JPH0413947A - Method and apparatus for measuring particles in fluid - Google Patents

Method and apparatus for measuring particles in fluid

Info

Publication number
JPH0413947A
JPH0413947A JP2116903A JP11690390A JPH0413947A JP H0413947 A JPH0413947 A JP H0413947A JP 2116903 A JP2116903 A JP 2116903A JP 11690390 A JP11690390 A JP 11690390A JP H0413947 A JPH0413947 A JP H0413947A
Authority
JP
Japan
Prior art keywords
particle size
signal
particles
particle
predetermined value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2116903A
Other languages
Japanese (ja)
Other versions
JP2899359B2 (en
Inventor
Yoshiyuki Furuya
古谷 義之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP2116903A priority Critical patent/JP2899359B2/en
Priority to US07/695,442 priority patent/US5172004A/en
Publication of JPH0413947A publication Critical patent/JPH0413947A/en
Application granted granted Critical
Publication of JP2899359B2 publication Critical patent/JP2899359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1429Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • G01N2015/0238Single particle scatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1493Particle size
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4726Detecting scatter at 90°

Abstract

PURPOSE:To improve detecting sensitivity and to increase a dynamic range by discriminating by a photomultiplier, using a single photon counting method if the number of photoelectric pulses is a predetermined value or less and processing a signal in an analog manner to obtain a particle size and a particle size distribution if it is the predetermined value or more. CONSTITUTION:A signal from a photomultiplier 7 amplified by a preamplifier 8 is branched, one is signal-processed by a single photon counting method, and the other is added with an amplifier 21 and a peak analyzer 22 to signal- process by an analog method. Whether the particle is fine of a predetermined value or less or not is discriminated according to the signal from the photomultiplier 7. If the number of photoelectric pulses is the predetermined value or less and discriminated to be fine, the counting method is used, while if it is the value or more, the signal is processed in an analog manner to obtain a particle size and a particle size distribution. Thus, scattered lights from the fine and large particles can be analyzed.

Description

【発明の詳細な説明】 [産業上の利用分野J 本発明は、流体中の粒子計測装置、さらに詳細には測定
セル中を流れる粒子を含んだ流体にレーザー光を照射し
、粒子からの散乱光を受光してその散乱光強度から粒子
径と粒度分布を求める流体中の粒子計測方法及びその装
置に関する。
Detailed Description of the Invention [Industrial Field of Application J] The present invention is a particle measuring device in a fluid, more specifically, a fluid containing particles flowing in a measurement cell is irradiated with a laser beam, and the scattering from the particles is detected. The present invention relates to a method and apparatus for measuring particles in a fluid, which receives light and determines particle diameter and particle size distribution from the intensity of the scattered light.

[従来の技術] 現在、半導体製造過程において使用される超純水や薬液
は、4Mビット、16Mビットとり、 S Iの高密度
化が進むにつれて不純物が含まれていない高品質なもの
が要求されている。その中で特に超純水や薬液の中の微
粒子を管理することはL S Iの歩留まりに大きく影
響するため重要である。
[Prior art] Currently, the ultrapure water and chemical solutions used in the semiconductor manufacturing process are 4Mbit and 16Mbit, and as the density of SI becomes higher, high quality water that does not contain impurities is required. ing. Among these, it is particularly important to control fine particles in ultrapure water and chemical solutions, as this greatly affects the yield of LSI.

これまでは、超純水中や薬液中の微粒子を計測するため
に走査型電子顕微鏡が使用されてきたが、多大なコスト
がかかり、リアルタイム性に欠けるという問題点があっ
た。この問題点を解決するために、レーザー光散乱法に
よる微粒子計測法が普及してきている。この計測法は、
レーザー光を照射された微粒子からの散乱光強度が微粒
子の直径に依存することを応用したものである。
Up until now, scanning electron microscopes have been used to measure particles in ultrapure water and chemical solutions, but these methods have been costly and lack real-time performance. In order to solve this problem, a particle measurement method using a laser light scattering method is becoming popular. This measurement method is
This is an application of the fact that the intensity of scattered light from fine particles irradiated with laser light depends on the diameter of the fine particles.

液体中の球形粒子からの散乱光強度はM i eによっ
て理論的に計算されている。レーザー光の波長の1/l
Oより小さい粒子がらの散乱光強度は、粒子径の5〜6
乗に比例することが知られている。したがって、粒子径
が小さくなるにつれて、その粒子からの散乱光強度が微
弱になるので、このような微弱光を検出するためにはS
/Nのよい光検出装置を用いなければならない。微弱光
検出に有効な手段として知られている方法に単一光子計
数法がある。
The intensity of scattered light from spherical particles in a liquid is theoretically calculated by Mie. 1/l of the wavelength of laser light
The intensity of scattered light from particles smaller than O is 5 to 6 of the particle size.
It is known that it is proportional to the power of Therefore, as the particle size becomes smaller, the intensity of scattered light from the particle becomes weaker, so in order to detect such weak light, S
/N must be used. A single photon counting method is known as an effective means for detecting weak light.

まず、このように単一光子計数法を用いた従来の装置を
第4図を用いて説明する。第4図において、レーザー光
源1から放出されたレーザー光は、レンズ2によって測
定セル3中の測定領域4に集光される。測定領域4内を
粒子が通過すると、粒子はレーザー光を散乱する。粒子
によって散乱させられた光をレンズ5で集光し、スリッ
ト6に結像させる。スリット6を通過した粒子からの散
乱光は光電子増倍管7に到達し、電気信号に変換され、
光電子パルスとして出力される。前置増幅器8によって
増幅された電気信号は、波高弁別器9とパルス波形整形
回路10でデジタル信号に変換され、パルス計数回路1
1でデジタル信号をカウントし、メモリー回路12に時
系列的に記憶させる。そして演算装置13でメモリー回
路12に記憶されている時系列データを解析し、その散
乱光強度から粒子径が算出され、粒子数密度を算出して
いた。
First, a conventional apparatus using the single photon counting method will be explained using FIG. 4. In FIG. 4, laser light emitted from a laser light source 1 is focused by a lens 2 onto a measurement region 4 in a measurement cell 3. In FIG. When particles pass through the measurement area 4, they scatter the laser light. The light scattered by the particles is focused by a lens 5 and imaged onto a slit 6. The scattered light from the particles passing through the slit 6 reaches the photomultiplier tube 7, where it is converted into an electrical signal.
It is output as a photoelectron pulse. The electrical signal amplified by the preamplifier 8 is converted into a digital signal by a pulse height discriminator 9 and a pulse waveform shaping circuit 10, and then converted into a digital signal by a pulse counting circuit 1.
1, the digital signals are counted and stored in the memory circuit 12 in chronological order. Then, the time series data stored in the memory circuit 12 is analyzed by the arithmetic unit 13, the particle diameter is calculated from the scattered light intensity, and the particle number density is calculated.

[発明が解決しようとする課題1 単一光子計数法では、光電子増倍管のノイズの原因とな
る暗電流や増倍率のゆらぎを除去することができるので
、普通のアナログ法と比較するとS/Nを3〜5倍向上
させることができる。単一光子計数法による光強度の測
定は、単位時間当りの光電子パルスの数をカウントする
ことによって行なうことができる。しかし、単位時間に
カウントできる光電子パルスの数にも限界がある。この
原因は、光電子パルスの時間幅と、光子計数回路を構成
する電気系の周波数特性によるものである。光電子増倍
管の光電面に光が当たると、光電効果によって光電面か
ら電子が飛び出す。光電面から飛び出した電子は光電子
増倍管の内部で順次増倍され、光電面から飛び出した電
子1個当り、10の6乗個程度に増倍される。光電子増
倍管で電子が増倍されていく過程の中で、電子の走行距
離にばらつきが生じるため、光電面から飛び出した電子
1個に対する出力パルスが時間幅を持つようになる。
[Problem to be solved by the invention 1 The single photon counting method can eliminate dark current and fluctuations in the multiplication factor that cause noise in photomultiplier tubes, so compared to ordinary analog methods, the S/ N can be improved by 3 to 5 times. Light intensity can be measured by single photon counting by counting the number of photoelectron pulses per unit time. However, there is a limit to the number of photoelectron pulses that can be counted per unit time. This is caused by the time width of the photoelectron pulse and the frequency characteristics of the electrical system that constitutes the photon counting circuit. When light hits the photocathode of a photomultiplier tube, electrons are ejected from the photocathode due to the photoelectric effect. The electrons ejected from the photocathode are sequentially multiplied inside the photomultiplier tube, and each electron ejected from the photocathode is multiplied by about 10 to the sixth power. As the electrons are multiplied by the photomultiplier tube, variations occur in the distance traveled by the electrons, so the output pulse for each electron ejected from the photocathode has a duration.

この時間幅は通常、サイドオン型の光電子増倍管では2
ns程度である。したがって、光電面がら電子が2 n
 sより短い時間間隔で飛び出した場合、光電子増倍管
から出力された光電子パルスは重なり合ってしまい、も
はや単一光子計数はできなくなってしまう。また、たと
え光電子パルスの時間幅より長い時間間隔で光電面から
電子が飛び出したとしても、単一光子計数回路を構成す
る電気系の周波数特性によっても単位時間当りのカウン
ト数の−L限が決ってしまう。
This time width is usually 2 for side-on photomultiplier tubes.
It is about ns. Therefore, the number of electrons from the photocathode is 2 n
If the photoelectron pulses are emitted at a time interval shorter than s, the photoelectron pulses output from the photomultiplier tube will overlap, making single photon counting no longer possible. Furthermore, even if electrons eject from the photocathode at a time interval longer than the time width of the photoelectron pulse, the -L limit of the number of counts per unit time is determined by the frequency characteristics of the electrical system that constitutes the single photon counting circuit. It ends up.

このように単一光子計数法を用いるとアナログ法に比較
してS/Nを3〜5倍向上させることができるので、よ
り微小な粒子を測定することができるが、単一光子計数
法では光電子パルスの時間幅や光子計数回路を構成する
素子の周波数特性によってダイナミックレンジが制限さ
れ、これまでの装置では計数率は10の8乗カウント/
秒程度が限界であり、大きな粒子からの強い散乱光の強
度を正確に求めることができなかった。
In this way, using the single photon counting method can improve the S/N by 3 to 5 times compared to the analog method, making it possible to measure even smaller particles. The dynamic range is limited by the time width of the photoelectron pulse and the frequency characteristics of the elements that make up the photon counting circuit, and in conventional devices, the counting rate is 10 8 counts /
The limit was about seconds, and it was not possible to accurately determine the intensity of strongly scattered light from large particles.

従って、本発明は、このような従来の問題点を解決する
ためになされたもので、粒子の大きさに関係なく精度よ
く流体中の粒子の特性を測定することが可能な流体中の
粒子計測方法及びその装置を提供することをその課題と
する。
Therefore, the present invention has been made to solve these conventional problems, and is a method for measuring particles in a fluid that can accurately measure the characteristics of particles in a fluid regardless of the size of the particles. The object of the invention is to provide a method and a device thereof.

[課題を解決するための手段] 以上の問題点を解決するために、本発明においては、測
定セル中を流れる粒子を含んだ流体にレーザー光を照射
し、粒子からの散乱光を受光してその散乱光強度から粒
子径と粒度分布を求める流体中の粒子計測方法において
、粒子からの散乱光を検出する光電子増倍管からの信号
に従って粒子が所定値以下の微小粒子であるか否かを判
別し、光電子パルス数が所定値以下で微粒子と判別され
た場合は単一光子計数法を用いて、また所定値以上と判
別された場合はアナログ的に信号を処理して粒子径と粒
度分布を求める構成を採用した。
[Means for Solving the Problems] In order to solve the above problems, in the present invention, a fluid containing particles flowing in a measurement cell is irradiated with laser light, and scattered light from the particles is received. In a particle measurement method in a fluid that determines the particle size and particle size distribution from the intensity of scattered light, it is determined whether the particles are microparticles with a size smaller than a predetermined value or not according to a signal from a photomultiplier tube that detects the scattered light from the particles. If the number of photoelectron pulses is less than a predetermined value and it is determined to be a fine particle, single photon counting is used, and if it is determined to be greater than a predetermined value, the signal is processed analogously to determine the particle size and particle size distribution. We adopted a configuration that requires the following.

また、本発明では、測定セル中を流れる粒子を含んだ流
体にレーザー光を照射し、粒子からの散乱光を受光して
その散乱光強度から粒子径と粒度分布を求める流体中の
粒子計測装置において、粒子からの散乱光を検出する光
電子増倍管と、前記光電子増倍管からの信号に従って光
電子パルスを計数する手段と、前記光電子増倍管からの
信号を増幅して波高分析する手段と、光電子パルスの数
が所定値以下で測定粒子が微粒子であるか否かを判別す
る手段と、前記計数手段あるいは波高分析手段からの信
号から粒子径と粒度分布を演算する手段とを設け、前記
演算手段は、光電子パルス数が所定値以下で微粒子と判
別された場合は光電子パルスを単一光子計数法を用いて
計数することにより、また所定値以上と判別された場合
は波高分析手段からの信号をアナログ的に処理すること
により粒子径と粒度分布を求める構成も採用した。
In addition, in the present invention, a particle measuring device in a fluid that irradiates a fluid containing particles flowing through a measurement cell with a laser beam, receives scattered light from the particles, and calculates the particle size and particle size distribution from the intensity of the scattered light. A photomultiplier tube for detecting scattered light from particles, a means for counting photoelectron pulses according to a signal from the photomultiplier tube, and a means for amplifying the signal from the photomultiplier tube for pulse height analysis. , means for determining whether or not the measured particles are fine particles when the number of photoelectron pulses is equal to or less than a predetermined value; and means for calculating the particle diameter and particle size distribution from the signal from the counting means or the pulse height analysis means; The calculation means counts the photoelectron pulses using a single photon counting method if the number of photoelectron pulses is less than a predetermined value and is determined to be a fine particle, and if the number of photoelectron pulses is determined to be greater than a predetermined value, it counts the photoelectron pulses from the pulse height analysis means. We also adopted a configuration that calculates the particle size and particle size distribution by processing the signal in an analog manner.

[作 用] このような構成では、微小な粒子からの微弱な散乱光の
強度は単一光子計数法によって解析でき、大きな粒子か
らの強い散乱光の強度はアナログ法で解析できるので、
検出感度の向上、ダイナミックレンジの拡大という二つ
の目的を達成することができる。
[Function] With this configuration, the intensity of weak scattered light from small particles can be analyzed using the single photon counting method, and the intensity of strong scattered light from large particles can be analyzed using the analog method.
Two purposes can be achieved: improved detection sensitivity and expanded dynamic range.

[実施例] 以下、図面を参照して本発明の実施例を詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図には、本発明の一実施例が図示されている。同図
において第4図と同一部分には同一の参照符号を付しそ
の説明は省略する。
An embodiment of the invention is illustrated in FIG. In this figure, the same parts as in FIG. 4 are given the same reference numerals, and the explanation thereof will be omitted.

第1図では前置増幅器8で増幅された光電子増倍管7か
らの信号が二つに分けられ、一方は従来の単一光子計数
法による信号処理がなされ、もう一方では散乱光が強い
ときに単一光子計数が不可能な場合にアナログ法による
信号処理ができるように増幅器21と波高分析器22が
付加されている。前置増幅器8は光電子パルスの時間幅
(約10の一9乗秒)に対応する周波数特性が要求され
るが、増幅2321は粒子がレーザービームを通過する
時間幅(約10の−3乗秒)に対応する周波数特性でよ
い。単一光子計数法による信号の処理方法は従来の方法
と同様である。増幅器21で増幅されたレーザービーム
を粒子が通過する時間幅を持つ信号は、波高分析器22
で信号の波高分析がなされ、演算装置13で粒度分布が
求められる。
In FIG. 1, the signal from the photomultiplier tube 7 that has been amplified by the preamplifier 8 is divided into two parts, one of which is processed by the conventional single photon counting method, and the other which is processed when the scattered light is strong. An amplifier 21 and a pulse height analyzer 22 are added to enable signal processing using an analog method when single photon counting is not possible. The preamplifier 8 is required to have frequency characteristics corresponding to the time width of the photoelectron pulse (approximately 10 19 seconds), but the amplification 2321 is required to have frequency characteristics corresponding to the time width of the particle passing through the laser beam (approximately 10 −3 seconds). ) may be the frequency characteristic corresponding to The signal processing method using the single photon counting method is the same as the conventional method. A signal having a time width for the particles to pass through the laser beam amplified by the amplifier 21 is sent to the pulse height analyzer 22.
A pulse height analysis of the signal is performed, and a particle size distribution is determined by an arithmetic unit 13.

また、演算装置13は、パルス計数回路11からの信号
によりカウントされた計数値が所定値以下であるか否か
を判別し、所定値以下であるときは、測定粒子が微粒子
であると判断して、単一光子計数法を用いて粒子径と粒
度分布を演算し、また所定値以上であった場合は、波高
分析器22からの信号に基づきアナログ法を用いて粒子
径と粒度分布を演算する。
Further, the arithmetic unit 13 determines whether or not the count value counted by the signal from the pulse counting circuit 11 is less than or equal to a predetermined value, and if it is less than or equal to the predetermined value, the arithmetic unit 13 determines that the measured particles are fine particles. Then, the particle size and particle size distribution are calculated using a single photon counting method, and if the particle size is greater than a predetermined value, the particle size and particle size distribution are calculated using an analog method based on the signal from the pulse height analyzer 22. do.

第2図に本実施例を実現するための回路図の例を示す。FIG. 2 shows an example of a circuit diagram for realizing this embodiment.

ICIは光電子増倍管7からの信号を増幅するための前
置増幅器8であり、IC2は光子計数法による信号処理
のための波高弁別器である。またIC3はICIで増幅
された信号を再度増幅し、アナログ的に信号処理を行な
うために第1図における波高分析器22に信号を送る増
幅器21である。
ICI is a preamplifier 8 for amplifying the signal from the photomultiplier tube 7, and IC2 is a pulse height discriminator for signal processing using the photon counting method. Further, IC3 is an amplifier 21 which amplifies the signal amplified by the ICI again and sends the signal to the pulse height analyzer 22 in FIG. 1 for analog signal processing.

このように構成された装置の動作を以下に説明する。The operation of the device configured in this way will be explained below.

レーザー光源1は、第3図(A)に図示したような空間
強度分布を有するレーザー光を発光する。このレーザー
光は、測定セル3の測定領域4を流れる粒子を照射する
。このレーザー光の空間強度分布は、TEM00モード
ではガウス分布となっている。このようなレーザービー
ムなある速度をもった粒子が通過すると、その粒子から
の散乱光強度の時間的な包絡線はレーザー光の空間強度
分布を反映したものとなる。
The laser light source 1 emits laser light having a spatial intensity distribution as shown in FIG. 3(A). This laser light irradiates particles flowing through the measurement area 4 of the measurement cell 3. The spatial intensity distribution of this laser light is a Gaussian distribution in the TEM00 mode. When a particle with a certain velocity passes through such a laser beam, the temporal envelope of the intensity of scattered light from the particle reflects the spatial intensity distribution of the laser beam.

第3図(B)は微小な粒子がレーザー光を通過したとき
の光電子増倍管7からの出力信号の時間変化を示す。微
小な粒子からの散乱光は微弱であるため、光電子パルス
は離散的となり、重なりは生じていない。第3図(C)
は、波高弁別器9により第3図(B)において破線で表
されるレベルより大きい信号をデジタル信号としたもの
である。破線のレベルより小さい暗電流成分が除去され
ているとともに、光電子増倍管の増倍率のゆらぎもデジ
タル化によって除去できる。このように波高弁別された
パルスをパルス計数回路11で計数し、メモリー回路1
2に時系列的に測定データを格納する。
FIG. 3(B) shows the temporal change in the output signal from the photomultiplier tube 7 when a minute particle passes through the laser beam. Since the scattered light from minute particles is weak, the photoelectron pulses are discrete and do not overlap. Figure 3 (C)
In this case, the pulse height discriminator 9 converts a signal higher than the level indicated by the broken line in FIG. 3(B) into a digital signal. Dark current components smaller than the level of the broken line are removed, and fluctuations in the multiplication factor of the photomultiplier tube can also be removed by digitalization. The pulses whose heights have been discriminated in this way are counted by the pulse counting circuit 11, and the pulses are counted by the memory circuit 1.
2 stores measurement data in chronological order.

第3図(D)は大きな粒子がレーザー光を通過したとき
の光電子増倍管7からの出力信号の時間変化を示す。大
きな粒子がレーザー光を通過したときは、粒子からの散
乱光が強くなるため、特にレーザー光の中心部を通過し
た場合に光電子パルスの重なり合いが生じてしまう。こ
のような光電子パルスは、パルス計数回路11による計
数値が大きくなるので、演算装置13では、パルス計数
回路11によるパルス計数値が所定値以下であるか否か
を判別する。演算装置14は、測定粒子が微小粒子であ
りパルス計数値が所定値以下になっていると判断した場
合は、メモリー回路12からに格納されているデータを
もとに単一光子計数法を用いて粒子径と粒度分布を演算
する。
FIG. 3(D) shows the time variation of the output signal from the photomultiplier tube 7 when a large particle passes through the laser beam. When a large particle passes through the laser beam, the scattered light from the particle becomes stronger, resulting in overlapping of photoelectron pulses, especially when the laser beam passes through the center. Since such photoelectron pulses have a large value counted by the pulse counting circuit 11, the arithmetic unit 13 determines whether the pulse counted value by the pulse counting circuit 11 is less than or equal to a predetermined value. When the arithmetic unit 14 determines that the particles to be measured are minute particles and the pulse count value is below a predetermined value, the arithmetic unit 14 uses a single photon counting method based on the data stored in the memory circuit 12. Calculate the particle size and particle size distribution.

一方、パルス計数回路11による計数値が所定値以上の
ときは、第3図(D)に示したように測定粒子が大きい
場合であるので、波高分析器22からの信号をもとにア
ナログ法により所定の演算式を用いて粒子径と粒度分布
を求める。
On the other hand, when the count value by the pulse counting circuit 11 is greater than the predetermined value, as shown in FIG. 3(D), the measured particles are large, so the analog method is The particle diameter and particle size distribution are determined using a predetermined calculation formula.

上述した実施例では、演算装置により光電子パルスの計
数値が所定値以下であるか否かの判別を行な・ているが
、演算装置とkなる独自の判別回路を設けて行なうよう
にしてもよい。
In the above-described embodiment, the arithmetic unit determines whether the count value of photoelectron pulses is less than or equal to a predetermined value. good.

[発明の効果] 以上、本発明によれば、粒子からの散乱光を検出する光
電子増倍管からの信号に従って粒子が所定値以下の微小
粒子であるか否かを判別し、光電子パルス数が所定値以
下で微小粒子と判別された場合は単一光子計数法を用い
て、また所定値以上と判別された場合はアナログ的に信
号を処理して粒子径と粒度分布を求めるようにしている
ので、微小な粒子からの散乱光の強度は単一光子計数法
によって、また大きな粒子からの強い散乱光の強度はア
ナログ法で解析でき、検出感度の向上、ダイナミックレ
ンジの拡大という二つの目的を達成することができる。
[Effects of the Invention] As described above, according to the present invention, it is determined whether a particle is a microparticle of a predetermined value or less according to a signal from a photomultiplier tube that detects scattered light from a particle, and the number of photoelectron pulses is determined. If the particle is determined to be a microparticle below a predetermined value, a single photon counting method is used, and if the particle is determined to be above a predetermined value, the signal is processed in an analog manner to determine the particle size and particle size distribution. Therefore, the intensity of scattered light from small particles can be analyzed using the single photon counting method, and the intensity of strongly scattered light from large particles can be analyzed using analog methods, which serve the two purposes of improving detection sensitivity and expanding the dynamic range. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明装置の一実施例の構成を示すブロック
図、第2図は、第1図回路のさらに詳細な回路図、第3
図(A)〜(D)妾は、第1図装置の動作を説明する信
号波形図、第4図は、従来装置の構成を示すブロック図
である。 3・・・測定セル    4−・・測定領域7・・・光
電子増倍管 11・・−パルス計数回路13・・・演算
装置 か派 樟ゐ
FIG. 1 is a block diagram showing the configuration of an embodiment of the device of the present invention, FIG. 2 is a more detailed circuit diagram of the circuit in FIG. 1, and FIG.
1 is a signal waveform diagram illustrating the operation of the apparatus, and FIG. 4 is a block diagram showing the configuration of the conventional apparatus. 3...Measurement cell 4-...Measurement area 7...Photomultiplier tube 11...-Pulse counting circuit 13...Arithmetic device or distributor

Claims (1)

【特許請求の範囲】 1)測定セル中を流れる粒子を含んだ流体にレーザー光
を照射し、粒子からの散乱光を受光してその散乱光強度
から粒子径と粒度分布を求める流体中の粒子計測方法に
おいて、 粒子からの散乱光を検出する光電子増倍管からの信号に
従って粒子が所定値以下の微小粒子であるか否かを判別
し、 光電子パルス数が所定値以下で微小粒子と判別された場
合は単一光子計数法を用いて、また所定値以上と判別さ
れた場合はアナログ的に信号を処理して粒子径と粒度分
布を求めることを特徴とする流体中の粒子計測方法。 2)測定セル中を流れる粒子を含んだ流体にレーザー光
を照射し、粒子からの散乱光を受光してその散乱光強度
から粒子径と粒度分布を求める流体中の粒子計測装置に
おいて、 粒子からの散乱光を検出する光電子増倍管と、前記光電
子増倍管からの信号に従って光電子パルスを計数する手
段と、 前記光電子増倍管からの信号を増幅して波高分析する手
段と、 光電子パルスの数が所定値以下で測定粒子が微小粒子で
あるか否かを判別する手段と、 前記計数手段あるいは波高分析手段からの信号から粒子
径と粒度分布を演算する手段とを設け、前記演算手段は
、光電子パルス数が所定値以下で微小粒子と判別された
場合は光電子パルスを単一光子計数法を用いて計数する
ことにより、また所定値以上と判別された場合は波高分
析手段からの信号をアナログ的に処理することにより粒
子径と粒度分布を求めることを特徴とする流体中の粒子
計測装置。 3)前記微小粒子であるが否かの判別を演算手段の内部
で行なうようにしたことを特徴とする請求項第2項に記
載の流体中の粒子計測装置。
[Claims] 1) Particles in the fluid that irradiates a fluid containing particles flowing in a measurement cell with a laser beam, receives scattered light from the particles, and determines the particle size and particle size distribution from the intensity of the scattered light. In the measurement method, it is determined whether or not a particle is a microparticle with a value below a predetermined value according to a signal from a photomultiplier tube that detects scattered light from the particle. A method for measuring particles in a fluid, which is characterized by using a single photon counting method if the particle size is greater than a predetermined value, and by processing the signal in an analog manner to determine the particle size and particle size distribution. 2) A particle measuring device in a fluid that irradiates a fluid containing particles flowing through a measurement cell with a laser beam, receives scattered light from the particles, and calculates the particle size and particle size distribution from the intensity of the scattered light. a photomultiplier tube for detecting scattered light of the photoelectron pulse; means for counting photoelectron pulses according to a signal from the photomultiplier tube; means for amplifying and analyzing the pulse height of the signal from the photomultiplier tube; means for determining whether or not the measured particles are microparticles when the number is less than a predetermined value; and means for calculating the particle diameter and particle size distribution from the signal from the counting means or the wave height analysis means, the calculating means comprising: If the number of photoelectron pulses is less than a predetermined value and it is determined to be a microparticle, the photoelectron pulses are counted using a single photon counting method, and if the number of photoelectron pulses is determined to be greater than a predetermined value, the signal from the pulse height analysis means is A particle measuring device in a fluid that is characterized by determining particle diameter and particle size distribution through analog processing. 3) The apparatus for measuring particles in a fluid according to claim 2, wherein the determination as to whether the particles are microparticles or not is performed within a calculation means.
JP2116903A 1990-05-08 1990-05-08 Method and apparatus for measuring particles in fluid Expired - Fee Related JP2899359B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2116903A JP2899359B2 (en) 1990-05-08 1990-05-08 Method and apparatus for measuring particles in fluid
US07/695,442 US5172004A (en) 1990-05-08 1991-05-03 Method and apparatus for measuring particles in a fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2116903A JP2899359B2 (en) 1990-05-08 1990-05-08 Method and apparatus for measuring particles in fluid

Publications (2)

Publication Number Publication Date
JPH0413947A true JPH0413947A (en) 1992-01-17
JP2899359B2 JP2899359B2 (en) 1999-06-02

Family

ID=14698496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2116903A Expired - Fee Related JP2899359B2 (en) 1990-05-08 1990-05-08 Method and apparatus for measuring particles in fluid

Country Status (2)

Country Link
US (1) US5172004A (en)
JP (1) JP2899359B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2274333B (en) * 1993-01-07 1996-12-11 Hochiki Co Smoke detecting apparatus capable of detecting both smoke and fine particles
EP1432972A1 (en) * 2001-09-07 2004-06-30 Inficon, Inc. Signal processing method for in-situ, scanned-beam particle monitoring
JP3895673B2 (en) * 2002-11-21 2007-03-22 株式会社堀場製作所 Particle size distribution measuring device
CA2809251C (en) * 2012-09-27 2014-09-02 Cinrg Systems Inc. System and method for automated dilution and delivery of liquid samples to an optical particle counter
CA2791003C (en) 2012-09-27 2013-08-06 Cinrg Systems Inc. Liquid sample testing apparatus
JP6237417B2 (en) * 2014-03-31 2017-11-29 株式会社Jvcケンウッド Analysis apparatus and analysis method
US10190961B2 (en) * 2016-03-18 2019-01-29 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Sample analyzer and sample analyzing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063413B2 (en) * 1986-06-06 1994-01-12 興和株式会社 Particle measuring device in fluid
US4850707A (en) * 1986-06-06 1989-07-25 Massachusetts Institute Of Technology Optical pulse particle size analyzer
US4842406A (en) * 1988-01-15 1989-06-27 Pacific Scientific Company Optical instruments for measuring particle sizes
JPH0643949B2 (en) * 1988-10-03 1994-06-08 大塚電子株式会社 Particle size measuring device

Also Published As

Publication number Publication date
JP2899359B2 (en) 1999-06-02
US5172004A (en) 1992-12-15

Similar Documents

Publication Publication Date Title
JP2899360B2 (en) Method and apparatus for measuring particles in fluid
US4830494A (en) Method and apparatus for measuring particles in a fluid
US5090808A (en) Particle measurement apparatus
JP2005504967A (en) High numerical aperture flow cytometer and method of use
CN108956402B (en) High-sensitivity dust concentration detection method with composite multi-photosensitive-area structure
JP2008122395A (en) Signal processing method for monitoring particle in in-situ scanning beam
JPH0493637A (en) Granular material analysis device and analysis method therefor, and super-pure water generation device, semiconductor manufacture device and high-purity gas generation device
US4510438A (en) Coincidence correction in particle analysis system
JPH0413947A (en) Method and apparatus for measuring particles in fluid
JP3532274B2 (en) Particle detector
US4788443A (en) Apparatus for measuring particles in a fluid
JP3521381B2 (en) Particle counting device
JP3504029B2 (en) Particle analyzer
JP3504030B2 (en) Method and apparatus for determining particle criterion, and particle analyzer using the criterion
JPH0786455B2 (en) Particle measuring method and apparatus
CN110857909B (en) System for measuring particle size of particles
JPH0220674Y2 (en)
JPH05297146A (en) Method and device for measuring corpuscular beam
JPH08202970A (en) Method for setting up optimum threshold of highly sensitive smoke detector
JPH0611433A (en) Particulate measuring device and particulate sensing method
JPH0226054Y2 (en)
JPH02128142A (en) Optical fine particle measuring apparatus
JPH11339153A (en) Smoke sensor
JPH05206235A (en) Measuring method for particle
JPH11339157A (en) Smoke sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees