JPH04138057A - Field winding for superconducting generator - Google Patents

Field winding for superconducting generator

Info

Publication number
JPH04138057A
JPH04138057A JP2256830A JP25683090A JPH04138057A JP H04138057 A JPH04138057 A JP H04138057A JP 2256830 A JP2256830 A JP 2256830A JP 25683090 A JP25683090 A JP 25683090A JP H04138057 A JPH04138057 A JP H04138057A
Authority
JP
Japan
Prior art keywords
field winding
slot
superconducting
insulating spacer
lower insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2256830A
Other languages
Japanese (ja)
Other versions
JPH0732585B2 (en
Inventor
Kiyoshi Yamaguchi
潔 山口
Yasuomi Yagi
恭臣 八木
Satoru Ohashi
大橋 覚
Takashi Shibata
孝 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP2256830A priority Critical patent/JPH0732585B2/en
Publication of JPH04138057A publication Critical patent/JPH04138057A/en
Publication of JPH0732585B2 publication Critical patent/JPH0732585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a field winding for a superconducting generator in which a field winding is rigidly supported fixedly to a tee for forming a slot by forming a lower insulating spacer arranged in the bottom of the slot of nonmagnetic metal coated with an insulator and having high resistance, high density and high strength. CONSTITUTION:In the case of 3600rpm of rated rotating speed as an example of a 1000MW class dipole superconducting generator having a lower insulating spacer 7 made of semicircular stainless steel of 40mm of diameter of sectional size in the bottom of a slot 2, the spacer 7 affects a pressure of 4.46MPa to a field winding 4. Heretofore, since it is formed of glass fiber reinforced plastic(FRP) in a rectangular shape, twelve times of pressure is obtained due to a difference of densities and shapes of the stainless steel and the FRP. Accordingly, a coil is rigidly supported to a wedge 5. No hysteresis loss is generated due to the nonmagnetic metal, and an induced current generated therein can be suppressed to a small value due to the high resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導発電機にかかり、特に回転子に加工され
たスロットの中に納められて固定される超電導界磁巻線
の固定法の改良に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a superconducting generator, and in particular, an improvement in the method of fixing a superconducting field winding that is housed and fixed in a slot machined in a rotor. Regarding.

〔従来の技術〕[Conventional technology]

従来の技術としては、特開昭60−2070号公報に示
されるように、超電導発電機の回転子の巻線取付軸の表
面に機械加工されたスロットの底部にある下部絶縁スペ
ーサは、全体が絶縁物で作られていた。
As a conventional technique, as shown in Japanese Unexamined Patent Publication No. 60-2070, a lower insulating spacer at the bottom of a slot machined on the surface of a winding mounting shaft of a rotor of a superconducting generator is It was made of insulating material.

第2図に従来のスロット内に納められた超電導界磁巻線
の断面図を示す。第2図において、スロット2内に超電
導発電機[4が納められており、6.7.8.9は上部
、下部及び側部の絶縁スペーサである。
FIG. 2 shows a cross-sectional view of a conventional superconducting field winding housed in a slot. In FIG. 2, a superconducting generator [4 is housed in the slot 2, and 6.7.8.9 are insulating spacers at the top, bottom, and sides.

そして、通常、絶縁スペーサはガラス繊維強化プラスチ
ック(FRP)でできており、下部絶縁スペーサの形状
も第2図に示されるように矩形である。
The insulating spacer is usually made of glass fiber reinforced plastic (FRP), and the shape of the lower insulating spacer is also rectangular as shown in FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

超電導巻線においては一般に運転中の微少な動きが常電
導転移を引き起こすとされており、巻線の支持固定は出
来つるかぎり完全強固なものにすることが求められてい
る。然るに、超電導発電機の回転子の巻線取付軸に機械
加工されたスロットの中に直に巻線される超電導界磁巻
線は、巻線時に張力を掛けて巻くことがその構造上困難
であり、巻線後にスペーサ等のティースに対し固定する
方法がとられてきた。この方法の欠点は回転子が定格回
転数で回転され、4.2Kまで冷却されて定格電流で励
磁されるときに、強大な遠心力と電磁力さらに冷却によ
る収縮率の違いから巻線とスロットを構成するティース
の間に隙間が生じて巻線の支持固定が不十分になり、ク
エンチが生じやすくなることである。
In superconducting windings, it is generally believed that minute movements during operation cause a transition to normal conductivity, and the support and fixation of the windings must be as completely strong as possible. However, because of the structure of the superconducting field winding, which is wound directly into a slot machined into the winding mounting shaft of the rotor of a superconducting generator, it is difficult to apply tension during winding. However, a method has been adopted in which the wire is fixed to teeth such as a spacer after winding. The disadvantage of this method is that when the rotor is rotated at the rated speed, cooled down to 4.2K, and excited at the rated current, there is a strong centrifugal force and electromagnetic force, and the difference in shrinkage rate due to cooling causes the windings and slots to A gap is created between the teeth that make up the winding, resulting in insufficient support and fixation of the winding, which makes quenching more likely to occur.

そこで、本発明は、上記のような問題点を解決し、スロ
ットを構成するティースに界磁巻線が強固に支持固定さ
れた超電導発電機の界磁巻線を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a field winding for a superconducting generator in which the field winding is firmly supported and fixed to the teeth forming the slot.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明では、超電導発電機
の回転子のスロット内に超電導線及び絶縁物が配されて
形成される超電導界磁巻線において、スロットの底に配
される下部絶縁スペーサが、表面に絶縁処理を施された
非磁性、高抵抗、高密度且つ高強度の金属から形成され
ることを特徴とする超電導発電機の界磁巻線としたもの
である。
In order to achieve the above object, the present invention provides a superconducting field winding in which a superconducting wire and an insulator are arranged in a slot of a rotor of a superconducting generator. The field winding of the superconducting generator is characterized in that the spacer is formed from a non-magnetic, high-resistance, high-density, and high-strength metal whose surface is subjected to insulation treatment.

上記において、スロット底及び下部絶縁スペーサ下面は
、円又は楕円の半円状形状とするのがよい。また、スロ
ット内の超電導界磁巻線の左右側面に配される側部絶縁
スペーサの下端が、下部絶縁スペーサの上面より回転子
の半径方向内側へ突出しているのがよい。
In the above, it is preferable that the slot bottom and the lower surface of the lower insulating spacer have a circular or elliptical semicircular shape. Further, it is preferable that the lower ends of the side insulating spacers arranged on the left and right side surfaces of the superconducting field winding in the slot protrude inward in the radial direction of the rotor from the upper surface of the lower insulating spacer.

本発明において、非磁性、高抵抗、高密度且つ高強度の
金属としては、極低温で非磁性のオーステナイト系ステ
ンレス鋼、ニッケル基合金等が使用できる。また、下部
絶縁スペーサが、非磁性、高強度、高抵抗の金属と細か
く分割された高密度の金属からなる場合は、ステンレス
鋼やニッケル基合金等と、高密度金属きしての銀や水銀
等とで構成するのがよい。
In the present invention, as the non-magnetic, high-resistance, high-density, and high-strength metal, austenitic stainless steel, nickel-based alloy, etc., which are non-magnetic at extremely low temperatures, can be used. In addition, if the lower insulating spacer is made of a non-magnetic, high-strength, high-resistance metal and a finely divided high-density metal, it may be made of stainless steel, nickel-based alloy, etc., and silver or mercury of the high-density metal. It is better to consist of

〔作 用〕[For production]

スロット底部にある、表面に絶縁処理を施された非磁性
、高抵抗、高密度且つ高強度の金属から成る、下部絶縁
スペーサを用いると定格回転時にこの下部絶縁スペーサ
に対しその高密度ゆえに大きな遠心力が作用し、スロッ
トの中のコイルを強く押しスロット頂部にあるウェッジ
との間でコイルを強固に支持固定する機能をはたす。ま
た非磁性であることは磁場変動にょるヒステリシス損を
生じない。高抵抗であることは界磁電流が変化してとき
にそこに引き起こされる誘導電流を小さく押さえる。高
強度であることは発電機回転子内の高い遠心力によって
変形しないことを意味する。
When using the lower insulating spacer at the bottom of the slot, which is made of non-magnetic, high-resistance, high-density, and high-strength metal with an insulated surface, the lower insulating spacer has a large centrifugal force due to its high density at rated rotation. The force acts to strongly push the coil inside the slot and firmly support and fix the coil between it and the wedge at the top of the slot. Also, being non-magnetic does not cause hysteresis loss due to magnetic field fluctuations. The high resistance keeps the induced current small when the field current changes. High strength means that it will not be deformed by high centrifugal forces within the generator rotor.

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に説明するが、本発
明はこれらの実施例に限定されない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

実施例1 第1図に本発明の実施例を示す。第1図は超電導発電機
の回転子の1部断面図であり、特に超電導界磁巻線を支
持固定する巻線取付軸1に機械加工されたスロット2の
中に、超電導導体3及び絶縁スペーサ6.7.8.9か
らなる超電導界磁巻線4が納められているところを示す
Example 1 FIG. 1 shows an example of the present invention. FIG. 1 is a partial cross-sectional view of a rotor of a superconducting generator. In particular, a superconducting conductor 3 and an insulating spacer are inserted into a slot 2 machined in a winding mounting shaft 1 that supports and fixes a superconducting field winding. The superconducting field winding 4 consisting of 6.7.8.9 is shown housed.

スロットの頂部にはスロット内蔵物の飛び出しを押さえ
込むウェッジ5がある。超電導界磁巻線4の周囲には対
地絶縁体およびスペーサとしての上部絶縁スペーサ6、
下部絶縁スペーサ7、側部絶縁スペーサ8及び9がある
。上部絶縁スペーサ6、下部絶縁スペーサ7にはクリー
プ絶縁破壊を防止するためのクリページブロックとして
の役目も有する。
At the top of the slot, there is a wedge 5 for suppressing the objects contained in the slot from popping out. Around the superconducting field winding 4, there is an upper insulating spacer 6 as a ground insulator and a spacer.
There are a lower insulating spacer 7 and side insulating spacers 8 and 9. The upper insulating spacer 6 and the lower insulating spacer 7 also have the role of a clipage block for preventing creep dielectric breakdown.

10100O級の2極超電導発電機を例にとると、スロ
ット2の底の半径は250mm程度になる。3600 
rpmの定格回転数で回転しているとすると、回転によ
る角速度はω=2×π×6O−377(ラジアン/秒)
である。スロット2の底での回転による加速度を計算す
るとα−rω2=25 oxa 772=3.553x
 107mm/s2となり、これは重力の加速度の36
25倍の加速度である。スロット2の底に断面の寸法が
直径40mmの半円のステンレス鋼(密度8.0×10
−’kg/mm3)からなる表面が絶縁処理された下部
絶縁スベー7がある場合に、この下部絶縁スペーサ7は
界磁巻線4に対し4.46 MPaの圧力を及ぼす。通
常、絶縁スペーサはガラス繊維強化プラスチック(FR
P)でできており、その密度は2. OX 10−6k
g/mm’以下である。また従来は下部絶縁スペーサ7
の形状が第2図に示すように矩形であり大きさとしては
5 X 40mrn2程度である。したがって本発明で
は、ステンレス鋼とFRPの密度の差から4倍、及び形
状の差から3倍、相乗効果で12倍の圧力を得ることが
出来る。
Taking a 10100O class two-pole superconducting generator as an example, the radius of the bottom of the slot 2 is about 250 mm. 3600
If it is rotating at the rated speed of rpm, the angular velocity due to rotation is ω = 2 x π x 6O-377 (radian/second)
It is. Calculating the acceleration due to rotation at the bottom of slot 2 is α−rω2=25 oxa 772=3.553x
107mm/s2, which is 36% of the acceleration of gravity.
This is 25 times the acceleration. At the bottom of slot 2 is a semicircular piece of stainless steel (density 8.0 x 10
-'kg/mm3), the lower insulating spacer 7 exerts a pressure of 4.46 MPa on the field winding 4. Typically, insulating spacers are glass fiber reinforced plastic (FR)
P) and its density is 2. OX 10-6k
g/mm' or less. Also, conventionally the lower insulating spacer 7
As shown in FIG. 2, the shape is rectangular and the size is about 5 x 40 mrn2. Therefore, in the present invention, it is possible to obtain four times the pressure due to the difference in density between stainless steel and FRP, three times the pressure due to the difference in shape, and 12 times the pressure due to the synergistic effect.

また、下部絶縁スペーサ7の断面形状が半円形であり、
それに合わせてスロット2の底部の形状が半円形である
。スロット2を構成するティース10は回転子が回転し
た状態で4.2Kに冷却され、界磁電流が流れると、界
磁巻線4およびティース10の質量にもとづく大きな遠
心力と界磁巻線に作用する大きな電磁力を支えることに
なる。ティース10の根元の形状が急に変化すると、こ
れら遠心力と電磁力を支えることによって生じる応力が
さらに集中を起こす。
Further, the cross-sectional shape of the lower insulating spacer 7 is semicircular,
Accordingly, the bottom of the slot 2 has a semicircular shape. The teeth 10 forming the slots 2 are cooled to 4.2K while the rotor is rotating, and when a field current flows, a large centrifugal force and a large centrifugal force due to the mass of the field winding 4 and the teeth 10 are applied to the field winding. It supports the large electromagnetic force that acts on it. When the shape of the roots of the teeth 10 suddenly changes, the stress generated by supporting these centrifugal forces and electromagnetic forces becomes further concentrated.

本発明に示す半円形の断面は、ティース10の根元でと
りうる最大の半径であり、応力集中を最小限にとどめる
ことができる。
The semicircular cross section shown in the present invention is the maximum radius that can be taken at the root of the teeth 10, and stress concentration can be kept to a minimum.

実施例2 第3図に本発明の他の実施例を示す。各符号は第1図と
同じである。第3図に示すように、側部絶縁スペーサ8
および9の下端が下部絶縁スペーサ7の上面より回転子
の半径方向内側へ突出すると界磁巻線4から対地電圧に
あるティース10あるいは巻線取付軸1に至るクリープ
距離が長くとれる。また、第3図の構成では側部絶縁ス
ペーサ8.9がスロット2の底まで達しており下部絶縁
スペーサ7の半径方向の動きを阻害しないので回転時に
下部絶縁スペーサ7に作用する遠心力を超電導体3にす
べて伝えることが出来る。
Embodiment 2 FIG. 3 shows another embodiment of the present invention. Each symbol is the same as in FIG. As shown in FIG.
When the lower ends of and 9 protrude inward in the radial direction of the rotor from the upper surface of the lower insulating spacer 7, the creep distance from the field winding 4 to the teeth 10 at ground voltage or the winding attachment shaft 1 can be increased. In addition, in the configuration shown in FIG. 3, the side insulating spacers 8.9 reach the bottom of the slot 2 and do not obstruct the radial movement of the lower insulating spacer 7, so that the centrifugal force acting on the lower insulating spacer 7 during rotation is reduced to superconductivity. I can convey everything to my body 3.

実施例3 第4図に本発明のもう一つの実施例を示す。Example 3 FIG. 4 shows another embodiment of the invention.

各符号は第1図と同じである 第4図には、スロット2の幅方向が楕円の長径であり、
半径方向が短径である下部絶縁スペーサ7が示されてい
る。これはスロット2の底付近の応力分布によっては、
半円よりもこのような楕円の半分の形状が応力集中を緩
和することがあり、そのような場合には、応力分布に応
じて楕円の短径を決定する。
In FIG. 4, where each symbol is the same as in FIG. 1, the width direction of the slot 2 is the major axis of the ellipse,
A lower insulating spacer 7 is shown whose minor axis is in the radial direction. This depends on the stress distribution near the bottom of slot 2.
A half-ellipse shape may alleviate stress concentration more than a semicircle, and in such a case, the short axis of the ellipse is determined according to the stress distribution.

第5図は下部絶縁スペーサ7の部分拡大断面図である。FIG. 5 is a partially enlarged sectional view of the lower insulating spacer 7. As shown in FIG.

第5図には、オーステナイト系ステンレス鋼やニッケル
基合金等の補強金属12と細かく分割補強された高密度
金属11で出来た下部絶縁スペーサ7が示されている。
FIG. 5 shows a lower insulating spacer 7 made of a reinforcing metal 12 such as austenitic stainless steel or nickel-based alloy and a high-density metal 11 reinforced by finely divided pieces.

この場合、強度はステンレス鋼やニッケル基合金が受は
持ち、高密度の金属としては銀や水銀が使われる。水銀
を使用する場合には密封構造とする必要がある。
In this case, stainless steel or nickel-based alloys provide strength, and silver or mercury are used as high-density metals. When using mercury, it is necessary to have a sealed structure.

銀や水銀はより高密度であるが、強度が低く抵抗も小さ
い。しかし高強度金属で細かく補強するので強度を確保
でき、また渦電流に対する等価抵抗も大きくすることが
出来て、界磁電流が変化したときの渦電流損失を小さく
できる。第5図に示すのは、六角形のセルを持つが、形
状は強度を確保できるものであれば任意で良い。
Silver and mercury are denser, but have lower strength and resistance. However, since it is finely reinforced with high-strength metal, the strength can be ensured, and the equivalent resistance to eddy current can also be increased, making it possible to reduce eddy current loss when the field current changes. The cell shown in FIG. 5 has hexagonal cells, but the cell may be of any shape as long as it can ensure strength.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、超電導発電機の回
転子のスロットの中に支持固定される超電導界磁巻線を
、回転励磁中において強固に支持固定できる構造の超電
導発電機の界磁巻線が得られた。
As described above, according to the present invention, the superconducting field winding of the superconducting generator has a structure in which the superconducting field winding, which is supported and fixed in the slot of the rotor of the superconducting generator, can be firmly supported and fixed during rotational excitation. A magnetic winding was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例を示す超電導発電機の回転子
の1部所面図、第2図は、従来の回転子の1部所面図、
第3図及び第4図は、本発明の他の実施例を示す回転子
の1部所面図、第5図は、下部絶縁スペーサの部分拡大
断面図である。 巻線取付軸・・・1、スロット・・・2、超電導導体・
・・3、超電導界磁巻線・・・4、ウェッジ・・・5、
上部絶縁スペーサ・・・6、下部絶縁スペーサ・・・7
、側部絶縁スペーサ・・・8,9、ティース・・・10
、高密度金属・・・11、補強金属・・・工2特許出願
人  超電導発電関連機器・材料技術研究組合 代  理  人     中   本        
穴開        井   上        昭第
1図 第2図 第3図 第4図 第5図
FIG. 1 is a partial plan view of a rotor of a superconducting generator showing an embodiment of the present invention, FIG. 2 is a partial partial plan view of a conventional rotor,
3 and 4 are partial plan views of a rotor showing another embodiment of the present invention, and FIG. 5 is a partially enlarged sectional view of a lower insulating spacer. Winding mounting shaft...1, slot...2, superconducting conductor...
...3, Superconducting field winding...4, Wedge...5,
Upper insulating spacer...6, lower insulating spacer...7
, side insulation spacer...8,9, teeth...10
, High-density metal...11, Reinforcement metal...2 Patent applicant: Superconducting power generation related equipment and materials technology research association Representative Nakamoto
Drilling Akira Inoue Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1、超電導発電機の回転子のスロット内に超電導線及び
絶縁物が配されて形成される超電導界磁巻線において、
スロットの底に配される下部絶縁スペーサが、表面に絶
縁処理を施された非磁性、高抵抗、高密度且つ高強度の
金属から形成されることを特徴とする超電導発電機の界
磁巻線。 2、請求項1記載において、スロット底及び下部絶縁ス
ペーサ下面が、半円状であることを特徴とする超電導発
電機の界磁巻線。 3、請求項2記載において、スロット内の超電導界磁巻
線の左右側面に配される側部絶縁スペーサの下端が、下
部絶縁スペーサの上面より回転子の半径方向内側へ突出
していることを特徴とする超電導発電機の界磁巻線。 4、請求項2記載において、半円状が、円又は楕円の半
円状であることを特徴とする超電導発電機の界磁巻線。 5、請求項1〜4のいずれか1項記載において、下部絶
縁スペーサが、非磁性、高強度、高抵抗の金属と、細か
く分割された高密度の金属とから形成されることを特徴
すとる超電導発電機の界磁巻線。
[Claims] 1. A superconducting field winding formed by disposing a superconducting wire and an insulator in a slot of a rotor of a superconducting generator,
A field winding of a superconducting generator characterized in that the lower insulating spacer arranged at the bottom of the slot is formed from a non-magnetic, high-resistance, high-density, and high-strength metal whose surface is subjected to an insulation treatment. . 2. The field winding for a superconducting generator according to claim 1, wherein the slot bottom and the lower surface of the lower insulating spacer are semicircular. 3. In claim 2, the lower ends of the side insulating spacers arranged on the left and right side surfaces of the superconducting field winding in the slot protrude radially inward of the rotor from the upper surface of the lower insulating spacer. field winding of a superconducting generator. 4. The field winding for a superconducting generator according to claim 2, wherein the semicircular shape is a circular or elliptical semicircular shape. 5. In any one of claims 1 to 4, the lower insulating spacer is formed of a non-magnetic, high-strength, high-resistance metal and a finely divided high-density metal. Field winding of a superconducting generator.
JP2256830A 1990-09-28 1990-09-28 Superconducting generator rotor slot Expired - Fee Related JPH0732585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2256830A JPH0732585B2 (en) 1990-09-28 1990-09-28 Superconducting generator rotor slot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2256830A JPH0732585B2 (en) 1990-09-28 1990-09-28 Superconducting generator rotor slot

Publications (2)

Publication Number Publication Date
JPH04138057A true JPH04138057A (en) 1992-05-12
JPH0732585B2 JPH0732585B2 (en) 1995-04-10

Family

ID=17298024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2256830A Expired - Fee Related JPH0732585B2 (en) 1990-09-28 1990-09-28 Superconducting generator rotor slot

Country Status (1)

Country Link
JP (1) JPH0732585B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091892A (en) * 2009-10-20 2011-05-06 Sumitomo Electric Ind Ltd Stator, rotor, and superconducting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091892A (en) * 2009-10-20 2011-05-06 Sumitomo Electric Ind Ltd Stator, rotor, and superconducting apparatus

Also Published As

Publication number Publication date
JPH0732585B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US6921042B1 (en) Concentric tilted double-helix dipoles and higher-order multipole magnets
US5841212A (en) Permanent magnet field type rotating machine
EP1458080B1 (en) Permanent magnet type dynamo-electric machine and wind power generation-use permanent magnet type synchronous generator
US8040012B2 (en) Electrical machinery incorporating double helix coil designs for superconducting and resistive windings
US6603231B2 (en) Hybrid superconducting motor/generator
EP0549984B1 (en) Levitating and fusing device
US6759781B1 (en) Rotor assembly
JPS5840286B2 (en) Method for manufacturing high tensile strength aluminum stabilized superconducting wire
JPS58501800A (en) Synchronous electric machine with superconducting inductor
JP4914362B2 (en) Superconducting magnet and electromagnetic stirrer, motor and generator using the same
JPH04138057A (en) Field winding for superconducting generator
JP2002543755A (en) Stator for rotating electric machine and method for manufacturing the same
JP3407529B2 (en) Two-pole turbine generator and its rotor
JPH01220805A (en) Compound superconducting field winding
JP3149731B2 (en) Superconducting magnet device
Appleton et al. Superconducting AC generators: Progress on the design of a 1300 MW, 3000 rev/min generator
JPS6255393B2 (en)
SU1091274A1 (en) Stator for electric machine
JPS602726B2 (en) Superconducting wire and superconducting magnet using this wire
JPS596756A (en) Induction motor
DAHL Magnets, Motors, and Generators
JPS6338848B2 (en)
JPS58186914A (en) Superconductive magnet apparatus
JPH053228B2 (en)
Tominaka Field distributions of the slotted helical dipole prototypes with the half and full-length

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees