine 2 is guided to a condenser 3, where it is cooled by cooling water supplied from the outside and becomes condensed water. This condensate is extracted by a low pressure condensate pump 4,
Further, the pressure is increased by the high pressure condensate pump 5 and sent to the low pressure feed water heater 6, where it is heated by the air extracted from the turbine 2 and the temperature is increased. This temperature-raised condensate is pumped into the turbine-driven reactor feed water pump 7 (hereinafter referred to as T/DRFP).
7), the water is further pressurized and sent as reactor feed water to a high-pressure feed water heater 8 where it is heated to a predetermined temperature and then fed to the reactor 1. Here, the electric motor-driven reactor feed water pump 9 (hereinafter referred to as M/DRFP9) is T/DRFP
7 and is placed in a standby state so that it can be activated immediately in the event of a failure of the T/DRFP 7.

また、これらの高圧復水ポンプ5およびT/DRFP7
には次の理由から給復ポンプ最少流量循環系統が設けら
れる。すなわち、一般に、ポンプには締切運転による過
熱を避け、安定に運転を継続させる必要から必要最少流
量を決めており、原子炉1からの給水要求量がこれを丁
形る場合に給水の一部を復水器3に逃がすようにしてい
る。この最少流量を保つために復水器3に給水を循環さ
せる系統が給復水ポンプ最少流量循環系統と呼ばれるも
ので、図に示されるようにM/DRFP9吐出側から分
岐される循環水管10の他端を復水器3に結び、この経
路に調節弁11を設けて循環流量を調節するやり方が一
般に用いられる。
In addition, these high pressure condensate pumps 5 and T/DRFP7
A feed/return pump minimum flow circulation system is installed for the following reasons. In other words, in general, a minimum required flow rate is determined for the pump in order to avoid overheating due to shut-off operation and to continue stable operation. is released to condenser 3. The system that circulates the water supply to the condenser 3 in order to maintain this minimum flow rate is called the water supply and condensate pump minimum flow circulation system. Generally, the other end is connected to the condenser 3 and a control valve 11 is provided in this path to adjust the circulating flow rate.

(発明が解決しようとする課題) ところで、近年の大容量プラントの出現により給復水ポ
ンプ最少流量循環系統の容量はM/DRFP9の吐出圧
力約150kg/cdで高圧復水ポンプ5の2台分の必
要最少流量700ton/hを循環させる能力を有して
いる。これはM/DRFP9の必要最少流量800ro
n/hの取扱いを可能にし、かつ高圧復水ポンプ5の吐
出圧力約50kg/cdで高圧復水ポンプ5の1台分の
必要最少流ff1350ton/hの扱いも可能にする
ものである。しかしながら、この容量を扱う場合の前提
条件はM/DRFP9の設置台数が2台の場合であり、
1台の場合は循環流量を保つことは不可能である。何故
ならば、原子炉1内での水位の異常な上昇(水位高)が
あると、原子炉1からの要求給水量が減少することにな
るが、このとき高圧復水ポンプ5は最悪の場合でも、つ
まり原子炉給水ポンプ全台停止の状態になっても2白兵
必要最少流量を循環させ、運転を継続させるのがのぞま
しい。この場合、M/DRFP9が2台あれば高圧復水
ポンプ5の2台分の必要最少流ff1700ton/h
を高圧復水ポンプ5の吐出圧力で流すことが可能である
が、M/DRFP9が1台の場合には給復水ポンプ最少
流量循環系統も1系統しかなく、1台分の最少流量につ
いてしか扱えなくなってしまう。
(Problem to be Solved by the Invention) By the way, with the advent of large-capacity plants in recent years, the capacity of the supply and condensate pump minimum flow rate circulation system is approximately 150 kg/cd at the discharge pressure of M/DRFP9, which is equivalent to the capacity of two high-pressure condensate pumps 5. It has the ability to circulate the required minimum flow rate of 700 tons/h. This is the minimum required flow rate of M/DRFP9 of 800ro.
n/h, and also makes it possible to handle the required minimum flow ff1350 ton/h for one high pressure condensate pump 5 at a discharge pressure of about 50 kg/cd of the high pressure condensate pump 5. However, the prerequisite for handling this capacity is that the number of M/DRFP9s installed is two;
If there is only one unit, it is impossible to maintain the circulation flow rate. This is because if there is an abnormal rise in the water level within the reactor 1 (high water level), the required water supply amount from the reactor 1 will decrease, but at this time, the high pressure condensate pump 5 will However, even if all the reactor feed water pumps are stopped, it is desirable to circulate the minimum flow rate necessary for 2 melees and continue operation. In this case, if there are two M/DRFPs 9, the minimum flow required for two high pressure condensate pumps ff is 1700 ton/h.
It is possible to flow with the discharge pressure of the high-pressure condensate pump 5, but when there is only one M/DRFP9, there is only one supply condensate pump minimum flow circulation system, and the minimum flow rate for one unit is limited. I can't handle it anymore.

この対策として給復水ポンプ最少流量循環系統の容量増
加を図ることも考えられるが、従来から調節弁11が開
閉動作する際の給水流量の変動による原子炉1の水位変
動が問題となっており、この案を採用したときには原子
炉1の水位変動を一層増大させることになり、水位制御
を不安定なものにする懸念がある。
As a countermeasure to this problem, it is possible to increase the capacity of the water supply and condensate pump minimum flow rate circulation system, but the problem has been that the water level in the reactor 1 fluctuates due to fluctuations in the feed water flow rate when the control valve 11 opens and closes. If this plan is adopted, water level fluctuations in the reactor 1 will further increase, and there is a concern that the water level control will become unstable.

このようにプラントの起動停止を含めた通常運転時にお
ける調節弁11の開閉動作による原子炉1の水位変動を
小さく抑えるには容量を従来のものとあまり変わらない
容量にする必要がある。−方、M/DRFP9が停止し
た状態での高圧復水ポンプ5の2台分の必要最少流量7
00ton/hを保つには従来の容量から一層太きくし
なけれならず、双方の求めるところを両立させるのが難
しいという問題がある。
In this way, in order to keep the fluctuations in the water level of the nuclear reactor 1 small due to the opening and closing operations of the control valve 11 during normal operation including startup and shutdown of the plant, it is necessary to make the capacity the same as that of the conventional reactor. - On the other hand, the required minimum flow rate 7 for two high-pressure condensate pumps 5 when the M/DRFP 9 is stopped.
In order to maintain 0.00 ton/h, the capacity must be increased even further than the conventional capacity, and there is a problem in that it is difficult to satisfy both requirements.

したがって、本発明の目的は原子炉の水位変動を許容し
得る範囲を超えさせず、しかも高圧復水ポンプの2台分
の必要最少流量を確保することのできる給復水ポンプ最
少流量循環系統を提供することにある。
Therefore, an object of the present invention is to provide a feed condensate pump minimum flow circulation system that does not allow water level fluctuations in the reactor to exceed an allowable range and that can secure the required minimum flow rate for two high-pressure condensate pumps. It is about providing.

[発明の構成] (課題を解決するための手段) 本発明は上記課題を解決するためにほぼ同一の構成によ
る少なくとも2台の復水ポンプおよび1台の電動機駆動
原子炉給水ポンプと、2台のタービン駆動原子炉給水ポ
ンプとの組合わせによる3台の原子炉給水ポンプを有し
、復水器から原子炉に至る経路にこれらの復水ポンプお
よび原子炉給水ポンプが定められた順に並び、かつ同種
のものは並列に結ばれるように設けたものにおいて、電
動機駆動原子炉給水ポンプの吐出側より分岐されて復水
器に至る循環水管を第1の調節弁を介して設けると共に
、第2の調節弁を第1の調節弁と並列に結ばれるように
配置したことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention provides at least two condensate pumps and one motor-driven nuclear reactor feed water pump having substantially the same configuration; It has three reactor feed water pumps in combination with a turbine-driven reactor feed water pump, and these condensate pumps and reactor feed water pumps are arranged in a predetermined order on the path from the condenser to the reactor. In the case where similar types are connected in parallel, a circulating water pipe is provided which is branched from the discharge side of the motor-driven reactor feed water pump and reaches the condenser via the first control valve, and a second control valve is provided. The first control valve is arranged in parallel with the first control valve.

(作用) 本発明における第1の調節弁は基本的には従来の調節弁
を転用したものであり、その容量は電動機駆動原子炉給
水ポンプの吐出圧力により復水ポンプ2台分の必要最少
流量を扱うことができる。
(Function) The first control valve in the present invention is basically a conventional control valve, and its capacity is the minimum flow rate required for two condensate pumps depending on the discharge pressure of the motor-driven reactor feed water pump. can be handled.

したがって、原子炉給水ポンプが全台停止という非常事
態に見舞われなければ、この第1の調節弁によってすべ
ての運転状況に対応した流量を扱うことが可能である。
Therefore, unless an emergency situation occurs in which all reactor feed water pumps are stopped, the first control valve can handle a flow rate that corresponds to all operating conditions.

しかし、電動機駆動原子炉給水ポンプが停止した場合の
高圧復水ポンプ2台分の必要最少流量の確保は高圧復水
ポンプ自身の吐出圧力によらねばならない。その場合、
容量は第1の調節弁のみでは不足しており、このときに
限り第2の調節弁を働かせて不足している循環流量の増
加を図るようにする。
However, when the motor-driven nuclear reactor feed water pump stops, securing the required minimum flow rate for two high-pressure condensate pumps must depend on the discharge pressure of the high-pressure condensate pumps themselves. In that case,
The capacity is insufficient with only the first control valve, and only in this case, the second control valve is operated to increase the insufficient circulation flow rate.

これにより容量の増加に伴なう原子炉の水位変動が大き
くなる弊害を回避することができると共に、復水ポンプ
2台分の必要最少流量を確保すること、が可能となり、
相反する二つの要求に応えることができる。
This makes it possible to avoid the negative effects of increased water level fluctuations in the reactor due to increased capacity, and also to ensure the required minimum flow rate for two condensate pumps.
It can meet two contradictory demands.

(実施例) 本発明の実施例を第1図を参照して説明する。(Example) An embodiment of the present invention will be described with reference to FIG.

なお、本図中、第3図に示される部分と同一のものには
同一の符号を付しており、これらについては説明を省略
する。
In this figure, parts that are the same as those shown in FIG. 3 are designated by the same reference numerals, and explanations thereof will be omitted.

第1図において、M/DRFP9の吐出側から分岐され
る循環水管10の他端は復水器3に結ばれている。この
経路内には調節弁11が設けられ、循環流量が調節され
るのは従来技術と同様である。
In FIG. 1, the other end of a circulating water pipe 10 branched from the discharge side of the M/DRFP 9 is connected to a condenser 3. A control valve 11 is provided in this path, and the circulating flow rate is controlled as in the prior art.

そして、この調節弁11の容量はM/DRFP9吐出圧
力約1吐出圧力約1一0 可能である。
The capacity of this control valve 11 can be about 1 discharge pressure of M/DRFP9 and about 110 discharge pressure.

さらに、本発明による新規な構成として調節弁11と並
列に第2の調節弁12が設けられる。ちなみに、以後調
節弁11は第2の調節弁12に対して第1の調節弁と呼
ぶものとする。
Furthermore, as a novel configuration according to the present invention, a second control valve 12 is provided in parallel with the control valve 11. Incidentally, hereinafter, the control valve 11 will be referred to as a first control valve in contrast to the second control valve 12.

この第2の調節弁12は高圧復水ポンプ5吐出圧力約5
0kg/cjで第1の調節弁11と合わせて高圧復水ポ
ンプ5の2台分の必要最少流量700ton/hを取扱
い可能な容量を備えるものとする。
This second control valve 12 has a high pressure condensate pump 5 discharge pressure of approximately 5
It is assumed that the pump has a capacity that can handle the required minimum flow rate of 700 ton/h for two high-pressure condensate pumps 5 together with the first control valve 11 at 0 kg/cj.

一方、符号13は第1および第2の調節弁11、12に
働きかけてこれを開閉動作させる最少流量循環系統制御
装置を示している。この最少流量循環系統制御装置13
はM/DRFP9の吸込側給水流量を検出する流量検出
器14からの吸込流量信号、T/DRFP7、M/DR
FP9および高圧復水ポンプ5の運転台数を各々検出す
るポンプ運転台数検出器15、16および17からのポ
ンプ運転台数信号をそれぞれ入力し、後記の演算により
第1および第2の調節弁11、12に対して開閉信号を
出力する。
On the other hand, reference numeral 13 indicates a minimum flow rate circulation system control device that operates on the first and second control valves 11 and 12 to open and close them. This minimum flow rate circulation system control device 13
is the suction flow rate signal from the flow rate detector 14 that detects the suction side water supply flow rate of M/DRFP9, T/DRFP7, M/DR
Pump operation number signals from pump operation number detectors 15, 16, and 17 that detect the number of operating FP9 and high-pressure condensate pump 5, respectively, are input, and the first and second control valves 11, 12 are determined by calculations described later. Outputs open/close signals for.

第2図は最少流量循環系統制御装置13における制御回
路の一例を示している。流量検出器14からの吸込流量
信号「低」と、ポンプ運転台数検出器16からのポンプ
運転台数信号「1」とがアンド回路18に与えられると
、その出力がオア回路19を経て第1の調節弁11を開
動作させる制御信号が出力される。また、ポンプ運転台
数検出器16から出されるポンプ運転台数信号「0」と
、ポンプ運転台数検出器15から出されるポンプ運転台
数信号「0」とがアンド回路20に与えられると、その
出力はアンド回路21に与えられ、このとき同時にポン
プ運転台数検出器17からのポンプ運転台数信号「1く
」が入力された場合にアンド回路21からはオア回路1
9を経て、第1の調節弁11を開動作させる制御信号が
出力される。
FIG. 2 shows an example of a control circuit in the minimum flow rate circulation system control device 13. When the suction flow rate signal "low" from the flow rate detector 14 and the pump operation number signal "1" from the pump operation number detector 16 are given to the AND circuit 18, the output is passed through the OR circuit 19 to the first A control signal for opening the control valve 11 is output. Further, when the pump operation number signal "0" output from the pump operation number detector 16 and the pump operation number signal "0" output from the pump operation number detector 15 are given to the AND circuit 20, the output is AND If the pump operation number signal "1" from the pump operation number detector 17 is simultaneously inputted to the circuit 21, the AND circuit 21 outputs an OR circuit 1.
9, a control signal for opening the first control valve 11 is output.

また、アンド回路20の出力がアンド回路22に与えら
れて同時にポンプ運転台数検出器17からのポンプ運転
台数信号「2く」が入力された場合にアンド回路22か
らは第2の調節弁12を開動作させる制御信号が出力さ
れる。第1および第2の調節弁11.12の自動開条件
が成立しない上記以外の条件では最少流量循環系統制御
装置13からの制御信号により第1および第2の調節弁
11.12は閉動作させられる。
Further, when the output of the AND circuit 20 is given to the AND circuit 22 and at the same time the pump operation number signal "2" from the pump operation number detector 17 is input, the AND circuit 22 outputs the second control valve 12. A control signal for opening is output. Under conditions other than the above where the automatic opening condition for the first and second control valves 11.12 is not satisfied, the first and second control valves 11.12 are closed by the control signal from the minimum flow rate circulation system control device 13. It will be done.

上記構成によれば、プラントの起動停止を含めた通常運
転中は、M/DRFP9の運転中における吸込流量低か
、あるいはM/DRFP9の停止、T/DRFP7の全
台停止中の高圧復水ポンプ5の1台運転の状態のときに
しか第1の調節弁11は開閉動作しない。必要最少流量
は第1の調節弁11の開動作によって確保され、その容
量からみて原子炉1の水位変動に及ぼす影響は従来のも
のが及ぼす程度と変わらない。
According to the above configuration, during normal operation including startup and shutdown of the plant, the suction flow rate is low while the M/DRFP 9 is operating, or the high pressure condensate pump is stopped when the M/DRFP 9 is stopped, or when all T/DRFPs are stopped. The first control valve 11 opens and closes only when one valve is in operation. The required minimum flow rate is ensured by the opening operation of the first control valve 11, and in view of its capacity, its influence on water level fluctuations in the reactor 1 is no different from that of conventional valves.

一方、M/DRFP9が停止した中でも循環流量は高圧
復水ポンプ5の2台分の必要最少流量700ton/h
を保たねばならないが、M/DRFP9の停止、T/R
FP7の全台停止中の高圧復水ポンプ5の2台運転の状
態に至ったとき、第2の調節弁12が全開され、第1の
調節弁11と合わせて容量の増加を図り、上記の高圧復
水ポンプ5の2台分の必要最少流量700ton/hを
循環水管10を通して復水器3に循環させる。
On the other hand, even when the M/DRFP 9 is stopped, the circulation flow rate is the minimum required flow rate of 700 ton/h for two high-pressure condensate pumps 5.
must be maintained, but M/DRFP9 stoppage, T/R
When all the high pressure condensate pumps 5 of the FP7 are stopped, the second control valve 12 is fully opened, and together with the first control valve 11, the capacity is increased, and the above-mentioned A required minimum flow rate of 700 ton/h for two high-pressure condensate pumps 5 is circulated to the condenser 3 through the circulating water pipe 10.

かくして、上記構成によれば、通常運転時には第1の調
節弁11の開閉動作しかないので、原子炉1の水位変動
を許容される範囲に抑えることができ、水位制御に何ら
の不安を生じさせない。しかも、原子炉給水ポンプ全台
停止のような異常事態発生の場合においても、第2の調
節弁12によって容量の増加を図って高圧復水ポンプの
2台分の必要最少流量を確保することができ、その保護
を確実になし得る。
Thus, according to the above configuration, during normal operation, only the opening and closing operations of the first control valve 11 are performed, so that fluctuations in the water level of the reactor 1 can be suppressed within an allowable range, and there is no concern about water level control. . Moreover, even in the event of an abnormal situation such as all reactor feedwater pumps being stopped, the capacity can be increased using the second control valve 12 to ensure the required minimum flow rate for two high-pressure condensate pumps. and its protection can be ensured.

なお、上記実施例では並列に設置された第1および第2
の調節弁11.12によってそれぞれ通常運転中の容量
と、原子炉給水ポンプ全台停止のような異常事態発生の
場合の容量とが変えられるように構成されているが、一
つの調節弁により中間開度までを通常運転中の容量と定
め、全開位置を異常事態発生の場合の容量として本実施
例と同様の制御により同じ効果を得ることが可能である
Note that in the above embodiment, the first and second
The control valves 11 and 12 are configured to change the capacity during normal operation and the capacity in the event of an abnormal situation such as all reactor feed water pumps being stopped. The same effect can be obtained by the same control as in this embodiment by setting the capacity up to the open position as the capacity during normal operation, and setting the fully open position as the capacity in the event of an abnormal situation.

[発明の効果] 以上説明したように本発明は電動機駆動原子炉給水ポン
プの吐出側から分岐されて復水器に至る循環水管を第1
の調節弁を介して設けると共に、第2の調節弁を第1の
調節弁と並列に結ばれるように配置しているから、原子
炉の水位変動を許容し得る範囲内に抑えることが可能で
あり、しかも高圧復水ポンプ2台分の必要最少流量を確
保することができ、原子炉の水位制御の安定ならびに高
圧復水ポンプの保護の要求に同時に応えられるものであ
る。
[Effects of the Invention] As explained above, the present invention provides the first circulating water pipe branched from the discharge side of the motor-driven reactor feed water pump and leading to the condenser.
Since the second control valve is connected in parallel with the first control valve, it is possible to suppress water level fluctuations in the reactor within an allowable range. Moreover, it is possible to secure the required minimum flow rate for two high-pressure condensate pumps, and simultaneously meet the requirements for stable water level control in the reactor and protection of the high-pressure condensate pumps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による給復水ポンプ最少流量循環系統の
一実施例を示す系統図、第2図は本発明による最少流量
循環系統制御装置の一実施例を示す構成図、第3図は従
来の原子力発電プラントを示す系統図である。 1・・・・・・・・・原子炉 3・・・・・・・・・復水器 5・・・・・・・・・高圧復水ポンプ 7・・・・・・・・・T/DRFP 9・・・・・・・・・M/DRFP 10・・・・・・・・・循環水管 11・・・・・・・・・第1の調節弁 12・・・・・・・・・第2の調節弁 13・・・・・・・・・最少流量循環系統制御装置14
・・・・・・・・・流量検出器 15.16.17・・・・・・運転台数検出器18.2
0.21.22・・・・・・アンド回路19・・・・・
・・・・オア回路 出願 株式会社 東 芝 代理人 弁理士 須 山 佐 −
FIG. 1 is a system diagram showing an embodiment of the minimum flow rate circulation system for the water supply and condensate pump according to the present invention, FIG. 2 is a block diagram showing an embodiment of the minimum flow rate circulation system control device according to the present invention, and FIG. FIG. 1 is a system diagram showing a conventional nuclear power plant. 1...Reactor 3...Condenser 5...High pressure condensate pump 7...T /DRFP 9...M/DRFP 10...Circulating water pipe 11...First control valve 12... ...Second control valve 13...Minimum flow rate circulation system control device 14
......Flow rate detector 15.16.17...Number of operating units detector 18.2
0.21.22...AND circuit 19...
...OR circuit application Toshiba Corporation Agent Patent attorney Sasu Suyama −

Claims (1)

【特許請求の範囲】[Claims] ほぼ同一の構成による少なくとも2台の復水ポンプおよ
び1台の電動機駆動原子炉給水ポンプと、2台のタービ
ン駆動原子炉給水ポンプとの組合わせによる3台の原子
炉給水ポンプを有し、復水器から原子炉に至る経路にこ
れらの復水ポンプおよび原子炉給水ポンプが定められた
順に並び、かつ同種のものは並列に結ばれるように設け
たものにおいて、前記電動機駆動原子炉給水ポンプの吐
出側より分岐されて前記復水器に至る循環水管を第1の
調節弁を介して設けると共に、第2の調節弁を前記第1
の調節弁と並列に結ばれるように配置したことを特徴と
する給復水ポンプ最少流量循環系統。
It has three reactor feed water pumps that are a combination of at least two condensate pumps, one electric motor-driven reactor feed water pump, and two turbine-driven reactor feed water pumps with almost the same configuration. In a system where these condensate pumps and reactor feed water pumps are arranged in a predetermined order on the route from the water tank to the reactor, and similar types are connected in parallel, the motor-driven reactor feed water pumps are A circulating water pipe branched from the discharge side and reaching the condenser is provided via a first control valve, and a second control valve is connected to the first control valve.
A water supply and condensate pump minimum flow circulation system characterized by being arranged in parallel with a control valve.
JP63226253A 1988-09-09 1988-09-09 Feed condensate pump minimum flow rate circulating system Pending JPH0275782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63226253A JPH0275782A (en) 1988-09-09 1988-09-09 Feed condensate pump minimum flow rate circulating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63226253A JPH0275782A (en) 1988-09-09 1988-09-09 Feed condensate pump minimum flow rate circulating system

Publications (1)

Publication Number Publication Date
JPH0275782A true JPH0275782A (en) 1990-03-15

Family

ID=16842297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63226253A Pending JPH0275782A (en) 1988-09-09 1988-09-09 Feed condensate pump minimum flow rate circulating system

Country Status (1)

Country Link
JP (1) JPH0275782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103362792A (en) * 2013-07-30 2013-10-23 河南华润电力古城有限公司 Condensate pump frequency conversion control method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103362792A (en) * 2013-07-30 2013-10-23 河南华润电力古城有限公司 Condensate pump frequency conversion control method and device

Similar Documents

Publication Publication Date Title
US5123478A (en) Cooling apparatus for electronic equipment with fail-safe condensation protection
US5533337A (en) Feed water supply system of power plant
JP2809977B2 (en) Control device
JPH0275782A (en) Feed condensate pump minimum flow rate circulating system
JP2695992B2 (en) Pressurized fluidized bed reactor and method of operation thereof
JP3462235B2 (en) Steam generator
JPH0274899A (en) Condensate pump controller of nuclear power plant
JPH06229507A (en) Feed water control device
JP3548644B2 (en) Turbine-driven feedwater pump controller
JP2533097B2 (en) Auxiliary equipment cooling facility for nuclear power plants
JPH0350404A (en) Control of feed water/condensate pump
JPS6227692A (en) Flow and pressure controller to control-rod driving hydraulic mechanism
JPH0470600B2 (en)
KR20030041418A (en) Cooling system of newclear power plant
JPS6332203A (en) Method of controlling feed pump for nuclear reactor
JPS62196505A (en) Feedwater flow controller
JPS6248993A (en) Device for preventing cavitation of recirculating system pump for reactor
JPH03267690A (en) Vacuum adjusting device of condenser
JPH01106904A (en) Cooling device for gland steam condenser
JPH0688892A (en) Equipment for protecting control rod driving mechanism
CN116313174A (en) Pressurized water reactor nuclear power plant waste heat discharging system and method
JPS63686B2 (en)
JPH0416601B2 (en)
JPH04140696A (en) High pressure core cooling system
JPS58201097A (en) Feedwater system for condensed water