JPS6338848B2 - - Google Patents

Info

Publication number
JPS6338848B2
JPS6338848B2 JP7351483A JP7351483A JPS6338848B2 JP S6338848 B2 JPS6338848 B2 JP S6338848B2 JP 7351483 A JP7351483 A JP 7351483A JP 7351483 A JP7351483 A JP 7351483A JP S6338848 B2 JPS6338848 B2 JP S6338848B2
Authority
JP
Japan
Prior art keywords
coil
superconducting wire
magnetic field
toroidal
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7351483A
Other languages
Japanese (ja)
Other versions
JPS5936907A (en
Inventor
Yoshiaki Kazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7351483A priority Critical patent/JPS5936907A/en
Publication of JPS5936907A publication Critical patent/JPS5936907A/en
Publication of JPS6338848B2 publication Critical patent/JPS6338848B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超電導線を用いたトロイダルコイルに
係り、特にトーラス形核融合装置の重要な構成要
素であるトロイダルコイルを超電導線を用いて構
成するものに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a toroidal coil using a superconducting wire, and in particular, a toroidal coil that is an important component of a torus-shaped nuclear fusion device is constructed using a superconducting wire. Regarding.

〔発明の背景〕[Background of the invention]

近年、トーラス形核融合装置の研究が著しく進
展し、数多くの大型実験装置が建設されている。
その代表的なものは「トカマク」「ステラレータ」
などである。これらは何れもその主要部分が円環
状の磁界を発生するトロイダルコイルで構成され
ている。従来、トロイダルコイルは一般の電気機
器と同様な銅やアルミニウム導体で作られて来た
が、最近大規模なトロイダル磁界が要求されるよ
うになつて来たので、コイルの温度上昇や励磁電
力の増大など技術的、経済的な面から冷却方式
を、従来の如き水冷ではなく液体窒素などの低温
液化ガスによる冷却法を採用した、いわゆるクラ
イオジエニツクコイルとする例が増えている。ま
た、導体としてNb−Ti、Nb−Ti−Zr、Nb3Sn、
V3Gaなどの超電導体を、銅やアルミニウムなど
と複合して線やテープ状にした超電導線を使用す
る提案も多い。
In recent years, research on torus-shaped fusion devices has made significant progress, and many large-scale experimental devices have been constructed.
Typical examples are "tokamak" and "stellarator"
etc. The main part of each of these consists of a toroidal coil that generates an annular magnetic field. Traditionally, toroidal coils have been made of copper or aluminum conductors similar to those used in general electrical equipment, but recently, large-scale toroidal magnetic fields have become required, which has caused problems such as increases in coil temperature and excitation power. Due to technical and economical reasons such as increase in the number of cooling devices, there is an increasing number of cases in which so-called cryogenic coils, which employ cooling methods using low-temperature liquefied gas such as liquid nitrogen, rather than conventional water cooling, are being used. In addition, Nb-Ti, Nb-Ti-Zr, Nb 3 Sn,
There are many proposals to use superconducting wires made by combining superconductors such as V 3 Ga with copper, aluminum, etc. in the form of wires or tapes.

第1図、及び第2図はトロイダルコイルを示す
もので、トロイダルコイル1は円環状の磁界を発
生するように、この円環状磁界の発生空間を取囲
んで巻回される。このように構成されたものにお
ける磁束密度を見ると、トロイダルコイル1内の
磁束密度はコイルの内層側が高く外層側では低
い。また、第1図、及び第2図において、トロイ
ダルコイル1のトーラス中心半径(主半径とも言
う)をR、コイル半径(小半径とも言う)をa、
コイルの総巻数をN、励磁電流をIとすれば、コ
イル内部の点Pの磁束密度Bは概略次式で計算さ
れる。
FIGS. 1 and 2 show a toroidal coil, and the toroidal coil 1 is wound around a space in which the annular magnetic field is generated so as to generate an annular magnetic field. Looking at the magnetic flux density in the toroidal coil 1, the magnetic flux density in the toroidal coil 1 is high on the inner layer side of the coil and low on the outer layer side. In addition, in FIGS. 1 and 2, the torus center radius (also referred to as the main radius) of the toroidal coil 1 is R, the coil radius (also referred to as the minor radius) is a,
If the total number of turns of the coil is N and the excitation current is I, the magnetic flux density B at a point P inside the coil is approximately calculated by the following equation.

B≒μNI/2πr ……(1) (ただし、rはトーラス中心(Z−Z軸)0から
点Pまでの距離、μは透磁率である。) (1)式から明らかな如く、トロイダルコイル1内
の磁束密度Bはトーラス中心0からの距離rに半
比例する。従つて、トロイダルコイル1内の最高
磁束密度は、トーラス中心0側の内層点Pmに発
生し、その大きさは Bm≒μNI/2π(R−a) ……(2) となる。このことから、トロイダルコイル1内で
は、トーラス中心0に近い部分が高磁界となり、
遠い側が低磁界となる。
B≒μNI/2πr ...(1) (However, r is the distance from the torus center (Z-Z axis) 0 to point P, and μ is the magnetic permeability.) As is clear from equation (1), the toroidal coil The magnetic flux density B within 1 is half proportional to the distance r from the torus center 0. Therefore, the highest magnetic flux density in the toroidal coil 1 occurs at the inner layer point Pm on the 0 side of the torus center, and its magnitude is Bm≈μNI/2π(R−a) (2). From this, in the toroidal coil 1, the part near the torus center 0 becomes a high magnetic field,
The far side has a low magnetic field.

一般に超電導線の許容電流(常電導転移しない
で安全に流せる電流)は、超電導線の配置される
位置の磁束密度(経験磁界)により制限され、同
じ超電導線でも高磁界での許容電流は低磁界での
それより小さい。従つて、超電導線でトロイダル
コイル1を構成する場合には、トーラス中心軸
(Z−Z)に近い部分、即ち、第1図で言うと
Pm点近辺の磁界でも規定電流で常電導転移しな
い超電導線で巻回する必要がある。しかし、この
ことは、トーラス中心軸から遠い部分については
余裕の極めて大きい過剰品質の超電導線を採用す
る結果となる。又、超電導線を低磁界用のものの
みでトロイダルコイル1を構成した場合には、超
電導線に流し得る電流が減少してしまうため、必
要な磁界を発生するアンペアターンを得るために
は、超電導線の巻回数を増大させなければならな
くなり、トロイダルコイル1の重量を著しく増大
させる結果となる。
Generally, the allowable current of a superconducting wire (the current that can be safely passed without transitioning to normal conductivity) is limited by the magnetic flux density (experienced magnetic field) at the position where the superconducting wire is placed, and even for the same superconducting wire, the allowable current in a high magnetic field is lower than that in a low magnetic field. smaller than that in . Therefore, when constructing the toroidal coil 1 with superconducting wire, the part near the torus central axis (Z-Z), that is, in Fig. 1,
It is necessary to wind the superconducting wire with a superconducting wire that does not transition to normal conductivity at a specified current even in a magnetic field near the Pm point. However, this results in the use of superconducting wires of excessive quality with extremely large margins for portions far from the central axis of the torus. Furthermore, if the toroidal coil 1 is constructed using only superconducting wires for low magnetic fields, the current that can be passed through the superconducting wires will be reduced. The number of turns of the wire must be increased, resulting in a significant increase in the weight of the toroidal coil 1.

このように、従来の超電導線を用いたトロイダ
ルコイルでは、一方を満足させると他方に好まし
い結果が得られず、効果的なコイル構成とするこ
とができない欠点があつた。
As described above, conventional toroidal coils using superconducting wires have the drawback that if one aspect is satisfied, favorable results cannot be obtained for the other, and an effective coil configuration cannot be achieved.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑み成されたもので、その
目的とするところは、コイル内に高磁界部分と低
磁界部分が生ずるものであつても、両者に見合つ
た効果的な配置構成とし経済的な超電導線を用い
たトロイダルコイルを提供するにある。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide an economical and effective arrangement that balances both high and low magnetic field parts even if a high magnetic field part and a low magnetic field part occur in the coil. The purpose of the present invention is to provide a toroidal coil using a superconducting wire.

〔発明の概要〕[Summary of the invention]

本発明は円環状に磁界が発生するように、該円
環状磁界の発生空間を取り囲んで超電導線を巻回
して構成されるトロイダルコイルを内層コイルと
外層コイルに分割し、該内層コイルは、そのコイ
ル最内層のトーラス中心に近い側を高磁界中で臨
界電流密度の大きい超電導線の巻回により構成
し、内層コイルのトーラス中心から遠い側を低磁
界用の超電導線の巻回により構成し、かつ、前記
外層コイルを低磁界用の超電導線の巻回により構
成すると共に、前記低磁界、及び高磁界用の超電
導線を用いた内層コイルと外層コイルを直列に接
続して同一電流を流すように構成することによ
り、所期の目的を達成するように成したものであ
る。
In order to generate an annular magnetic field, the present invention divides a toroidal coil formed by winding a superconducting wire surrounding the annular magnetic field generation space into an inner layer coil and an outer layer coil, and the inner layer coil is divided into an inner layer coil and an outer layer coil. The side of the innermost layer of the coil near the center of the torus is formed by winding a superconducting wire with a high critical current density in a high magnetic field, and the side of the inner layer coil far from the center of the torus is formed of a winding of a superconducting wire for low magnetic fields. Further, the outer layer coil is configured by winding a superconducting wire for low magnetic fields, and the inner layer coil and outer layer coil using the superconducting wire for low magnetic fields and high magnetic fields are connected in series so that the same current flows. By configuring it as follows, it is possible to achieve the intended purpose.

〔発明の実施例〕[Embodiments of the invention]

以下、図面の実施例に基づいて本発明を説明す
る。
The present invention will be described below based on embodiments shown in the drawings.

第3図に本発明の一実施例を示し、第4図には
第3図に例示したトロイダルコイル1に発生する
トロイダル磁界Bのトロイダル半径r方向の分布
を第3図に対比して示す。即ち第3図のC1,C2
C3,C4,C5の各点の磁場は、それぞれB1、B2
B3、B4、B5である。
FIG. 3 shows an embodiment of the present invention, and FIG. 4 shows the distribution of the toroidal magnetic field B generated in the toroidal coil 1 illustrated in FIG. 3 in the direction of the toroidal radius r in comparison with FIG. That is, C 1 , C 2 ,
The magnetic fields at each point of C 3 , C 4 , and C 5 are B 1 , B 2 , and
They are B3 , B4 , and B5 .

第3図に例示したものは、コイルをトロイダル
方向に密に巻かないでコイルを複数個のコイルユ
ニツトに分割し、そのコイルユニツト間に隙間が
あるように配置した粗巻きコイルを示し、このよ
うなコイルでは第4図に点線で示した如くなり、
点C4の磁場はB4′となる。第3図の例で、例えば
R=6m、a=3m、t1=0.5m、t2=0.5m、起
磁力NI=1.35×108(AT)とすると、第3図にお
ける各点の磁界はB1≒0、B2≒4.5wb/m2、B0
≒4.5wb/m2、B4≒3wb/m2となる。そこで、本
実施例においては、トロイダルコイル1は内層コ
イル2と外層コイル3に分割し、この内層コイル
2のトーラス中心(Z−Z軸)に近い側の巻線、
即ちD3−D2−C2−D5−D4−C3−D3を結ぶ線に囲
まれた領域を高磁界中で臨界電流密度の大きい超
電導線により巻回し、トーラス中心より遠い側の
巻線、即ちD3−D2−D5−D4−C4−D3を結ぶ線に
囲まれた領域を低磁界用の超電導線により巻回し
て構成し、更に外層コイル3には低磁界用の超電
導線を使用している。そして、この内層、及び外
層コイル2,3よりなるトロイダルコイル1を直
列に接続して同一電流を流すように構成してい
る。また、内層コイル2の各ターンはD2〜D3部、
及びD4〜D5部で高磁界用の超電導線と低磁界用
の超電導線をハンダ付や圧接、あるいは爆接等の
方法で接続している。高磁界用の超電導線として
はNb3Sn、V3Ga等の化合物系線材から成るもの
が使えるが、Nb−Ti−ZrやNb−Ti、Nb−Zr等
の合金系超電導線材の成分構成や断面構成、或い
は熱処理等を高磁界に適したように設計して作ら
れたものでも良い。例えばNb−Ti合金から成る
超電導素線を銅、又はアルミニウム等のベースメ
タルに埋め込まれた複合超電導線の場合、高磁界
用には低磁界用よりも、超電導素線の断面積を増
やしたものを使用するのも一つの手段である。
The example shown in Fig. 3 shows a coarsely wound coil in which the coil is not wound tightly in the toroidal direction but is divided into multiple coil units and arranged with gaps between the coil units. For a coil like this, it will look like the dotted line in Figure 4,
The magnetic field at point C 4 becomes B 4 ′. In the example of Fig. 3, for example, if R = 6 m, a = 3 m, t 1 = 0.5 m, t 2 = 0.5 m, and magnetomotive force NI = 1.35 × 10 8 (AT), then the magnetic field at each point in Fig. 3 is B 1 ≒0, B 2 ≒4.5wb/m 2 , B 0
≒4.5wb/m 2 and B 4 ≒3wb/m 2 . Therefore, in this embodiment, the toroidal coil 1 is divided into an inner layer coil 2 and an outer layer coil 3, and the winding on the side closer to the torus center (Z-Z axis) of the inner layer coil 2,
In other words, the area surrounded by the line connecting D 3 −D 2 −C 2 −D 5 −D 4 −C 3 −D 3 is wound with a superconducting wire having a high critical current density in a high magnetic field, and the side far from the center of the torus is The area surrounded by the wire connecting D 3 −D 2 −D 5 −D 4 −C 4 −D 3 is constructed by winding the superconducting wire for low magnetic field, and the outer layer coil 3 is It uses superconducting wire for low magnetic fields. The toroidal coil 1 consisting of the inner layer and outer layer coils 2 and 3 is connected in series so that the same current flows therethrough. In addition, each turn of the inner layer coil 2 has parts D 2 to D 3 ,
And in parts D4 to D5 , the superconducting wire for high magnetic field and the superconducting wire for low magnetic field are connected by soldering, pressure welding, explosion welding, or the like. Compound wires such as Nb 3 Sn and V 3 Ga can be used as superconducting wires for high magnetic fields, but the composition of alloy superconducting wires such as Nb-Ti-Zr, Nb-Ti, and Nb-Zr The cross-sectional configuration, heat treatment, etc. may be designed to be suitable for high magnetic fields. For example, in the case of a composite superconducting wire in which a superconducting wire made of Nb-Ti alloy is embedded in a base metal such as copper or aluminum, the cross-sectional area of the superconducting wire is increased for high magnetic fields than for low magnetic fields. One way is to use .

このように構成することにより、磁束密度が
B2よりも大きな部分は、全て高磁界においても
臨界電流の大きな超電導線を用いているために、
トロイダルコイルには規定電流を流すことがで
き、小形のイロイダルコイルで所定の磁界を発生
できる。また、それ以外には低磁界用の超電導線
を用いているため、効果的に、かつ、経済的なも
のを得ることができる。
With this configuration, the magnetic flux density can be
All parts larger than B 2 use superconducting wires that have a large critical current even in high magnetic fields, so
A specified current can be passed through the toroidal coil, and a specified magnetic field can be generated using a small toroidal coil. In addition, since a superconducting wire for low magnetic fields is used for other purposes, it is possible to obtain an effective and economical product.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明の超電導線を用いたトロイ
ダルコイルによれば、円環状に磁界が発生するよ
うに、該円環状磁界の発生空間を取り囲んで超電
導線を巻回して構成されるトロイダルコイルを内
層コイルと外層コイルに分割し、該内層コイル
は、そのコイル最内層のトーラス中心に近い側を
高磁界中で臨界電流密度の大きい超電導線の巻回
により構成し、内層コイルのトーラス中心から遠
い側を低磁界用の超電導線の巻回により構成し、
かつ、前記外層コイルを低磁界用の超電導線の巻
回により構成すると共に、前記低磁界、及び高磁
界用の超電導線を用いた内層コイルと外層コイル
を直列に接続して同一電流を流すように構成した
ものであるから、コイル内に高磁界部分と低磁界
部分が生ずるものであつても、超電導線を両者に
見合つた効果的な配置構成とすることができ、経
済的な此種コイルを得ることができる。
According to the toroidal coil using the superconducting wire of the present invention described above, the toroidal coil is constructed by winding the superconducting wire surrounding the annular magnetic field generation space so that the annular magnetic field is generated. It is divided into a coil and an outer layer coil, and the inner layer coil is constructed by winding a superconducting wire with a high critical current density in a high magnetic field on the innermost side of the coil, which is closer to the torus center, and the inner layer coil is formed on the side far from the torus center. is constructed by winding superconducting wire for low magnetic fields,
Further, the outer layer coil is configured by winding a superconducting wire for low magnetic fields, and the inner layer coil and outer layer coil using the superconducting wire for low magnetic fields and high magnetic fields are connected in series so that the same current flows. Therefore, even if a high magnetic field part and a low magnetic field part occur in the coil, the superconducting wire can be arranged in an effective arrangement that matches both, making this type of coil economical. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のトロイダルコイルを示す断面
図、第2図は第1図のA−A線に沿う断面図、第
3図は本発明の超電導線を用いたトロイダルコイ
ルの一実施例を示す断面図、第4図は第3図に示
したものの各部の磁束密度を示す説明図である。 1……トロイダルコイル、2……内層コイル、
3……外層コイル。
Figure 1 is a sectional view showing a conventional toroidal coil, Figure 2 is a sectional view taken along line A-A in Figure 1, and Figure 3 is an embodiment of a toroidal coil using the superconducting wire of the present invention. The cross-sectional view, FIG. 4, is an explanatory diagram showing the magnetic flux density of each part of the device shown in FIG. 3. 1...Toroidal coil, 2...Inner layer coil,
3...Outer layer coil.

Claims (1)

【特許請求の範囲】[Claims] 1 円環状に磁界が発生するように、該円環状磁
界の発生空間を取り囲んで超電導線を巻回して構
成されるトロイダルコイルにおいて、該トロイダ
ルコイルを内層コイルと外層コイルに分割し、該
内層コイルは、そのコイル最内層のトーラス中心
に近い側を高磁界中で臨界電流密度の大きい超電
導線の巻回により構成し、コイル最内層のトーラ
ス中心から遠い側を低磁界用の超電導線の巻回に
より構成し、かつ、前記外層コイルを低磁界用の
超電導線の巻回により構成すると共に、前記低磁
界、及び高磁界用の超電導線を用いた内層コイル
と外層コイルを直列に接続して同一電流を流すよ
うに構成したことを特徴とする超電導線を用いた
トロイダルコイル。
1. In a toroidal coil constructed by winding a superconducting wire surrounding a space in which the annular magnetic field is generated so that a magnetic field is generated in an annular shape, the toroidal coil is divided into an inner layer coil and an outer layer coil, and the inner layer coil is divided into an inner layer coil and an outer layer coil. The innermost layer of the coil, on the side near the torus center, is composed of windings of superconducting wire that has a high critical current density in high magnetic fields, and the side of the innermost layer of the coil, far from the torus center, is composed of windings of superconducting wire for low magnetic fields. and the outer layer coil is formed by winding a superconducting wire for low magnetic field, and the inner layer coil and outer layer coil using the superconducting wire for low magnetic field and high magnetic field are connected in series and are identical. A toroidal coil using superconducting wire that is characterized by being configured to allow current to flow.
JP7351483A 1983-04-25 1983-04-25 Toroidal coil using superconductive wire Granted JPS5936907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7351483A JPS5936907A (en) 1983-04-25 1983-04-25 Toroidal coil using superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7351483A JPS5936907A (en) 1983-04-25 1983-04-25 Toroidal coil using superconductive wire

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP49025177A Division JPS5740644B2 (en) 1974-03-06 1974-03-06

Publications (2)

Publication Number Publication Date
JPS5936907A JPS5936907A (en) 1984-02-29
JPS6338848B2 true JPS6338848B2 (en) 1988-08-02

Family

ID=13520426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7351483A Granted JPS5936907A (en) 1983-04-25 1983-04-25 Toroidal coil using superconductive wire

Country Status (1)

Country Link
JP (1) JPS5936907A (en)

Also Published As

Publication number Publication date
JPS5936907A (en) 1984-02-29

Similar Documents

Publication Publication Date Title
Ašner High field superconducting magnets
US4151498A (en) Combined superconducting coil
US3919677A (en) Support structure for a superconducting magnet
JPH0371518A (en) Superconductor
JPS61113218A (en) Superconductive magnet
JPS6338848B2 (en)
JP2001126916A (en) High-temperature superconducting coil and high- temperature superconducting magnet using the same
JPS5936908A (en) Toroidal coil using superconductive wire
Venkataratnam et al. Optimum design of superconducting magnet coil for a micro SMES unit
JPS6340003B2 (en)
JPS60217610A (en) Superconductive device
JP2519200B2 (en) Superconducting device
JPH08162316A (en) Superconducting magnet apparatus
JP3322981B2 (en) Permanent current switch
JPS6155071B2 (en)
JPS5958803A (en) Superconductive coil
JPH06224037A (en) Superconducting coil
JP2001119078A (en) Superconducting current lead
Kim et al. Performance tests of a 1.5 MJ pulsed superconducting coil and its cryostat
JPH0482205A (en) Superconducting coil apparatus
JPS60125163A (en) Superconductive rotor
Young et al. Support structure for a superconducting magnet
JPS5868910A (en) Superconductive device
JPS63292611A (en) Superconductor device for suppressing short-circuit
JPH0586048B2 (en)