JPH053228B2 - - Google Patents

Info

Publication number
JPH053228B2
JPH053228B2 JP59135306A JP13530684A JPH053228B2 JP H053228 B2 JPH053228 B2 JP H053228B2 JP 59135306 A JP59135306 A JP 59135306A JP 13530684 A JP13530684 A JP 13530684A JP H053228 B2 JPH053228 B2 JP H053228B2
Authority
JP
Japan
Prior art keywords
superconducting
shield
winding
armature winding
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59135306A
Other languages
Japanese (ja)
Other versions
JPS6115541A (en
Inventor
Myoshi Takahashi
Masatoshi Watabe
Noryoshi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59135306A priority Critical patent/JPS6115541A/en
Publication of JPS6115541A publication Critical patent/JPS6115541A/en
Publication of JPH053228B2 publication Critical patent/JPH053228B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は回転電機に係り、特に、小型で効率の
高い超電導回転電機に好適な回転電機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a rotating electrical machine, and more particularly to a rotating electrical machine suitable for a compact and highly efficient superconducting rotating electrical machine.

〔発明の背景〕[Background of the invention]

一般に、界磁巻線を超電導化した回転界磁形超
電導回転電機に於いて、超電導界磁巻線からの交
流強磁界を外部に対してシールドする方法には、
例えば、ICEC9(1982年)で、T.Ishigohkaの
“The optimum environmental shielding
system of superconducting generators”に示
されるように、積層鉄心の磁気シールド、銅やア
ルミニウムなどの導電率の大きな導体からなるう
ず電流シールドなどが知られており、また、両者
を組合わせたものも提案されている。
Generally, in a rotating field type superconducting rotating electric machine in which the field winding is made superconducting, methods for shielding the alternating current strong magnetic field from the superconducting field winding from the outside include:
For example, in ICEC9 (1982), T. Ishigohka's “The optimum environmental shielding
As shown in ``system of superconducting generators'', magnetic shields with laminated iron cores and eddy current shields made of conductors with high conductivity such as copper and aluminum are known, and a combination of both has also been proposed. ing.

しかし、鉄心シールドは鉄心の磁気緩和現象の
ため、外部へのシールド効果を十分達成させるに
は鉄心シールドを厚くする必要があるが、これに
伴い機械寸法の大型化や重量が増大し、更には、
シールド部に鉄損を発生するという問題がある。
また、うず電流シールドは、常時うず電流が発生
し、電機子巻線部の磁束密度が低下するため出力
が低下する。
However, because of the magnetic relaxation phenomenon in the core, it is necessary to thicken the core shield in order to achieve a sufficient external shielding effect, but this increases the size and weight of the machine, and furthermore, ,
There is a problem that iron loss occurs in the shield part.
Further, in the eddy current shield, eddy current is constantly generated, and the magnetic flux density of the armature winding portion decreases, resulting in a decrease in output.

一方、鉄心シールドとうず電流シールドを組合
せた構造では、内側の鉄心シールドを磁気的に飽
和させ、漏れ磁束を更に外側にうず電流シールド
で交流磁界をシールドするもので、常時、損失を
発生して磁界をシールドする点では前述の二例と
変りなく、超電導発電機の特徴である高効率と小
型化を達成することができなかつた。
On the other hand, in a structure that combines an iron core shield and an eddy current shield, the inner iron core shield is magnetically saturated, leakage magnetic flux is removed, and the eddy current shield is placed outside to shield alternating current magnetic fields, which constantly generates loss. In terms of shielding the magnetic field, this is the same as the previous two examples, and it was not possible to achieve the high efficiency and miniaturization that are the characteristics of superconducting generators.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みなされたもので、その
目的とするところは、超電導導体が超電導状態で
は内部り磁界が侵入しないという性質、即ち、完
全反磁性良くシールドすることのできる回転電機
を提供するにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to provide a rotating electric machine that has a property in which a superconducting conductor has a property in which magnetic fields do not penetrate inside when in a superconducting state, that is, it is completely diamagnetic and can be well shielded. There is something to do.

〔発明の概要〕[Summary of the invention]

本発明は電機子巻線が超電導導体を介してリン
グ状に巻回されて形成され、かつ、この電機子巻
線の外周に、該電機子巻線を包囲するように超電
導シールドを配置することにより、所期の目的を
達成するようになしたものである。
In the present invention, an armature winding is formed by being wound in a ring shape through a superconducting conductor, and a superconducting shield is arranged around the outer periphery of the armature winding so as to surround the armature winding. This was done to achieve the intended purpose.

〔発明の実施例〕[Embodiments of the invention]

以下、図示した実施例に基づいて本発明を詳細
に説明する。
Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第1図、及び第2図に本発明の一実施例である
回転界磁形同期機の例を示し、特に、第2図は電
機子巻線の詳細を示した径方向断面図である。
1 and 2 show an example of a rotating field type synchronous machine which is an embodiment of the present invention, and in particular, FIG. 2 is a radial cross-sectional view showing details of the armature winding.

該図に示す本実施例の回転電機は、回転子1
と、この回転子1に所定の間〓を待つて配置され
た固定子2から概略構成されている。回転子1は
外部の電源3によつて励磁される励磁巻線4を内
蔵し、軸受5によつて支持され駆動機6によつて
回転する。一方、固定子2は空〓部に所定の方法
で固定された電機子巻線7、及び超電導体、特
に、交流磁界に対する臨界磁界の大きな超電導シ
ールド8などで構成されている。超電導シールド
8は電機子巻線7の外周を同心状に被い、ヘリウ
ム供給装置9からの液体ヘリウムにより極低温に
冷却される。
The rotating electrical machine of this embodiment shown in the figure has a rotor 1
The rotor 1 is generally composed of a stator 2 placed on the rotor 1 for a predetermined period of time. The rotor 1 includes an excitation winding 4 that is excited by an external power source 3, is supported by a bearing 5, and is rotated by a drive machine 6. On the other hand, the stator 2 is composed of an armature winding 7 fixed in a predetermined manner in an air space, and a superconductor, particularly a superconducting shield 8 having a large critical magnetic field with respect to an alternating magnetic field. The superconducting shield 8 concentrically covers the outer periphery of the armature winding 7 and is cooled to an extremely low temperature by liquid helium from a helium supply device 9.

回転子1の励磁巻線4からの磁束φは電機子巻
線7と鎖交し、回転子1の回転と共に移動するの
で電機子巻線7には交流出力が誘起される。ま
た、電機子巻線7と鎖交した磁束φは、電機子巻
線7の外径側では超電導シールド8のMeissner
効果により完全遮へいされるため、図示のように
電機子巻線7と超電導シールド8との間を周方向
に通る磁路を形成し、閉回路を作る。
The magnetic flux φ from the excitation winding 4 of the rotor 1 interlinks with the armature winding 7 and moves with the rotation of the rotor 1, so that an AC output is induced in the armature winding 7. In addition, the magnetic flux φ interlinked with the armature winding 7 is caused by the Meissner of the superconducting shield 8 on the outer diameter side of the armature winding 7.
Since the shielding effect is completely shielded, a magnetic path passing in the circumferential direction is formed between the armature winding 7 and the superconducting shield 8 as shown in the figure, thereby creating a closed circuit.

なお、上述のMeissner効果とは、外部磁界を
超電導体に印加した場合、過去のヒステリシスに
拘らず、それが超電導状態にある限り、超電導体
内部に磁界が侵入できない性質である。この性質
を利用することにより電機子巻線7、及び回転子
励磁巻線4からの磁界が、超電導シールド8の内
部へ侵入するのを防ぐことができる。また、上記
構成とすることにより、シールド部に電気的損失
を発生させないで、すなわち、誘導電流を発生さ
せないで交流磁界を機外に対し遮へいすることが
でき、回転電機として高効率化が可能となる。更
に、磁束流路部には磁性材など磁気飽和の問題が
生じる部材がないので、超電導シールド8は、少
なくとも、超電導状態に保持する限り超電導材の
除界磁界の許容範囲で電機子巻線7に近づけ得る
ので、機械寸法の小形化、及び回転子起磁力を低
減でき、高効率化が可能である。
The above-mentioned Meissner effect is a property that when an external magnetic field is applied to a superconductor, the magnetic field cannot enter the inside of the superconductor as long as the superconductor remains in the superconducting state, regardless of past hysteresis. By utilizing this property, the magnetic fields from the armature winding 7 and the rotor excitation winding 4 can be prevented from penetrating into the superconducting shield 8. In addition, by adopting the above configuration, it is possible to shield the alternating current magnetic field from the outside of the machine without causing electrical loss in the shield part, that is, without generating induced current, and it is possible to improve the efficiency of the rotating electrical machine. Become. Furthermore, since there is no member such as a magnetic material in the magnetic flux flow path that causes a problem of magnetic saturation, the superconducting shield 8 can at least maintain the armature winding 7 within the permissible range of the field removal field of the superconducting material as long as the superconducting state is maintained. , it is possible to reduce the machine dimensions, reduce the rotor magnetomotive force, and increase efficiency.

また、本実施例では、超電導シールド8の外周
の常温の円筒状導体10を配置している。これに
よれば超電導シールド8が外乱により常電導に転
移したときには超電導シールド8には完全反磁性
のMeissner効果が消失するため、交流磁界は超
電導導体の外径側にまで侵入するが、円筒状導体
10がうず電流を発生し導体シールドとなる。従
つて、定常運転時は超電導シールド8が損失なし
で機内の磁界を遮へいし、超電導シールド8が外
乱により常電導に転移した事故時等には、円筒状
導体10がシールド効果を発生するから、外部に
対し常時確実に磁界を遮へいすることができる。
この円筒状導体10は銅やアルミニウムやその合
金などで構成するのが良く、超電導シールド8の
外周に配置されるので、超電導シールド8の熱容
量が等価的に増大するので超電導シールド8の安
定性が増大する。
Further, in this embodiment, a cylindrical conductor 10 at room temperature is arranged around the outer periphery of the superconducting shield 8. According to this, when the superconducting shield 8 transitions to normal conductivity due to a disturbance, the Meissner effect of complete diamagnancy disappears in the superconducting shield 8, so the AC magnetic field penetrates to the outer diameter side of the superconducting conductor, but the cylindrical conductor 10 generates an eddy current and serves as a conductor shield. Therefore, during steady operation, the superconducting shield 8 shields the magnetic field inside the machine without loss, and in the event of an accident where the superconducting shield 8 changes to normal conductivity due to a disturbance, the cylindrical conductor 10 generates a shielding effect. It is possible to always reliably shield magnetic fields from the outside.
This cylindrical conductor 10 is preferably made of copper, aluminum, or an alloy thereof, and is placed around the outer periphery of the superconducting shield 8, so that the heat capacity of the superconducting shield 8 is equivalently increased and the stability of the superconducting shield 8 is improved. increase

また、超電導シールド8は特性の異なるものを
複数個同心状に配置して形成しても良い。この場
合は、任意の一層の超電導シールド8が常電導転
位しても、超電導状態を保つている他層の超電導
導体がバツクアツプし、交流磁界を遮へいするの
で、更に、シールド効果の信頼性が向上する。
Further, the superconducting shield 8 may be formed by concentrically arranging a plurality of superconducting shields having different characteristics. In this case, even if any one layer of the superconducting shield 8 undergoes normal conductive dislocation, the superconducting conductors of the other layers that maintain the superconducting state back up and shield the alternating magnetic field, further improving the reliability of the shielding effect. do.

更に、本実施例では、電機子巻線7が円筒状超
電導導体8′と絶縁構造物12を介して、回転子
1と所定の間隙をもつてリング状に巻回されたも
のが複数個周方向に配置されており、その外径側
には更に超電導シールド8、及び常温の円筒状導
体10が同心状に配置されている。
Furthermore, in this embodiment, a plurality of armature windings 7 are wound in a ring shape with a predetermined gap between them and the rotor 1 via a cylindrical superconducting conductor 8' and an insulating structure 12. A superconducting shield 8 and a room temperature cylindrical conductor 10 are further arranged concentrically on the outer diameter side thereof.

このような構造にすることにより、回転子1か
らの磁束φは円筒状超電導導体8′の完全反磁性
により、リング巻きされた電機子巻線7の内径側
1のみを切り、外径側70には到達しないので、
電機子巻線7の出力端子13からみて、内径側7
の誘起電圧が加算され、効率良くリング巻き電
機子巻線から発電できる。また、特に、リング巻
き電機子巻線は絶縁構造物12を囲むように巻回
されるため、これが強度メンバーとなつて、該巻
線部の耐電磁力支持も容易に行ない得る効果もあ
る。
With such a structure, the magnetic flux φ from the rotor 1 cuts only the inner diameter side 71 of the ring-wound armature winding 7 and cuts the outer diameter side due to the complete diamagnetic property of the cylindrical superconducting conductor 8'. Since it does not reach 7 0 ,
Viewed from the output terminal 13 of the armature winding 7, the inner diameter side 7
1 of induced voltage is added, and power can be efficiently generated from the ring-wound armature winding. Further, in particular, since the ring-wound armature winding is wound so as to surround the insulating structure 12, it serves as a strength member and has the effect of easily supporting the winding portion against electromagnetic force.

また、内径側の円筒状超電導導体8′と外径側
の超電導シールド8の間の空間には、単に電機子
巻線7の出力電流によつて生ずる漏れ磁束φの
み存在するだけであるから、外径側の超電導シー
ルド8は内径側よりも臨界磁界の小さな安価な超
電導材を使用できる。
Furthermore, since only the leakage magnetic flux φ generated by the output current of the armature winding 7 exists in the space between the cylindrical superconducting conductor 8' on the inner diameter side and the superconducting shield 8 on the outer diameter side, For the superconducting shield 8 on the outer diameter side, an inexpensive superconducting material having a smaller critical magnetic field than that on the inner diameter side can be used.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明の回転電機によれば、電機
子巻線が超電導導体を介してリング状に巻回され
て形成され、かつ、この電機子巻線の外周に、該
電機子巻線を包囲するように超電導シールドを配
置したものであるから、完全反磁性の性質を持つ
超電導導体で交流磁界の外部に対する遮へいが電
気的損失の発生を伴わずにできるので、回転電機
の小型高効率化に効果がある。
According to the rotating electrical machine of the present invention as described above, the armature winding is formed by being wound in a ring shape through a superconducting conductor, and the armature winding is surrounded by an outer periphery of the armature winding. Since the superconducting shield is arranged in such a way that the superconducting conductor has completely diamagnetic properties, it is possible to shield the AC magnetic field from the outside without causing electrical loss, making it possible to make rotating electric machines smaller and more efficient. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の回転電機の一実施例の概略を
示す軸方向断面図、第2図は第1図の径方向断面
図である。 1…回転子、2…固定子、3…電源、4…励磁
巻線、7…電機子巻線、8…超電導シールド、
8′…円筒状超電導導体、10…常温の円筒状導
体、φ…磁束。
FIG. 1 is an axial sectional view schematically showing an embodiment of a rotating electric machine of the present invention, and FIG. 2 is a radial sectional view of FIG. 1. 1... Rotor, 2... Stator, 3... Power source, 4... Excitation winding, 7... Armature winding, 8... Superconducting shield,
8'... Cylindrical superconducting conductor, 10... Cylindrical conductor at room temperature, φ... Magnetic flux.

Claims (1)

【特許請求の範囲】 1 励磁巻線を内蔵し、軸受によつて支持されて
回転する回転子と、該回転子と所定の間〓を持つ
て配置され、その間〓部に所定の手段で固定され
た電機子巻線を有する固定子とを備えた回転電機
において、前記電機子巻線は、巻線が超電導導体
を介してリング状に巻回されて形成され、かつ、
該電機子巻線の外周に、該電機子巻線を包囲する
ように超電導シールドを配置したことを特徴とす
る回転電機。 2 前記超電導導体を介してリング状に巻回して
形成された電機子巻線を、周方向に複数個配置し
たことを特徴とする特許請求の範囲第1項記載の
回転電機。 3 前記超電導シールドの外周に常温の円筒状導
体を配置したことを特徴とする特許請求の範囲第
1項記載の回転電機。 4 前記超電導シールドを、前記電機子巻線の外
径側に同心状に複数個配置したことを特徴とする
特許請求の範囲第1項、又は第3項記載の回転電
機。
[Scope of Claims] 1. A rotor having a built-in excitation winding and rotating while being supported by a bearing, and a rotor disposed with a predetermined distance from the rotor, and fixed to the outer portion thereof by a predetermined means. In the rotating electric machine, the armature winding is formed by winding the winding in a ring shape through a superconducting conductor, and
A rotating electric machine characterized in that a superconducting shield is disposed around the outer periphery of the armature winding so as to surround the armature winding. 2. The rotating electric machine according to claim 1, wherein a plurality of armature windings formed by winding the superconducting conductor in a ring shape are arranged in a circumferential direction. 3. The rotating electric machine according to claim 1, wherein a cylindrical conductor at room temperature is arranged around the outer periphery of the superconducting shield. 4. The rotating electric machine according to claim 1 or 3, wherein a plurality of the superconducting shields are arranged concentrically on the outer diameter side of the armature winding.
JP59135306A 1984-07-02 1984-07-02 Stator of rotary electric machine Granted JPS6115541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59135306A JPS6115541A (en) 1984-07-02 1984-07-02 Stator of rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59135306A JPS6115541A (en) 1984-07-02 1984-07-02 Stator of rotary electric machine

Publications (2)

Publication Number Publication Date
JPS6115541A JPS6115541A (en) 1986-01-23
JPH053228B2 true JPH053228B2 (en) 1993-01-14

Family

ID=15148631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59135306A Granted JPS6115541A (en) 1984-07-02 1984-07-02 Stator of rotary electric machine

Country Status (1)

Country Link
JP (1) JPS6115541A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447547U (en) * 1987-09-18 1989-03-23
JP2533914B2 (en) * 1988-05-27 1996-09-11 川崎重工業株式会社 Synchronous motor

Also Published As

Publication number Publication date
JPS6115541A (en) 1986-01-23

Similar Documents

Publication Publication Date Title
US4117360A (en) Self-supporting amortisseur cage for high-speed synchronous machine solid rotor
US6603231B2 (en) Hybrid superconducting motor/generator
CA1080296A (en) Stator core end magnetic shield for large a.c. machines
US4087711A (en) Rotating electric machine having a toroidal-winding armature
US4126798A (en) Superconductive winding
US3999093A (en) Rotating electric machine having a controlled gradient winding and a circumferentially segmented magnetic core armature
US3470396A (en) Electric machine having a rotating superconducting excitation winding
US3904898A (en) Linear electric motors
CN101282050B (en) Non-groove stator of evaporative cooling motor
WO2022160514A1 (en) Superconducting direct-current motor without commutation device
US4583014A (en) Dynamoelectric machine with a rotor having a superconducting field winding and damper winding
US4710665A (en) Homopolar dynamoelectric machine with self-compensating current collector
US3867657A (en) Generator having shielded current transformers positioned therein
US4210836A (en) Permanent magnet generator
US4581555A (en) Homopolar dynamoelectric machine with a shielded stator excitation coil
CN115929788A (en) Anti-magnetic coupling radial magnetic bearing device
US7291958B2 (en) Rotating back iron for synchronous motors/generators
JPH053228B2 (en)
US2713128A (en) Dynamoelectric machine
WO2002063751A1 (en) Superconductive armature winding for an electrical machine
JPS63310366A (en) Synchronous machine
US3289019A (en) Rotating machine
US4476406A (en) Generator
SU1162008A1 (en) Contactless synchronous electric machine
JPH0715936A (en) Single-pole motor