JPH03267690A - Vacuum adjusting device of condenser - Google Patents

Vacuum adjusting device of condenser

Info

Publication number
JPH03267690A
JPH03267690A JP6709390A JP6709390A JPH03267690A JP H03267690 A JPH03267690 A JP H03267690A JP 6709390 A JP6709390 A JP 6709390A JP 6709390 A JP6709390 A JP 6709390A JP H03267690 A JPH03267690 A JP H03267690A
Authority
JP
Japan
Prior art keywords
vacuum
condenser
degree
change
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6709390A
Other languages
Japanese (ja)
Inventor
Junichi Akatsu
赤津 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6709390A priority Critical patent/JPH03267690A/en
Publication of JPH03267690A publication Critical patent/JPH03267690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To prevent any vibration from being produced owing to the degree of vacuum by detecting the high degree of vacuum of a condenser and the rate of a change in the degree of the vacuum based upon each operation parameter, and predicting the change in the degree of vacuum to match it to a pattern of an operation state change, and hereby keeping the degree of the vacuum within a predetermined value. CONSTITUTION:There is provided a control device 31 for monitoring a state change of a plant, and detecting the state change, and hereby predicting a change in the degree of vacuum of a condenser and issuing a control signal. In the case where a load is steeply lowered or raised, the degree of vacuum is steeply raised or lowered linking with the load, whereby the change in the degree of vacuum goes over a predetermined value of the width of the change in the degree of vacuum being a factor of generation of turbine vibration, and influences the vibration generation and turbine interruption. The control device 31 evaluates the rate of the change in the degree of vacuum and condenser characteristics based upon the rate of the change in the plant load and hereby previously draws an air extractor inlet valve 10 and an air extractor inlet bypass valve 22.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蒸気発生装置、タービン、復水器等から構成さ
れる火力プラント、及び、原子カプラントに係り、特に
、復水器の真空度を監視、規定する調整装置に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a thermal power plant and an atomic coupler comprising a steam generator, a turbine, a condenser, etc. Concerning monitoring, regulating and regulating devices.

〔従来の技術〕[Conventional technology]

第2図は例えば、特開平1−98895号公報に記載さ
れている従来技術の系統図を示す。
FIG. 2 shows a system diagram of the prior art described in, for example, Japanese Unexamined Patent Publication No. 1-98895.

蒸気発生装置!(図示せず)で発生した蒸気により駆動
されたタービン1の排気蒸気は復水器胴2に回収され、
循環水ポンプ4により冷却水供給管5を通じて復水器水
室3へ送られた冷却水と熱交換し復水後、プラント内を
循環して、再度、蒸気発生装置に戻る閉回路殻形成して
いる。
Steam generator! Exhaust steam from the turbine 1 driven by steam generated in (not shown) is collected in the condenser shell 2,
The circulating water pump 4 exchanges heat with the cooling water sent to the condenser water chamber 3 through the cooling water supply pipe 5, and after condensation, it circulates within the plant and returns to the steam generator again to form a closed circuit shell. ing.

この冷却水により復水器胴2内の真空度も確保される。The degree of vacuum within the condenser shell 2 is also ensured by this cooling water.

この冷却水は冷却水出口弁6を経由し、冷却水排出管7
により排出される。
This cooling water passes through a cooling water outlet valve 6 and a cooling water discharge pipe 7.
is discharged by

一方、復水器胴2内の不凝縮性ガスは空気抽出器11に
より空気抽出管9より吸引され、原子カプラントの場合
、排出ガス処理装置12を経由し、排気筒13へ排出す
る。火力プラントの場合、排出ガス処理装置12.排気
筒13は設置せず、直接、大気へ排出する。
On the other hand, the non-condensable gas in the condenser shell 2 is sucked through the air extraction pipe 9 by the air extractor 11, and in the case of an atomic couplant, is discharged to the exhaust stack 13 via the exhaust gas treatment device 12. In the case of a thermal power plant, an exhaust gas treatment device 12. No exhaust stack 13 is installed, and the gas is directly exhausted to the atmosphere.

この不凝縮性ガスの抽出と冷却水による冷却作用により
、復水器の真空度は維持される。
The degree of vacuum in the condenser is maintained by the extraction of the non-condensable gas and the cooling action of the cooling water.

復水器の真空度変化の特性を第3図ないし第6図に示す
The characteristics of the vacuum degree change of the condenser are shown in Figs. 3 to 6.

第3図は復水器への冷却水量が一定の時の冷却水温度を
パラメータにしたプラント負荷に対する復水器真空度の
変化を示す。冷却水温度が高温T1より低温T2になる
程、復水器の真空度は高真空度となり、同一冷却水温度
の場合、プラント負荷を下げる程、高真空度となる。
FIG. 3 shows the change in condenser vacuum degree with respect to the plant load using the cooling water temperature as a parameter when the amount of cooling water to the condenser is constant. The degree of vacuum in the condenser becomes higher as the cooling water temperature becomes lower T2 than the higher temperature T1, and at the same cooling water temperature, the lower the plant load is, the higher the degree of vacuum becomes.

第4図は冷却水量、及び、プラント負荷が一定の場合の
冷却水入口温度に対する復水器真空度の変化を示す。第
5図は冷却水量に対する復水器真空度の変化を示す。第
6図は抽出不凝縮性ガス量に対する復水器真空度の変化
を示す。
FIG. 4 shows changes in the condenser vacuum degree with respect to the cooling water amount and the cooling water inlet temperature when the plant load is constant. FIG. 5 shows the change in condenser vacuum degree with respect to the amount of cooling water. FIG. 6 shows the change in condenser vacuum degree with respect to the amount of noncondensable gas extracted.

復水器の真空度の変化要因は第3図ないし第6図より外
的要因である外気温度に左右される冷却水温度とプラン
トの運用に支配され、人的に制御可能なプラント負荷、
冷却水量、抽出不凝縮性ガス量の二種類に区別される。
From Figures 3 to 6, the factors that change the degree of vacuum in the condenser are determined by external factors such as the cooling water temperature, which is influenced by the outside temperature, and plant operation, and the plant load, which can be controlled manually.
There are two types: the amount of cooling water and the amount of non-condensable gas extracted.

真空度による問題点として高真空度(740mnHg以
上)はタービン1内のロータ(図示せず)の不安定現象
により振動が発生すること、及び、復水器氷室3内のチ
ューブ(図示せず)外を流れる蒸気の高流速化によるチ
ューブ振動があり規定真空度まで調整する運転を行う必
要がある。
Problems with the degree of vacuum include the fact that at high degrees of vacuum (more than 740 mnHg), vibrations occur due to instability of the rotor (not shown) in the turbine 1, and the tubes (not shown) in the condenser ice chamber 3. There is tube vibration due to the high flow rate of steam flowing outside, and it is necessary to operate the tube to adjust it to the specified vacuum level.

従来、この真空度の調整法は復水器の特性を利用し下記
で実施している。
Conventionally, this method of adjusting the degree of vacuum has been carried out using the characteristics of the condenser as described below.

(1) li環水ポンプ4の翼角度変更、又は、冷却水
出口弁6を絞り復水器への冷却水量を減少させ真空度を
悪くする。
(1) Changing the blade angle of the li-ring water pump 4 or throttling the cooling water outlet valve 6 to reduce the amount of cooling water flowing into the condenser, thereby worsening the degree of vacuum.

(2)空気吸込弁8を微開し大気中の空気を復水器胴2
内に注入し不凝縮性ガス量を増加させ真空度を悪くする
(2) Slightly open the air suction valve 8 and drain the air from the atmosphere into the condenser shell 2.
The amount of noncondensable gas increases and the degree of vacuum deteriorates.

(3)空気抽出器入口弁10を絞り、空気抽出器11へ
の抽出不凝縮ガス量を制限し、これにより不凝縮ガス量
を増加させて真空度を悪くする。
(3) Throttle the air extractor inlet valve 10 to limit the amount of non-condensable gas extracted to the air extractor 11, thereby increasing the amount of non-condensable gas and worsening the degree of vacuum.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の調整法には下記欠点がある。 Conventional adjustment methods have the following drawbacks.

(1)冷却水量を減少させると復水器での冷却水温度上
昇値が設計値をオーバーし環境への影響炭火、及び、規
制値を守れぬ。
(1) If the amount of cooling water is reduced, the temperature rise of the cooling water in the condenser will exceed the design value, resulting in an impact on the environment and failure to comply with the regulation values.

(2)空気注入により特に原子カプラントの場合大気中
の放呂放射能の増加となる。
(2) Air injection increases radioactivity in the atmosphere, especially in the case of atomic couplants.

(3)空気抽出器入口弁10が大口径であり弁開度が数
%と運用上非常に困難。
(3) The air extractor inlet valve 10 has a large diameter and the valve opening is several percent, making it extremely difficult to operate.

又、高真空度対策の他の真空度の変化率(約10+um
Hg/H)が大きい場合、タービン振動が誘発される新
知見が判明し従来の調整法(手動操作)では対応する事
がより困難となった。
In addition, other vacuum degree change rates (approximately 10+um
New findings have revealed that turbine vibration is induced when Hg/H) is large, making it more difficult to respond using conventional adjustment methods (manual operation).

振動現象は軽微でも一度発生すると加速度的に増長され
タービン停止へ波及する。
Even if the vibration phenomenon is slight, once it occurs, it increases at an accelerated rate and causes the turbine to stop.

本発明の目的は、真空度に起因する振動発生防止とする
ためにプラントの運転状態を常時監視の上、運転状態変
化を事前に検出し、先行的に真空度変化を防止する対応
を自動的に可能とする復水器真空調整装置を提供するこ
とにある。
The purpose of the present invention is to constantly monitor the operating status of a plant in order to prevent vibrations caused by the degree of vacuum, detect changes in the operating status in advance, and automatically take measures to prevent changes in the degree of vacuum in advance. The purpose of the present invention is to provide a condenser vacuum adjustment device that enables

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、本発明のタービン振動発生の要因である復
水器の高真空度及び真空度変化率を各運転パラメータを
検出し、真空度変化を事前に予測し、運転状態変化のパ
ターンに合せ、真空度を規定値以内に保持する先行制御
型の制御装置により達成される。
The above purpose of the present invention is to detect the high degree of vacuum and the rate of change in the degree of vacuum of the condenser, which are factors that cause the generation of turbine vibration, using various operating parameters, predict changes in the degree of vacuum in advance, and adjust the rate of change in the degree of vacuum to the pattern of changes in the operating state. This is achieved by a proactive control type control device that maintains the degree of vacuum within a specified value.

〔作用〕[Effect]

復水器の真空度変化要因である第3図ないし第6図のパ
ラメータを制御装置からタイムリーに指令することによ
り可能である。
This is possible by timely commanding the parameters shown in FIGS. 3 to 6, which are factors for changing the degree of vacuum in the condenser, from the control device.

〔実施例〕〔Example〕

第1図は本発明の系統図を示す。 FIG. 1 shows a system diagram of the present invention.

空気抽出管9より小容量の空気抽出バイパス管21を分
岐し、その配管の途中に空気抽出器入口バイパス弁22
を設置する。
An air extraction bypass pipe 21 with a smaller capacity is branched from the air extraction pipe 9, and an air extractor inlet bypass valve 22 is installed in the middle of the piping.
Set up.

又、空気抽出器11と排ガス処理装置12をバイパスす
る排ガス再循環配管23とその配管の途中に排ガス量を
調整する排ガス再循環弁24を設置する。プラント運転
状態は起動時、負荷上昇時。
Further, an exhaust gas recirculation pipe 23 that bypasses the air extractor 11 and the exhaust gas treatment device 12, and an exhaust gas recirculation valve 24 that adjusts the amount of exhaust gas are installed in the middle of the pipe. The plant operation status is at startup and when the load increases.

負荷変動時、負荷一定運転時、負荷降下時、負荷遮断時
等の緊急時と種々の運転ケースがあり、この状態変化の
他の外的要因である冷却水温度の変化がおのおのの運転
ケースに左右され、これら全てが復水器真空度変化に影
響する。これらのプラントの状態変化を、常時、監視す
ると共に、その状態変化を検出し、復水器真空度変化を
予測、制御信号を指令する制御装置31を設置する。こ
の制御装置31にはプラント負荷、冷却水出/入口温度
、復水器真空度、冷却水量、負荷遮断等を時間函数で取
り込み状態変化から復水器特性を計算し、復水器真空度
の変化する前に、真空度変化後を予測し、状態変化のパ
ターンに合せ空気抽出器入ロ弁講整、W環水流量調整、
排ガス再循環弁調整等の信号を指令し、単独調整、並用
調整を行う。
There are various operation cases such as emergency situations such as during load fluctuation, constant load operation, load drop, and load cutoff, and changes in cooling water temperature, which is another external factor for this state change, are affected by each operation case. all of which affect condenser vacuum changes. A control device 31 is installed that constantly monitors changes in the status of these plants, detects the changes in status, predicts changes in the degree of vacuum in the condenser, and issues control signals. This control device 31 takes in plant load, cooling water outlet/inlet temperature, condenser vacuum degree, cooling water amount, load cutoff, etc. as a time function, calculates condenser characteristics from state changes, and calculates the condenser vacuum degree. Before the change occurs, predict what will happen after the vacuum level changes, adjust the air extractor inlet valve, adjust the W water return flow rate, etc. according to the pattern of the change in state.
Commands signals for exhaust gas recirculation valve adjustment, etc., and performs individual adjustment and joint adjustment.

タービン初負荷前、又は、極低負荷時は高真空度運転と
なるので制御装置31ヘプラント負荷が取り込まれ、復
水器真空度調整に最適な排ガス再循環弁調整が選択され
、原子カプラントの場合は排ガス再循環弁24を開き、
空気抽出器11の高真空能力を殺し、再循環させながら
高真空度制限値以下に自動調整する。火力プラントの場
合は、同様な理由で空気吸込バイパス弁14を微開する
事により同様の運転が可能となる。
Before the initial load of the turbine or when the load is extremely low, high vacuum operation is performed, so the plant load is taken into the control device 31, and the optimum exhaust gas recirculation valve adjustment for condenser vacuum adjustment is selected. opens the exhaust gas recirculation valve 24,
The high vacuum capability of the air extractor 11 is killed and the degree of vacuum is automatically adjusted to below the high vacuum degree limit value while being recirculated. In the case of a thermal power plant, similar operation is possible by slightly opening the air intake bypass valve 14 for the same reason.

プラント負荷が低負荷、又は、°定格負荷で連続運転さ
れる場合は、負荷変化率を制御装置31で判断し高真空
度制限値以下になるよう、空気抽出器入口弁10及び空
気抽出器バイパス弁22を開閉することにより調整する
。この状態は外的要因である冷却水入口温度変化に起因
し、真空度変化幅が、一般に、ゆるやかとなるため、高
真空度制限運転すれば良い。従って、第7図の実線の運
転軌跡となる。
When the plant load is continuously operated at a low load or a rated load, the control device 31 determines the load change rate and controls the air extractor inlet valve 10 and the air extractor bypass so that the rate of change is below the high vacuum limit value. Adjustment is made by opening and closing the valve 22. This state is caused by a change in the temperature of the cooling water inlet, which is an external factor, and the vacuum degree generally changes gradually, so it is sufficient to operate with a high vacuum limit. Therefore, the driving trajectory is shown by the solid line in FIG.

負荷一定運転時から給電指令、又は、日負荷追従運転の
ため、負荷を急激に降下、又は、上昇操作をする場合は
、第3図復水器特性に示すように負荷にリンクして急激
に真空度が上昇、又は降下し、タービン振動発生の要因
である真空度変化幅の規定値をオーバーし振動発生、タ
ービン停止に波及する。この問題を解決するため、プラ
ント負荷の変化率より復水器特性、真空度の変化率を制
御装置31で計算し、空気抽出器入口弁10及び空気抽
出器入口バイパス弁22を先行的に絞り操作を行う。
When suddenly lowering or increasing the load due to power supply command or daily load follow-up operation from constant load operation, the load is suddenly linked to the load as shown in Figure 3 Condenser Characteristics. The degree of vacuum increases or decreases, exceeding the specified value of the vacuum degree change width, which is a factor in generating turbine vibrations, which causes vibrations and causes the turbine to stop. In order to solve this problem, the control device 31 calculates the condenser characteristics and the rate of change in the degree of vacuum based on the rate of change in the plant load, and throttles the air extractor inlet valve 10 and the air extractor inlet bypass valve 22 in advance. Perform operations.

この先行的な絞り操作により、負荷降下時の真空度変化
幅を規定値以下とし、従来技術の手動操作による対応遅
れ、及び、操作不良によるタービン振動発生を未然に防
ぐことが出来る。又、この場合、バックアップ及び真空
度の微調整のため、循環水ポンプ4の翼角度を調整し循
環水流量を調整する指令を二次信号として制御装置31
より発信する。循環水流量の調整として冷却水出口弁6
の開度を調整しても良い。この循環水流量調整を行う場
合、冷却水入口温度検出器27、冷却水出口温度検出器
28より復水器冷却水温度上昇値が規定値以下になる様
なインターロック、及び、冷却水出口弁6の絞りによる
キャビティージョン発生防止のインターロックも制御装
置31の機能に準備する。
This preliminary throttling operation makes it possible to keep the degree of vacuum variation at the time of load drop below a specified value, and to prevent the delay in response due to manual operation in the prior art and the occurrence of turbine vibration due to poor operation. In this case, for backup and fine adjustment of the degree of vacuum, the control device 31 uses a command to adjust the blade angle of the circulating water pump 4 and adjust the circulating water flow rate as a secondary signal.
Send more information. Cooling water outlet valve 6 to adjust circulating water flow rate
The opening degree may be adjusted. When performing this circulating water flow rate adjustment, an interlock is installed so that the condenser cooling water temperature rise value is below a specified value from the cooling water inlet temperature detector 27 and the cooling water outlet temperature detector 28, and the cooling water outlet valve. The control device 31 also has an interlock for preventing cavity formation due to the aperture of No. 6.

従って、負荷変化途中の初期負荷をベースに規定真空度
変化幅の範囲内で第8図の実線の運転軌跡を保持する。
Therefore, the operating locus shown by the solid line in FIG. 8 is maintained within the specified vacuum degree change range based on the initial load during the load change.

以上の運転の他に負荷遮断、蒸気発生装置不調によりプ
ラント負荷を緊急停止する非常時でもタービンを安全に
運転し、プラントを停止操作に移行する必要性がある。
In addition to the operations described above, there is a need to safely operate the turbine and shift the plant to a shutdown operation even in an emergency where the plant load is suddenly stopped due to load shedding or malfunction of the steam generator.

この現象の場合、復水器真空度の変化率が大きく、ター
ビン振動へ波及する可能性が高いため、この事象発生時
は空気抽出器入口弁10全閉、空気抽出器入口バイパス
弁22の蔑定開度までの絞り込み操作を制御装置31よ
り指令する。
In the case of this phenomenon, the rate of change in the degree of vacuum in the condenser is large and there is a high possibility that it will affect the turbine vibration. The control device 31 commands a narrowing operation to a fixed opening degree.

又、他の実施例としてタービンの振動変化、又は、復水
器内の蒸気流速を検出し、振動変化が極端に変化した場
合、蒸気流速が極端に変化した場合はその変化前の真空
度状態変化を追跡し、真空度変化率を最小とし、振動、
蒸気流速の変動の要因を解消するため真空調整を行う。
In addition, as another example, the vibration change of the turbine or the steam flow rate in the condenser is detected, and if the vibration change changes drastically or the steam flow speed changes extremely, the vacuum state before the change is detected. Track changes, minimize the rate of change in vacuum level, vibration,
Vacuum adjustment is performed to eliminate factors that cause fluctuations in steam flow rate.

その他の実施例として冷却水温度の変化幅が大きい場合
、冷却水温度の上昇、降下により復水器真空度が変化し
、それに追随する形でプラント全体の状態が変化し、安
定運転を阻害される場合がある。この様に、冷却水温度
の変化幅が大きいプラントの場合、真空一定運転をする
ことによりプラント運用の安定維持が図れる。
As another example, when the range of change in the cooling water temperature is large, the degree of vacuum in the condenser changes due to the rise and fall of the cooling water temperature, and the state of the entire plant changes accordingly, impeding stable operation. There may be cases. In this way, in the case of a plant where the range of variation in cooling water temperature is large, stable plant operation can be maintained by constant vacuum operation.

又、運用上、復水器の真空度を大幅に変更する運転要求
があった場合、タービンの振動変化を監視しながら、規
定の真空度変化率内を保持しながら真空調整運転も可能
である。
Additionally, if there is an operational requirement to significantly change the degree of vacuum in the condenser, it is possible to adjust the vacuum while maintaining the rate of change in vacuum level within the specified rate of change while monitoring vibration changes in the turbine. .

これらの真空調整運転は制御装置31に状態値として入
力することにより可能である。
These vacuum adjustment operations can be performed by inputting state values to the control device 31.

〔発明の効果〕 本発明によれば下記効果がある。〔Effect of the invention〕 According to the present invention, there are the following effects.

(1)プラント起動時、負荷上昇、一定連続運転、降下
、非常時のプラント全般にわたり、高真空度制限以内、
真空度許容変化率以内運転が確保され、タービンの振動
、復水器チューブ振動発生の防止が図れる。
(1) During plant start-up, load increase, constant continuous operation, descent, and during emergencies, within high vacuum limits,
Operation within the permissible rate of vacuum change is ensured, and turbine vibration and condenser tube vibration can be prevented.

(2)真空度調整用の制御装置で各プラントの状態値を
取込み、復水器真空度変化の予測計算をし。
(2) The control device for adjusting the vacuum level takes in the status values of each plant and calculates a prediction of changes in the condenser vacuum level.

自動的に先行制御が可能である。Automatic advance control is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の系統図、第2図は従来技術
の系統図、第3図ないし第6図は復水器の特性図、第7
図、第8図は負荷運転中の真空度の変化例を示す特性図
である。 トタービン、2・・・復水器胴、3・復水器氷室、4・
循環水ポンプ、5・・・冷却水供給管、6・・冷却水出
口弁、7・・・冷却水排出管、8・・・空気吸込弁、9
・・・空気抽出管、10・・・空気抽出器人口弁、11
・・・空気抽出器、12・・・排出ガス処理装置、13
・・・排気筒、14・・・空気吸込バイパス弁、21・
・・空気抽出バイパス管、22・・・空気抽畠器入ロバ
イパス弁、23・・・排ガス再循環配管、24・・・排
ガス再循環弁、25・・・復水器真空検出器、26・・
・プラント負荷検出器、27・・・冷却水入口温度検出
器、28第1図 α馳 第 2 図 第5 図 〉令q永l (Zン 狛1つらモ ン知し羊帛 すLyス」」(z) 第3図 θ !;0           /l)ρフ0う:JIt
叫)−(名ン y+却水邊度 (’c〕 第 図
Fig. 1 is a system diagram of an embodiment of the present invention, Fig. 2 is a system diagram of the prior art, Figs. 3 to 6 are characteristic diagrams of the condenser, and Fig.
8 are characteristic diagrams showing examples of changes in the degree of vacuum during load operation. Turbine, 2... Condenser body, 3. Condenser ice chamber, 4.
Circulating water pump, 5... Cooling water supply pipe, 6... Cooling water outlet valve, 7... Cooling water discharge pipe, 8... Air suction valve, 9
... Air extraction pipe, 10 ... Air extractor artificial valve, 11
... Air extractor, 12 ... Exhaust gas treatment device, 13
...Exhaust pipe, 14...Air suction bypass valve, 21.
... Air extraction bypass pipe, 22 ... Air extractor input bypass valve, 23 ... Exhaust gas recirculation piping, 24 ... Exhaust gas recirculation valve, 25 ... Condenser vacuum detector, 26.・
・Plant load detector, 27...Cooling water inlet temperature detector, 28 Figure 1 Figure 2 Figure 5 Figure 5 ” (z) Figure 3 θ !;0 /l) ρfu0u: JIt
Shout) - (Name y + Irumizubendo ('c) Figure

Claims (1)

【特許請求の範囲】 1、発電プラントの蒸気発生装置から発生する蒸気で駆
動されるタービンの排気を冷却して真空度を維持する復
水器において、 プラント負荷、冷却水の入口温度、前記冷却水の出口温
度、前記復水器の真空度、負荷遮断等のプラント運転状
態を制御装置で検出し、状態変化の内容を評価の上、復
水器真空度の予測計算をし、真空度の基準値、真空度変
化率を規定値以内にするため、空気抽出器の入口弁の調
整、循環水流量調整、排ガス再循環弁調整等を先行制御
することを特徴とする復水器の真空調整装置。 2、請求項1に於いて、タービンの振動変化が極端に表
われたことを監視し、振動を抑制する方向に制御してな
る復水器の真空調整装置。 3、請求項1に於いて、前記復水器内の蒸気流速の変化
状況を監視し、前記復水器のチューブの保護の目的で制
御する復水器の真空調整装置。 4、請求項1に於いて、前記復水器の真空度を、常時、
一定運転に保持することによりプラント全体の状態変化
を押え、安定した運転を維持する復水器の真空調整装置
。 5、請求項1に於いて、前記復水器の真空度を大幅に変
更する運転要求があつた場合でも、タービンの振動変化
を監視しながら制御する復水器の真空調整装置。
[Claims] 1. In a condenser that maintains a degree of vacuum by cooling the exhaust of a turbine driven by steam generated from a steam generator of a power plant, the plant load, the cooling water inlet temperature, the cooling The control device detects the water outlet temperature, the degree of vacuum of the condenser, the plant operating conditions such as load shedding, evaluates the contents of the state changes, calculates the predicted degree of vacuum of the condenser, and calculates the degree of vacuum. Condenser vacuum adjustment characterized by prior control of air extractor inlet valve adjustment, circulating water flow rate adjustment, exhaust gas recirculation valve adjustment, etc. in order to keep the reference value and vacuum degree change rate within specified values. Device. 2. A vacuum adjustment device for a condenser according to claim 1, which monitors extreme changes in vibration of the turbine and performs control to suppress vibration. 3. A condenser vacuum adjustment device according to claim 1, which monitors changes in the steam flow rate within the condenser and controls it for the purpose of protecting tubes of the condenser. 4. In claim 1, the degree of vacuum of the condenser is always set to
A condenser vacuum adjustment device that suppresses changes in the overall condition of the plant and maintains stable operation by maintaining constant operation. 5. The condenser vacuum adjustment device according to claim 1, which controls the condenser while monitoring vibration changes even when there is an operation request to significantly change the degree of vacuum of the condenser.
JP6709390A 1990-03-19 1990-03-19 Vacuum adjusting device of condenser Pending JPH03267690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6709390A JPH03267690A (en) 1990-03-19 1990-03-19 Vacuum adjusting device of condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6709390A JPH03267690A (en) 1990-03-19 1990-03-19 Vacuum adjusting device of condenser

Publications (1)

Publication Number Publication Date
JPH03267690A true JPH03267690A (en) 1991-11-28

Family

ID=13334927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6709390A Pending JPH03267690A (en) 1990-03-19 1990-03-19 Vacuum adjusting device of condenser

Country Status (1)

Country Link
JP (1) JPH03267690A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057943A (en) * 2006-09-04 2008-03-13 Hitachi Ltd Noncondensable gas exhaust device for condenser, and noncondensable gas exhaust control method for condenser
US8061028B2 (en) 2005-01-31 2011-11-22 Daikin Industries, Ltd. Fixed scroll positioning apparatus and fixed scroll positioning method
CN108800979A (en) * 2018-07-09 2018-11-13 上海铱钶环保科技有限公司 A kind of monitoring method and monitoring device of condenser predictability O&M

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8061028B2 (en) 2005-01-31 2011-11-22 Daikin Industries, Ltd. Fixed scroll positioning apparatus and fixed scroll positioning method
JP2008057943A (en) * 2006-09-04 2008-03-13 Hitachi Ltd Noncondensable gas exhaust device for condenser, and noncondensable gas exhaust control method for condenser
JP4589279B2 (en) * 2006-09-04 2010-12-01 株式会社日立製作所 Non-condensable gas discharge device for condenser and non-condensable gas discharge control method for condenser
CN108800979A (en) * 2018-07-09 2018-11-13 上海铱钶环保科技有限公司 A kind of monitoring method and monitoring device of condenser predictability O&M

Similar Documents

Publication Publication Date Title
US20200011324A1 (en) Gas Compressor
JPH11352284A (en) Reactor system pressure control method through core power control
JPH03267690A (en) Vacuum adjusting device of condenser
JP4937822B2 (en) Condenser vacuum degree control system and power plant including the system
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPS5952193A (en) Vacuum control device of condenser
JP3324899B2 (en) Turbine gland steam pressure controller
JP2746935B2 (en) Heater drain pump-up device in steam turbine plant
JPH0198895A (en) Vacuum control device for condenser
JPH0539901A (en) Method and device for automatically controlling boiler
JP2645766B2 (en) Power recovery system for steam supply line
JPH0441359Y2 (en)
CN118654273A (en) Control method for undisturbed switching of unit starting water supply main circuit and water supply bypass
JPH09242508A (en) Method and device for stopping combined cycle plant
JP2645103B2 (en) Geothermal steam turbine bypass controller
JP3166972B2 (en) Power plant control method and apparatus, and power plant
JP2544050B2 (en) Drain tank water level control device
JPH1082504A (en) Method and apparatus for controlling water supply of boiler
JPH1183344A (en) Automatic vacuum controller for condenser
JPS58110986A (en) Condenser system
JP2645129B2 (en) Condensate recirculation flow control device
JPS6390604A (en) Condenser cooling device
JPH0241720B2 (en)
JPH03253703A (en) Cooling water pressure maintaining method for turbine bypass steam
JPH04103902A (en) Method and device for controlling feedwater to boiler