JPH0413919A - Equipment and method for measuring precision in alignment of construction site - Google Patents

Equipment and method for measuring precision in alignment of construction site

Info

Publication number
JPH0413919A
JPH0413919A JP11692090A JP11692090A JPH0413919A JP H0413919 A JPH0413919 A JP H0413919A JP 11692090 A JP11692090 A JP 11692090A JP 11692090 A JP11692090 A JP 11692090A JP H0413919 A JPH0413919 A JP H0413919A
Authority
JP
Japan
Prior art keywords
measured
measurement target
accuracy
measuring
construction site
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11692090A
Other languages
Japanese (ja)
Other versions
JP2577110B2 (en
Inventor
Jun Nomura
潤 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2116920A priority Critical patent/JP2577110B2/en
Publication of JPH0413919A publication Critical patent/JPH0413919A/en
Application granted granted Critical
Publication of JP2577110B2 publication Critical patent/JP2577110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure the precision in alignment accurately by computing the unevenness of a surface to be measured from measuring targets on each of which a scale mark showing a distance of separation from the surface to be measured is displayed, a reading sensor which is set at a datum position and reads the scale mark of the measuring target, and a valve of the scale mark read by the reading sensor. CONSTITUTION:In a personal computer 4, an operation of addition or subtraction of the value of a scale mark of any one of measuring targets 2 or the position of a reading sensor and values of scale marks of other measuring targets 2, with the above-mentioned value or position used as a basis, and the result of this operation is displayed as numerical data and also as figure data on a monitor 4a, while it is stored as well. Accordingly, the precision in alignment of a form 1 measured by this procedure, i.e. the unevenness of a surface 1a to be measured, is displayed as the numerical data and the figure data on the monitor 4a of the personal computer 4.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、建設現場で施工される構造躯体や建設現場
で組み立てられる型枠等の表面の通り精度を測定するた
めの建設現場における通り精度M11定装置及び通り精
度測定方法に関する。
Detailed Description of the Invention (Industrial Application Field) This invention is a method for measuring the accuracy of construction at construction sites for measuring the accuracy of the surfaces of structural frames constructed at construction sites, formwork assembled at construction sites, etc. This invention relates to an M11 constant device and a method for measuring accuracy.

(従来の技術) 一般に建設現場においては、コンクリートの打設作業前
に、組み立てられた型枠の通り精度が確保されているか
否かを検査することが行なわれている。また、施工され
た構造物躯体についても、通り精度の検査が行なわれて
いる。
(Prior Art) Generally, at construction sites, before concrete is poured, it is inspected to see if the accuracy of the assembled formwork is ensured. In addition, inspections of the accuracy of the constructed structures are also being conducted.

従来この通り精度を検査する方法としては、被測定面で
ある構造躯体表面や型枠表面とほぼ平行に基準となるピ
アノ線や水系を張り、作業員かスケール等で型枠表面等
からピアノ線等までの距離を読み取るようにしていた。
Conventionally, the method of testing accuracy is to stretch a reference piano wire or water system almost parallel to the surface of the structural frame or formwork, which is the surface to be measured, and then use a worker or scale to trace the piano wire from the surface of the formwork, etc. I was trying to read the distance to etc.

(発明が解決しようとする課題) しかしながら従来の検査方法では、ピアノ線や水系の張
り具合によっては誤差が生じたり、現場での風などの影
響でピアノ線等が揺れたりして、正確な検査結果を得る
ことが困難であった。
(Problem to be solved by the invention) However, with conventional inspection methods, errors may occur depending on the tension of the piano wire or water system, and the piano wire may sway due to wind at the site, making it difficult to perform accurate inspection. Results were difficult to obtain.

また、検査結果は作業員が記録して処理しなければなら
ず、面倒な作業であった。
In addition, the test results had to be recorded and processed by the worker, which was a troublesome task.

この発明は以上の課題を解決するために創案されたもの
で、その目的とするところは、通り精度を正確に測定で
きると共に、この作業の省力化を図ることができる建設
現場における通り精度測定装置及び通り精度測定方法を
提供することにある。
This invention was devised to solve the above problems, and its purpose is to provide a street accuracy measuring device for construction sites that can accurately measure street accuracy and save labor in this work. and to provide a method for measuring accuracy.

(課題を解決するための手段と作用) 前記目的を達成するため、本発明は、建設現場で施工さ
れたり組み立てられる構造躯体や型枠等の表面を被測定
面としてその通り精度を測定するための装置において、
被測定面にこれより外方へ延出させて取り付けられ、被
測定面からの離隔距離を示す目盛りが表示された測定タ
ーゲットと、基準位置に設置され測定ターゲットの目盛
りを読み取る読取りセンサと、読取りセンサで読み取ら
れた目盛りの値から被測定面の凹凸を演算すると共に表
示し記憶する演算処理手段とを備え、たことを特徴とす
る。
(Means and effects for solving the problem) In order to achieve the above-mentioned object, the present invention provides a method for measuring accuracy using the surface of a structural frame, formwork, etc. that is constructed or assembled at a construction site as a surface to be measured. In the device of
A measurement target attached to the surface to be measured extending outward from the surface and displaying a scale indicating the separation distance from the surface to be measured, a reading sensor installed at a reference position and reading the scale of the measurement target, and a reading sensor. It is characterized by comprising a calculation processing means for calculating, displaying and storing the unevenness of the surface to be measured from the scale values read by the sensor.

また本発明は、建設現場で施工されたり組み立てられる
構造躯体や型枠等の表面を被測定面としてその通り精度
を測定するに際して、被測定面にこれより外方へ延出さ
せて被測定面からの離隔距離を示す目盛りが表示された
測定ターゲットを取り付けると共に、測定ターゲットの
目盛りを読み取る読取りセンサを基準位置に設置し、次
いで読取りセンサで測定ターゲットの目盛りを読み取ら
せ、その後読み取った目盛りの値を読取りセンサから演
算処理、手段に入力させて演算処理手段で被測定面の凹
凸を演算させると共に表示させ記憶させるようにしたこ
とを特徴とする。
In addition, the present invention provides a method for measuring the accuracy of a structural body, formwork, etc. that is constructed or assembled at a construction site as a surface to be measured, by making the surface to be measured extend outward from the surface to be measured. Attach a measurement target with a scale indicating the distance from the target, and install a reading sensor to read the scale of the measurement target at the reference position. It is characterized in that it is inputted from the reading sensor to arithmetic processing means, and the arithmetic processing means calculates the irregularities of the surface to be measured, and also displays and stores them.

以上の構成によれば、測定ターゲットの目盛りを読取り
センサで読み取らせてこの読取り値を演算処理手段で処
理させるようにしたので、従来のようにピアノ線や水系
等を利用する必要がなくなり、それらのセツティングの
誤差や現場環境の影響を受けることなく正確に通り精度
を測定できると共に、ピアノ線等の張渡し作業や読取り
作業を廃止でき、作業の省力化を図ることもできる。
According to the above configuration, the scale of the measurement target is read by the reading sensor and the read value is processed by the arithmetic processing means, so there is no need to use piano wire or water systems as in the past. It is possible to accurately measure the passing accuracy without being affected by setting errors or the site environment, and it is also possible to eliminate the work of stretching and reading piano wires, etc., and save labor.

また本発明は、建設現場で施工されたり組み立てられる
構造躯体や型枠等の表面を被測定面としてその通り精度
を測定するための装置において、基準位置に設置され信
号を発信する信号発信手段と、被測定面にこれより外方
へ延出させて取り付けられ、信号発信手段からの信号を
受信し被測定面からの離隔距離を受信位置によって検出
する測定ターゲットと、測定ターゲットで検出された検
出値から被測定面の凹凸を演算すると共に表示し記憶す
る演算処理手段とを備えたことを特徴とする。
The present invention also provides a signal transmitting means installed at a reference position and transmitting a signal in an apparatus for measuring the accuracy of a structural frame, formwork, etc. constructed or assembled at a construction site as a surface to be measured. , a measurement target that is attached to the surface to be measured so as to extend outward from the surface, receives a signal from the signal transmitting means, and detects the distance from the surface to be measured based on the receiving position; and a detection target that is detected by the measurement target. The present invention is characterized by comprising a calculation processing means for calculating, displaying and storing the unevenness of the surface to be measured from the values.

さらに本発明は、建設現場で施工されたり組み立てられ
る構造躯体や型枠等の表面を被測定面としてその通り精
度を測定するに際して、信号を発信する信号発信手段を
基準位置に設置すると共に、被測定面にこれより外方へ
延出させて、信号発信手段からの信号を受信し被測定面
からの離隔距離を受信位置によって検出する測定ターゲ
ットを取り付け、次いで信号発信手段から信号を発信さ
せると共に測定ターゲットに離隔距離を検出させ、その
後検出された検出値を測定ターゲットから演算処理手段
に入力させて演算処理手段で被測定面の凹凸を演算させ
ると共に表示させ記憶させるようにしたことを特徴とす
る。
Furthermore, the present invention provides a method for installing a signal transmitting means for transmitting a signal at a reference position and for measuring accuracy using the surface of a structural frame, formwork, etc. that is constructed or assembled at a construction site as a surface to be measured. Attaching a measurement target extending outward from the measurement surface to receive a signal from the signal transmission means and detecting the separation distance from the surface to be measured based on the receiving position, and then causing the signal transmission means to transmit a signal and The measurement target detects the separation distance, and then the detected value is input from the measurement target to the calculation processing means, and the calculation processing means calculates the unevenness of the surface to be measured, and displays and stores it. do.

以上の構成によれば、信号発信手段からの信号の受信位
置を測定ターゲットで検出させてこの検出値を演算処理
手段で処理させるようにしたので、従来のようにピアノ
線や水系等を利用する必要がなくなり、それらのセツテ
ィングの誤差や現場環境の影響を受けることなく正確に
通り精度を測定できると共に、ピアノ線等の張渡し作業
や読取り作業を廃止でき、作業の省力化を図ることもて
きる。
According to the above configuration, the receiving position of the signal from the signal transmitting means is detected by the measurement target, and this detected value is processed by the arithmetic processing means. This eliminates the need for these settings, allows accurate measurement of passing accuracy without being affected by setting errors or the site environment, and eliminates the work of stretching and reading piano wires, etc., resulting in labor savings. I'll come.

(実 施 例) 以下、この発明の実施例を図面を用いて詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail using the drawings.

第1図及び第2図は、この発明を型枠の通り精度の測定
に適用した第1の実施例を示している。
FIGS. 1 and 2 show a first embodiment in which the present invention is applied to measuring the accuracy of molding.

図において、1は建設現場等で組み立てられる外壁用型
枠、2は型枠1の被測定面1aである表面に、これより
外方へ延出させて且つ互いに間隔を隔てて平行に取り付
けられた測定ターゲット、3は各測定ターゲット2に表
示された目盛りを読み取るための読取りセンサであり、
読取りセンサ3で読み取られた目盛りの値、すなわちデ
ータはこれに接続された演算処理手段、例えばパソコン
4に入力され、このパソコン4で演算処理されると共に
演算結果が記憶され、さらにこのパソコン4に備えたモ
ニタ4aに表示される。
In the figure, 1 is a formwork for an external wall that is assembled at a construction site, etc., and 2 is a formwork attached to the surface of the formwork 1, which is the surface to be measured 1a, extending outward from this and being spaced apart from each other in parallel. 3 is a reading sensor for reading the scale displayed on each measurement target 2,
The value of the scale read by the reading sensor 3, that is, the data, is input to an arithmetic processing means connected thereto, for example, a personal computer 4, where it is arithmetic-processed and the arithmetic result is stored. It is displayed on the equipped monitor 4a.

測定ターゲット2に表示される目盛りは、被測定面から
の離隔距離を示すように形成されている。
The scale displayed on the measurement target 2 is formed to indicate the distance from the surface to be measured.

また、この目盛りを読み取る読取りセンサ3は、ff1
ll定ターゲット2から適当な距離離隔されると共に、
被測定面1に平行で目つ測定ターゲット2に直角となる
基準位置に設置される。読取りセンサ3は例えばトラン
シットような構成を有し、三脚5上に配置されている。
Further, the reading sensor 3 that reads this scale is ff1
While being separated from the fixed target 2 by an appropriate distance,
It is installed at a reference position that is parallel to the surface to be measured 1 and perpendicular to the measurement target 2 . The reading sensor 3 has, for example, a transit-like configuration and is placed on a tripod 5.

以上の構成における測定方法は、まず被測定面1aに測
定ターゲット2を取り付けると共に、読取りセンサ3を
基準位置に設置する。その後、各測定ターゲット2の目
盛りの値を読取りセンサ3で順次読み取らせる。
In the measurement method with the above configuration, first, the measurement target 2 is attached to the surface to be measured 1a, and the reading sensor 3 is installed at the reference position. Thereafter, the values on the scales of each measurement target 2 are sequentially read by the reading sensor 3.

この読取りセンサ3によって読み取られたデータはパソ
コン4に入力され、このパソコン4て演算処理が実行さ
れる。
The data read by the reading sensor 3 is input to a personal computer 4, and arithmetic processing is executed by the personal computer 4.

すなわち、パソコン4の内部では、いずれか1つの測定
ターゲット2の目盛りの値または読取りセンサ3の位置
を基準として、他の測定ターゲット2の目盛りの値との
加減演算が行なわれ、この演算結果はモニタ4a上に数
値データとともに図形データとしても表示され、その記
憶も行われるようになっている。
That is, inside the personal computer 4, an addition/subtraction operation is performed with the scale value of any one measurement target 2 or the position of the reading sensor 3 as a reference, and the calculation result is Graphical data is displayed along with numerical data on the monitor 4a, and the data is also stored.

したかって、以上の手順により測定された型枠1の通り
精度、すなわち被測定面1aの凹凸は、パソコン4のモ
ニタ4aに数値データおよび図形データとして表示され
、測定作業者はこのモニタ4aを見ることによって、型
枠1が寸法誤差範囲にあるか、どの位置が最も出入りが
大きいかなどを一目瞭然に判断することができる。
Therefore, the accuracy of the formwork 1 measured by the above procedure, that is, the unevenness of the surface to be measured 1a, is displayed as numerical data and graphic data on the monitor 4a of the personal computer 4, and the measuring operator views this monitor 4a. By doing so, it is possible to clearly determine whether the formwork 1 is within the dimensional error range and which position has the largest inflow and outflow.

また、型枠1の組立て時からコンクリ−1・打設作業の
完了時にまでわたって被測定面1aに測定ターゲット2
を取り付けたままとしておけば、型枠1の組立中、コン
クリートの打設直前あるいは打設中、さらには打設完了
時における型枠1の変形状態を直ちに知ることができ、
各作業時点て素早い対応ができる。
In addition, the measurement target 2 is placed on the surface to be measured 1a from the time of assembling the formwork 1 until the completion of concrete 1 and pouring work.
If you leave it attached, you can immediately know the deformed state of the formwork 1 during the assembly of the formwork 1, immediately before or during pouring of concrete, and even at the completion of pouring.
Able to respond quickly to each task.

またこの測定装置及び測定方法は型枠1だけでなく、建
設現場で施工される構造躯体の表面の通り精度の測定に
も適用できる。
Further, this measuring device and method can be applied not only to the formwork 1 but also to measuring the accuracy of the surface of a structural frame constructed at a construction site.

第3図〜第5図はこの発明の第2の実施例を示すもので
、型枠1の被測定面1aに装着される測定ターゲット1
0の目盛りには受光素子10aが設けられており、この
受光素子10aに信号発信手段から発信される信号、例
えばレーザ発振器12から発信される光が到達する構成
である。すなわち、上記実施例の読取りセンサ3に代え
て信号発信手段であるレーザ発振器12を基準位置に設
置する。また、上記実施例の単に目盛りが表示された測
定ターゲット2とは異なり、本実施例の測定ターゲット
10は、レーザ発振器12からの信号を受信し被測定面
1aからの離隔距離をその受信位置によって検出するよ
うに構成されている。
3 to 5 show a second embodiment of the present invention, in which a measurement target 1 is attached to a surface 1a of a formwork 1 to be measured.
A light receiving element 10a is provided at the 0 scale, and a signal transmitted from a signal transmitting means, for example, light transmitted from a laser oscillator 12, reaches this light receiving element 10a. That is, in place of the reading sensor 3 of the above embodiment, a laser oscillator 12 serving as a signal transmitting means is installed at the reference position. Furthermore, unlike the measurement target 2 of the above embodiment where a scale is simply displayed, the measurement target 10 of this embodiment receives a signal from the laser oscillator 12 and calculates the distance from the surface to be measured 1a based on the reception position. Configured to detect.

そして測定ターゲット10にはモニタ4aを備えたパソ
コン4が接続され、検出値がパソコン4に入力されて演
算処理が実行されるようになっている。
A personal computer 4 equipped with a monitor 4a is connected to the measurement target 10, and the detected values are input to the personal computer 4 and arithmetic processing is executed.

測定方法としては、被測定面1aの第1の測定箇所に測
定ターゲット10を取り付けると共に、レーザ発振器1
2を基準位置に設置する。そして、三脚5上に回転可能
に支持したレーザ発振器12の発光部12aを回転させ
つつ光を発振させる。
As a measurement method, a measurement target 10 is attached to a first measurement point on the surface to be measured 1a, and a laser oscillator 1 is
2 at the reference position. Then, the light emitting section 12a of the laser oscillator 12 rotatably supported on the tripod 5 is rotated to emit light.

発振された光は、測定ターゲット10のいずれかの受光
素子10aで受信され、検出値である受光信号はパソコ
ン4に入力される。
The oscillated light is received by one of the light receiving elements 10a of the measurement target 10, and a light reception signal, which is a detected value, is input to the personal computer 4.

測定ターゲット10の中には、検出値を記憶させておく
ようにしても良い。
The detected values may be stored in the measurement target 10.

次に、測定ターゲット10を次の測定点に移動させ、再
度同じ操作を繰返す。
Next, the measurement target 10 is moved to the next measurement point and the same operation is repeated again.

このようにして、最終測定位置まで測定ターゲット10
の移動と測定動作を繰返すことで測定が終了する。
In this way, the measurement target 10 reaches the final measurement position.
The measurement is completed by repeating the movement and measurement operation.

その後は前記実施例と同様にパソコン4で演算処理する
ことで、例゛えば最初のデータを基準としてその後の他
のデータとの加減演算がなされ、この演算結果を数値デ
ータおよび図形データなどとしてモニタ4aに表示させ
るとともに、記憶させる。
Thereafter, by performing arithmetic processing on the personal computer 4 in the same way as in the embodiment described above, for example, addition and subtraction operations are performed using the first data as a reference with other subsequent data, and the results of these calculations are monitored as numerical data, graphic data, etc. 4a and also stores it.

なお、上記いずれの実施例にあっても、測定箇所間の距
離データは、パソコン4に直接キー人力すれば良い。
Incidentally, in any of the above embodiments, the distance data between the measurement points may be directly entered manually into the personal computer 4.

なお、この実施例にあっても型枠1だけでなく、構造躯
体にも適用できる。
Note that this embodiment can also be applied not only to the formwork 1 but also to a structural frame.

(発明の効果) 以上要するに本発明によれば、次のような優れた効果を
発揮する。
(Effects of the Invention) In summary, according to the present invention, the following excellent effects are achieved.

(1)測定ターゲットの目盛りを読取りセンサで読み取
らせてこの読取り値を演算処理手段で処理させるように
したので、従来のようにピアノ線や水系等を利用する必
要がなくなり、それらのセツティングの誤差や現場環境
の影響を受けることなく正確に通り精度を測定できると
共に、ピアノ線等の張渡し作業や読取り作業を廃止でき
、簡易且つ迅速に測定作業を実施することができる。
(1) Since the scale of the measurement target is read by a reading sensor and the read value is processed by arithmetic processing means, there is no need to use piano wire or water systems as in the past, and the settings of these can be adjusted. It is possible to accurately measure the passing accuracy without being influenced by errors or the site environment, and it is possible to eliminate the work of stretching piano wire, etc. and reading work, and the measurement work can be carried out easily and quickly.

(2)信号発信手段からの信号の受信位置を測定ターゲ
ットで検出させてこの検出値を演算処理手段で処理させ
るようにしたので、従来のようにピアノ線や水系等を利
用する必要がなくなり、それらのセツティングの誤差や
現場環境の影響を受けることなく正確に通り精度を測定
できると共に、ピアノ線等の張渡し作業や読取り作業を
廃止でき、簡易且つ迅速に測定作業を実施することがで
きる。
(2) Since the measurement target detects the receiving position of the signal from the signal transmitting means and the detected value is processed by the arithmetic processing means, there is no need to use piano wires or water systems as in the past. It is possible to accurately measure the passing accuracy without being influenced by setting errors or the site environment, and it is possible to eliminate the work of stretching and reading piano wires, etc., and the measurement work can be carried out easily and quickly. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例を示す斜視図、第2図
は測定ターゲットの拡大図、第3図はこの発明の第2の
実施例を示す平面図、第4図は測定ターゲットとパソコ
ンを示す拡大図、第5図はレーザ発振器の斜視図である
。 1・・・・・・型枠 1a・・・被測定面 2.10・・・測定ターゲット 3・・・・・・読取りセンサ 4・・・・・・演算処理手段(パソコン)12・・・信
号発信手段(レーザ発振器)第1図 第2図
Fig. 1 is a perspective view showing a first embodiment of the present invention, Fig. 2 is an enlarged view of a measurement target, Fig. 3 is a plan view showing a second embodiment of the invention, and Fig. 4 is a measurement target. FIG. 5 is an enlarged view showing the computer and FIG. 5 is a perspective view of the laser oscillator. 1...Formwork 1a...Measurement surface 2.10...Measurement target 3...Reading sensor 4...Calculation processing means (PC) 12... Signal transmission means (laser oscillator) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 (1)建設現場で施工されたり組み立てられる構造躯体
や型枠等の表面を被測定面としてその通り精度を測定す
るための装置において、上記被測定面にこれより外方へ
延出させて取り付けられ、該被測定面からの離隔距離を
示す目盛りが表示された測定ターゲットと、基準位置に
設置され上記測定ターゲットの目盛りを読み取る読取り
センサと、該読取りセンサで読み取られた目盛りの値か
ら上記被測定面の凹凸を演算すると共に表示し記憶する
演算処理手段とを備えたことを特徴とする建設現場にお
ける通り精度測定装置。 (2)建設現場で施工されたり組み立てられる構造躯体
や型枠等の表面を被測定面としてその通り精度を測定す
るに際して、上記被測定面にこれより外方へ延出させて
該被測定面からの離隔距離を示す目盛りが表示された測
定ターゲットを取り付けると共に、該測定ターゲットの
目盛りを読み取る読取りセンサを基準位置に設置し、次
いで該読取りセンサで上記測定ターゲットの目盛りを読
み取らせ、その後読み取った目盛りの値を該読取りセン
サから演算処理手段に入力させて該演算処理手段で上記
被測定面の凹凸を演算させると共に表示させ記憶させる
ようにしたことを特徴とする建設現場における通り精度
測定方法。(3)建設現場で施工されたり組み立てられ
る構造躯体や型枠等の表面を被測定面としてその通り精
度を測定するための装置において、基準位置に設置され
信号を発信する信号発信手段と、上記被測定面にこれよ
り外方へ延出させて取り付けられ、上記信号発信手段か
らの信号を受信し該被測定面からの離隔距離を受信位置
によって検出する測定ターゲットと、該測定ターゲット
で検出された検出値から上記被測定面の凹凸を演算する
と共に表示し記憶する演算処理手段とを備えたことを特
徴とする建設現場における通り精度測定装置。 (4)建設現場で施工されたり組み立てられる構造躯体
や型枠等の表面を被測定面としてその通り精度を測定す
るに際して、信号を発信する信号発信手段を基準位置に
設置すると共に、上記被測定面にこれより外方へ延出さ
せて、上記信号発信手段からの信号を受信し該被測定面
からの離隔距離を受信位置によって検出する測定ターゲ
ットを取り付け、次いで上記信号発信手段から信号を発
信させると共に上記測定ターゲットに離隔距離を検出さ
せ、その後検出された検出値を上記測定ターゲットから
演算処理手段に入力させて該演算処理手段で上記被測定
面の凹凸を演算させると共に表示させ記憶させるとを備
えたことを特徴とする建設現場における通り精度測定方
法。
[Scope of Claims] (1) In an apparatus for measuring the accuracy of a structural body, formwork, etc. that is constructed or assembled at a construction site as a surface to be measured, the surface to be measured is a measurement target that is attached to the measurement target and extends therefrom and displays a scale indicating the separation distance from the surface to be measured; a reading sensor that is installed at a reference position and reads the scale of the measurement target; A street accuracy measuring device for a construction site, characterized in that it is equipped with arithmetic processing means for calculating, displaying and storing the unevenness of the surface to be measured from the values on the scale. (2) When measuring the accuracy of the surface of a structural frame, formwork, etc. that is constructed or assembled at a construction site as a surface to be measured, the surface to be measured is made to extend outward from the surface to be measured. A measurement target on which a scale indicating the separation distance from the measurement target is displayed is attached, and a reading sensor for reading the scale of the measurement target is installed at a reference position, and then the reading sensor is caused to read the scale of the measurement target, and then the reading is performed. A method for measuring street accuracy at a construction site, characterized in that the value of the scale is input from the reading sensor to a calculation processing means, and the calculation processing means calculates, displays, and stores the unevenness of the surface to be measured. (3) In a device for measuring the accuracy of a structural frame, formwork, etc. constructed or assembled at a construction site as a surface to be measured, a signal transmitting means installed at a reference position and transmitting a signal; a measurement target that is attached to the surface to be measured so as to extend outward from the surface, receives the signal from the signal transmitting means, and detects the distance from the surface to be measured based on the receiving position; 1. A street accuracy measuring device for a construction site, comprising a calculation processing means for calculating, displaying and storing the unevenness of the surface to be measured from the detected value. (4) When measuring the accuracy of the surface of a structural frame, formwork, etc. that is being constructed or assembled at a construction site as the surface to be measured, a signal transmitting means for transmitting a signal is installed at a reference position, and the Attaching a measurement target extending outward from the surface to receive a signal from the signal transmitting means and detecting a distance from the surface to be measured based on the receiving position, and then transmitting a signal from the signal transmitting means. At the same time, the measurement target detects the separation distance, and then the detected detection value is inputted from the measurement target to a calculation processing means, and the calculation processing means calculates the unevenness of the surface to be measured, and displays and stores it. A method for measuring street accuracy at a construction site, characterized by comprising:
JP2116920A 1990-05-08 1990-05-08 Street accuracy measuring device and street accuracy measuring method at construction site Expired - Lifetime JP2577110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2116920A JP2577110B2 (en) 1990-05-08 1990-05-08 Street accuracy measuring device and street accuracy measuring method at construction site

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2116920A JP2577110B2 (en) 1990-05-08 1990-05-08 Street accuracy measuring device and street accuracy measuring method at construction site

Publications (2)

Publication Number Publication Date
JPH0413919A true JPH0413919A (en) 1992-01-17
JP2577110B2 JP2577110B2 (en) 1997-01-29

Family

ID=14698942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2116920A Expired - Lifetime JP2577110B2 (en) 1990-05-08 1990-05-08 Street accuracy measuring device and street accuracy measuring method at construction site

Country Status (1)

Country Link
JP (1) JP2577110B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430570A (en) * 1992-07-22 1995-07-04 Fuji Xerox Co., Ltd. Light deflector
EP0696449A2 (en) 1994-07-14 1996-02-14 Colgate-Palmolive Company Antimicrobial oral composition
US6279239B1 (en) * 1999-04-19 2001-08-28 Edward Astudillo Device and a method for sizing odd parts of drywall for placement on ceilings and walls

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122143A (en) * 1976-04-07 1977-10-14 Takenaka Komuten Co Detecting device used for leaser beam measurement of excavating direction of shield excavator
JPS6138516A (en) * 1984-07-31 1986-02-24 Ohbayashigumi Ltd Measuring device for construction accuracy of slip forming method
JPS61217717A (en) * 1985-03-25 1986-09-27 Asahi Chem Ind Co Ltd Inspection for curve of foundation line
JPS6439518A (en) * 1987-08-06 1989-02-09 Tokyo Keiki Kk Rectilinear propagation extent measurement system for pile member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122143A (en) * 1976-04-07 1977-10-14 Takenaka Komuten Co Detecting device used for leaser beam measurement of excavating direction of shield excavator
JPS6138516A (en) * 1984-07-31 1986-02-24 Ohbayashigumi Ltd Measuring device for construction accuracy of slip forming method
JPS61217717A (en) * 1985-03-25 1986-09-27 Asahi Chem Ind Co Ltd Inspection for curve of foundation line
JPS6439518A (en) * 1987-08-06 1989-02-09 Tokyo Keiki Kk Rectilinear propagation extent measurement system for pile member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430570A (en) * 1992-07-22 1995-07-04 Fuji Xerox Co., Ltd. Light deflector
EP0696449A2 (en) 1994-07-14 1996-02-14 Colgate-Palmolive Company Antimicrobial oral composition
US6279239B1 (en) * 1999-04-19 2001-08-28 Edward Astudillo Device and a method for sizing odd parts of drywall for placement on ceilings and walls

Also Published As

Publication number Publication date
JP2577110B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
US9009000B2 (en) Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
KR101602485B1 (en) A stick ruler for the detection structures
CN205808350U (en) A kind of New Instrument for Crack Width indication error detection device
US4650334A (en) Optical straightness gauge and method
CN105352448A (en) Device for detecting camber of main girder of crane
CN108168820A (en) A kind of building curtain wall safety detecting method
US10690499B2 (en) Analysis system, analysis method, and storage medium in which analysis program is stored
JPH10267651A (en) Method and instrument for measuring inclination
JPH0413919A (en) Equipment and method for measuring precision in alignment of construction site
JPH1194503A (en) Device for measuring depth
CN104776826A (en) Attitude measurement system and attitude measurement method
JPH0829104A (en) Foundation base measuring apparatus
JP2007155583A (en) Method and device for measuring hole passage
JPH08313251A (en) Measuring-system calibration apparatus and method of measuring hole bend
CN205642305U (en) Detect hoist camber's device
JPH10293023A (en) Ruler for level surveying
CN109631809B (en) Bridge deflection measuring equipment and method
KR100943815B1 (en) Testing methods marine electronic equipment based on GIS
CN110500098A (en) Traveling angle detecting method and development machine in a kind of tunnel
JP2506730Y2 (en) Distance between press dies
JP2001153719A (en) Analysis system for vibration characteristic
JP3594118B2 (en) Vertical detection output device, measurement point instruction unit and surveying equipment
JP2019128216A (en) Method for measuring deformation amount of architectural structure
JP2012132844A (en) Method for specifying inspection work result on internal surface of container surrounded by faces and working position, and information management method
KR20050097593A (en) Structure diagnostic system by lidar and diagnosing method by it