JP3407529B2 - Two-pole turbine generator and its rotor - Google Patents

Two-pole turbine generator and its rotor

Info

Publication number
JP3407529B2
JP3407529B2 JP04092196A JP4092196A JP3407529B2 JP 3407529 B2 JP3407529 B2 JP 3407529B2 JP 04092196 A JP04092196 A JP 04092196A JP 4092196 A JP4092196 A JP 4092196A JP 3407529 B2 JP3407529 B2 JP 3407529B2
Authority
JP
Japan
Prior art keywords
magnetic pole
rotor
slots
winding
turbine generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04092196A
Other languages
Japanese (ja)
Other versions
JPH09233743A (en
Inventor
一正 井出
身佳 高橋
和彦 高橋
春雄 小原木
真一 湧井
家導 宮川
恭臣 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP04092196A priority Critical patent/JP3407529B2/en
Priority to IN208CA1997 priority patent/IN192451B/en
Priority to CN97102580A priority patent/CN1109395C/en
Priority to KR1019970006083A priority patent/KR100444736B1/en
Publication of JPH09233743A publication Critical patent/JPH09233743A/en
Priority to CN02107680A priority patent/CN1377115A/en
Application granted granted Critical
Publication of JP3407529B2 publication Critical patent/JP3407529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/26Rotor cores with slots for windings
    • H02K1/265Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はタービン発電機及び
その回転子に係わり、特に塊状鉄心を用いた2極タービ
ン発電機及びその円筒形の回転子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine generator and its rotor, and more particularly to a two-pole turbine generator using a massive iron core and its cylindrical rotor.

【0002】[0002]

【従来の技術】従来のタービン発電機の円筒形の回転子
には、回転子に励磁電源から直流電源を受けて発電機を
励磁する界磁巻線が設けられている。回転子は、単一鋼
塊から制作され、磁極部と非磁極部からなるように構成
されている。非磁極部には、塊状の回転子鉄心に等間隔
に周方向に複数個の巻線を挿入するためのスロットが設
けられ、このスロット間にはティースが設けられてい
る。スロット内には界磁巻線が施され、界磁巻線上部に
挿入された回転子ウエッジで界磁巻線が保持される構造
になっている。
2. Description of the Related Art A conventional cylindrical rotor of a turbine generator is provided with a field winding for exciting the generator by receiving a direct current power source from an exciting power source in the rotor. The rotor is made of a single steel ingot and is composed of a magnetic pole portion and a non-magnetic pole portion. The non-magnetic pole portion is provided with slots for inserting a plurality of windings in a circumferential direction in a massive rotor iron core at equal intervals, and teeth are provided between the slots. A field winding is provided in the slot, and the rotor winding inserted in the upper portion of the field winding holds the field winding.

【0003】大容量機においては、上記したタービン発
電機の円筒形の回転子では、スロットを設置していない
磁極部の大きさ、すなわち磁極部を境にして磁極部最寄
りのスロット間の角度θは、一般にギャップ部の磁束が
正弦波に近づく値に選定され、発電機の電圧波形が良好
となるようにしている。一方、このとき発電機の励磁に
必要な界磁起磁力を得るためには、例えば特開昭49−45
307 号公報に記載されているように、スロットの深さや
幅を調整して界磁巻線の断面を加減し、所定の界磁巻線
の温度上昇限界を越えないように、所要の界磁起磁力を
確保するようにしている。
In the large-capacity machine, in the cylindrical rotor of the turbine generator described above, the size of the magnetic pole portion where no slot is provided, that is, the angle θ between the slots closest to the magnetic pole portion with the magnetic pole portion as a boundary. Is generally selected so that the magnetic flux in the gap approaches a sine wave so that the voltage waveform of the generator becomes good. On the other hand, at this time, in order to obtain the field magnetomotive force necessary for exciting the generator, for example, JP-A-49-45
As described in Japanese Patent Publication No. 307, the required depth of field is adjusted so that the cross section of the field winding is adjusted by adjusting the depth and width of the slot so as not to exceed the predetermined temperature rise limit of the field winding. I try to secure the magnetomotive force.

【0004】[0004]

【発明が解決しようとする課題】上記の従来の技術で
は、磁極部最寄りのスロット間の角度θ(以下、磁極角
度θという)を、無負荷時における発電機のギャップ磁
束の分布が正弦波に最も近くなる値に選定しており、2
極機ではθ=60°程度に選定している。図6は、磁極
角度θを横軸にとり、無負荷時における端子電圧の波形
狂い率kw、すなわち高調波成分を含んだ波の瞬時値と
その波に等価な正弦波の瞬時値の最大差の等価正弦波の
波高値に対する百分率で表わした数値kwを縦軸にとっ
て示した一例を表している。ここで、端子電圧の波形狂
い率kwは、波形が正弦波から遠ざかるほど大きくな
り、図6から分かるように磁極角度θが60°で最小と
なる。
In the above conventional technique, the angle θ between the slots closest to the magnetic pole portion (hereinafter referred to as the magnetic pole angle θ) is a sinusoidal wave distribution of the gap magnetic flux of the generator when no load is applied. It is selected to be the closest value, 2
For polar machines, θ = 60 ° is selected. In FIG. 6, the horizontal axis is the magnetic pole angle θ, and the waveform deviation rate kw of the terminal voltage under no load, that is, the maximum difference between the instantaneous value of a wave containing a harmonic component and the instantaneous value of a sine wave equivalent to the wave. An example is shown in which the vertical axis represents the numerical value kw expressed as a percentage with respect to the peak value of the equivalent sine wave. Here, the waveform deviation rate kw of the terminal voltage increases as the waveform moves away from the sine wave, and becomes minimum at a magnetic pole angle θ of 60 ° as can be seen from FIG. 6.

【0005】しかし、無負荷時に磁極角度θが60°で
正弦波磁束分布に最も近くなるとしても、実際に発電機
として負荷をかけて運転する負荷時においては、波形狂
い率は最小とはならないことが発明者によって見い出さ
れた。又、磁極角度θを60°としても負荷時において
は、発電機を励磁するために必要な界磁起磁力は必ずし
も最小になると限らず、界磁巻線の温度上昇や損失は最
小にならないことがわかった。
However, even if the magnetic pole angle θ is 60 ° and becomes the closest to the sinusoidal magnetic flux distribution when there is no load, the waveform deviation rate is not the minimum when the generator is actually loaded and operated. It was found by the inventor. Also, even if the magnetic pole angle θ is set to 60 °, the field magnetomotive force required to excite the generator is not always minimized under load, and the temperature rise and loss of the field winding must not be minimized. I understood.

【0006】本発明の第1の目的は、負荷時における波
形狂い率を小さくして供給電力の品質を向上するととも
に、負荷時における所要界磁電流も低減できる2極ター
ビン発電機及びその回転子を提供することにある。
A first object of the present invention is to reduce the waveform deviation rate under load to improve the quality of power supply and to reduce the required field current under load, and a two-pole turbine generator and its rotor. To provide.

【0007】本発明の第2の目的は、同一体格で出力の
大きい2極タービン発電機を得ることにある。
A second object of the present invention is to obtain a two-pole turbine generator having the same size and a large output.

【0008】本発明の第3の目的は、界磁を励磁するた
めの励磁装置の容量を低減することができる2極タービ
ン発電機及びその回転子を提供することにある。
A third object of the present invention is to provide a two-pole turbine generator capable of reducing the capacity of an exciter for exciting a field and a rotor thereof.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の2極タービン発電機は、固定子と、該固定
子と隙間を有して軸受けにより支持された回転子を備え
た2極タービン発電機において、前記回転子が磁極部と
該磁極部以外の複数個の巻線挿入用スロットと該スロッ
ト間に形成されたティースとを有する塊状回転子鉄心
と、該巻線挿入用スロット内に挿入された界磁巻線と、
該界磁巻線保持用のウエッジを有するものであって、前
記磁極部最寄りの前記巻線挿入用スロット間角度をθ、
該巻線挿入用スロットの数をNrとしたとき、θが65
°≦θ<75°の範囲でかつNrがNr=20+4m
(m=1,2,3)の関係を有するようにして構成した
ことを特徴とするものである。又、前記磁極部最寄りの
前記巻線挿入用スロット間角度をθ、該巻線挿入用スロ
ットの数をNrとしたとき、θが75°≦θ<80°の
範囲でかつNrがNr=16+4m(m=1,2,3)
の関係を有するようにして構成したことを特徴とするも
のである。
In order to achieve the above object, a two-pole turbine generator of the present invention comprises a stator and a rotor supported by a bearing with a gap from the stator. In a two-pole turbine generator, the rotor has a massive rotor core having a magnetic pole portion, a plurality of winding insertion slots other than the magnetic pole portion, and teeth formed between the slots, and the winding insertion core. Field winding inserted in the slot,
A wedge for holding the field winding, wherein an angle between the winding insertion slots closest to the magnetic pole portion is θ,
When the number of slots for winding insertion is Nr, θ is 65
Within the range of ° ≦ θ <75 ° and Nr is Nr = 20 + 4 m
It is characterized in that it is configured to have a relationship of (m = 1, 2, 3). Further, when the angle between the winding insertion slots closest to the magnetic pole portion is θ and the number of the winding insertion slots is Nr, θ is in the range of 75 ° ≦ θ <80 ° and Nr is Nr = 16 + 4 m. (M = 1,2,3)
It is characterized in that it is configured to have the relationship of.

【0010】又、その回転子は、磁極部と該磁極部以外
に複数個の等間隔に設置された巻線挿入用スロットと該
スロット間に形成されたティースとを有する塊状回転子
鉄心と、該巻線挿入用スロット内に挿入された界磁巻線
と、該界磁巻線保持用のウエッジとを備えた2極タービ
ン発電機の回転子において、前記磁極部最寄りの前記巻
線挿入用スロット間角度をθ、該巻線挿入用スロットの
数をNrとしたとき、θが65°≦θ<75°の範囲で
かつNrがNr=20+4m(m=1,2,3)の関係を
有するようにして構成したことを特徴とするものであ
る。又、前記磁極部最寄りの前記巻線挿入用スロット間
角度をθ、該巻線挿入用スロットの数をNrとしたと
き、θが75°≦θ<80°の範囲でかつNrがNr=
16+4m(m=1,2,3)の関係を有するようにし
て構成したことを特徴とするものである。
Further, the rotor is a massive rotor iron core having a magnetic pole portion, a plurality of winding insertion slots provided at equal intervals other than the magnetic pole portion, and teeth formed between the slots. In a rotor of a two-pole turbine generator equipped with a field winding inserted in the winding insertion slot and a wedge for holding the field winding, the winding is inserted near the magnetic pole part. When θ is the angle between slots and Nr is the number of slots for winding insertion, θ is in the range of 65 ° ≦ θ <75 ° and Nr is Nr = 20 + 4 m (m = 1, 2, 3). It is characterized in that it is configured to have. Further, when the angle between the winding insertion slots closest to the magnetic pole portion is θ and the number of the winding insertion slots is Nr, θ is in the range of 75 ° ≦ θ <80 ° and Nr is Nr =
It is characterized in that it is configured to have a relationship of 16 + 4 m (m = 1, 2, 3).

【0011】[0011]

【発明の実施の形態】以下、本発明の一実施例を図面を
用いて詳細に説明する。図1は、本実施例の2極タービ
ン発電機の回転子の横断面図、図2は、本実施例の2極
タービン発電機の横断面図、図3は、磁極角度θと負荷
時の端子電圧波形狂い率kwの関係を示す図、図4は、
磁極角度θと負荷時の所要界磁起磁力ATfの関係を示
す図、図5は、本実施例の磁極角度とスロット数の選定
範囲を示す図である。ここで、図1,図2では2極のう
ちの1極分を図示しており、以後の説明においては、磁
極部6の中心軸12を直軸と呼ぶことにする。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described in detail below with reference to the drawings. 1 is a cross-sectional view of a rotor of a two-pole turbine generator of this embodiment, FIG. 2 is a cross-sectional view of a two-pole turbine generator of this embodiment, and FIG. FIG. 4 is a diagram showing the relationship of the terminal voltage waveform deviation rate kw,
FIG. 5 is a diagram showing the relationship between the magnetic pole angle θ and the required field magnetomotive force ATf under load, and FIG. 5 is a diagram showing the magnetic pole angle and the selection range of the number of slots in the present embodiment. Here, FIGS. 1 and 2 show only one of the two poles, and in the following description, the central axis 12 of the magnetic pole portion 6 will be referred to as a straight axis.

【0012】図2に示すように、本実施例のタービン発
電機は、主として固定子1と、この固定子1とギャップ
11を有するように図示しない軸受け支持された回転子
2で構成されている。固定子1には、積層された積層鉄
心に固定子スロット3が設けられており、この固定子ス
ロット3には電機子巻線4が施されている。この電機子
巻線4としては、平角銅線を用いて亀甲形コイルに形成
したものを用い、電機子巻線4を保持するために、固定
子スロット3の開口部に固定子ウエッジ5が挿入されて
いる。
As shown in FIG. 2, the turbine generator of this embodiment is mainly composed of a stator 1 and a rotor 2 bearing-supported (not shown) so as to have the stator 1 and a gap 11. . The stator 1 is provided with a stator slot 3 in a laminated iron core, and the stator slot 3 is provided with an armature winding 4. As the armature winding 4, a hexagonal copper wire formed into a hexagonal coil is used, and in order to hold the armature winding 4, a stator wedge 5 is inserted into the opening of the stator slot 3. Has been done.

【0013】タービン発電機の回転子2は、機械強度を
持たせるために単一鋼塊から製作されており、磁極部6
と非磁極部とが形成されている。非磁極部には回転子2
の周方向に等間隔に複数個の巻線挿入用の回転子スロッ
ト7が設けられており、スロット7間にはティース8が
設けられている。スロット7内には界磁巻線9が施さ
れ、界磁巻線9の上部、すなわち固定子側には回転子ウ
エッジ10が挿入されて界磁巻線9を保持する構造とな
っている。界磁巻線9は、裸銅帯を平打ち巻にして、層
間を絶縁して形成されている。このように構成すること
により、界磁巻線9を励磁することによって、直軸12
の方向に磁束を発生させることができる。ここで、スロ
ット7は複数個設置されており、磁極部6の中心から9
0°離れた位置までのそれぞれのスロット7を磁極部6
最寄りから遠ざかる順にS1,S2,…,Snrと呼ぶ
ことにすれば、スロット7の数Nrは、2極機であるの
でNr=4×nrとなる。また、図1中にも示したよう
に、少なくとも磁極部6最寄りのスロットS1の深さを
他のスロットの深さと同等以下にして、磁極部6最寄り
のスロットS1の底部の間隔を広くとり磁気飽和を緩和
させるようにしてもよい。
The rotor 2 of the turbine generator is made of a single steel ingot to have mechanical strength, and the magnetic pole portion 6
And a non-magnetic pole portion are formed. Rotor 2 for non-pole
Rotor slots 7 for inserting a plurality of windings are provided at equal intervals in the circumferential direction, and teeth 8 are provided between the slots 7. A field winding 9 is provided in the slot 7, and a rotor wedge 10 is inserted in the upper portion of the field winding 9, that is, on the side of the stator to hold the field winding 9. The field winding 9 is formed by flattening a bare copper strip to insulate the layers. With this configuration, by exciting the field winding 9,
A magnetic flux can be generated in the direction of. Here, a plurality of slots 7 are installed, and the slots 9
Each of the slots 7 up to 0 ° apart is attached to the magnetic pole portion 6
Sn, Sr, ..., Snr in order of increasing distance from the nearest, the number Nr of slots 7 is Nr = 4 × nr because it is a two-pole machine. In addition, as shown in FIG. 1, at least the depth of the slot S1 closest to the magnetic pole portion 6 is set to be equal to or less than the depth of the other slots, and the gap between the bottom portions of the slots S1 closest to the magnetic pole portion 6 is widened. Saturation may be relaxed.

【0014】本実施例では、図1に示す回転子2におい
て、磁極部6の角度θ、すなわち直軸12を中央とした
スロットS1間の角度θと、巻線挿入用のスロット7の
数Nrを、65°≦θ<75°の範囲でかつNr=20
+4m(ここで、m=1,2,3)、あるいは75°≦
θ<80°の範囲でかつNr=16+4m(ここで、m
=1,2,3)の何れかの関係を満足するように選定し
ている。
In the present embodiment, in the rotor 2 shown in FIG. 1, the angle θ of the magnetic pole portion 6, that is, the angle θ between the slots S1 centered on the straight axis 12 and the number Nr of slots 7 for winding insertion. In the range of 65 ° ≦ θ <75 ° and Nr = 20
+ 4m (where m = 1, 2, 3), or 75 ° ≤
In the range of θ <80 ° and Nr = 16 + 4 m (here, m
= 1,2,3).

【0015】このように選定する根拠について、以下説
明する。この説明では、磁極角度θを40°〜90°の
範囲で検討するとともに、スロット数Nrを16,2
0,24,28,32,36とした。ここで、スロット
数Nrを4の倍数に設定しているのは、2極機で磁極に
対して対称な回転子を考えたためである。
The basis for such selection will be described below. In this description, the magnetic pole angle θ is examined in the range of 40 ° to 90 °, and the number of slots Nr is 16,2.
It was set to 0, 24, 28, 32, 36. Here, the number of slots Nr is set to be a multiple of 4 because a rotor that is symmetrical with respect to the magnetic poles in a two-pole machine is considered.

【0016】磁極角度θと負荷時の端子電圧波形狂い率
kwの関係を示した図3は、100MVA級の2極ター
ビン発電機を対象にしており、定格力率の遅れを0.9p
u とした場合の例を示している。このとき、界磁巻線,
スロットのサイズは、それぞれの磁極角度θとスロット
数Nrの条件で、回転子の機械的強度が満足できるよう
に選定して設計している。また、発電機の同期リアクタ
ンスの単位法表示の逆数は短絡比であり、一般に発電機
を設計するとき、発電機が接続される電力系統の安定度
と発電機体格のバランスをとるため、その指標として短
絡比をある程度の数値に維持する必要があるため、何れ
の設計においても発電機の同期リアクタンスが同じ値と
なるような条件で比較している。
FIG. 3, which shows the relationship between the magnetic pole angle θ and the terminal voltage waveform deviation rate kw under load, is intended for a 100 MVA class two-pole turbine generator, and the delay of the rated power factor is 0.9 p.
An example is shown for u. At this time, the field winding,
The size of the slots is selected and designed so that the mechanical strength of the rotor can be satisfied under the conditions of the magnetic pole angle θ and the number of slots Nr. Also, the reciprocal of the unit method display of the synchronous reactance of the generator is the short-circuit ratio, and when designing a generator, in general, it is necessary to balance the stability of the power system to which the generator is connected with the generator's physique. Since it is necessary to maintain the short-circuit ratio at a certain value, the comparison is performed under the condition that the synchronous reactances of the generators are the same in any design.

【0017】ここで、図3中に黒抜きの点で示したスロ
ット数Nr=24でかつ磁極角度θ=40,60,7
0,80,90°の5点は、100MAV級の2極ター
ビン発電機と相似な断面の小形モデルによって実測した
点であり、その他の白抜きの点は、それらの実測点から
算定した負荷時の端子電圧波形狂い率kwである。図3
から分かるように、何れのスロット数Nrを選択して
も、磁極角度θが65°〜80°程度の範囲で負荷時の
端子電圧波形狂い率kwを小さくできる。この結果は、
無負荷時において磁極角度θが60°で最も端子電圧波
形狂い率kwが小さくなる従来の結果と異なっている
が、負荷時には電機子巻線4を流れる電流によって電機
子反作用が生じるため、磁束密度の最も大きい周方向位
置が直軸12から回転方向遅れ側に移動し、ギャップ1
1での磁束密度分布が無負荷時と大きく異なるためであ
る。また、波形狂い率kwの値はスロット数Nrによっ
ても変化し、磁極角度θが同一であれば、スロット数が
多いほうがkwが小さくなっている。これは、スロット
数Nrが多いほど、巻線を分布させて配置していること
によって、ギャップ磁束密度分布に含まれる高調波成分
が減少するためである。
Here, the number of slots Nr = 24 indicated by black dots in FIG. 3 and the magnetic pole angle θ = 40, 60, 7
The 5 points of 0, 80, 90 degrees are the points measured by a small model with a similar cross section to a 100 MAV class two-pole turbine generator, and the other white points are the points when the load is calculated from these measured points. Is the terminal voltage waveform deviation rate kw. Figure 3
As can be seen from the above, no matter which slot number Nr is selected, the terminal voltage waveform deviation rate kw under load can be reduced within the range of the magnetic pole angle θ of about 65 ° to 80 °. This result is
The magnetic flux angle θ is 60 ° under no load, and the terminal voltage waveform deviation rate kw is the smallest, which is different from the conventional result. However, since the current flowing through the armature winding 4 causes an armature reaction when loaded, the magnetic flux density Of the gap in the gap 1
This is because the magnetic flux density distribution at 1 is significantly different from that at no load. The value of the waveform deviation rate kw also changes depending on the number of slots Nr. If the magnetic pole angle θ is the same, kw becomes smaller as the number of slots increases. This is because as the number of slots Nr is larger, the winding components are distributed and arranged, so that the harmonic components included in the gap magnetic flux density distribution are reduced.

【0018】従来のタービン発電機は、磁極角度θを6
0°程度かつスロット数Nrを24,28,32の何れ
かに選定している。図3においては、磁極角度θ=60
°でかつNr=24,28,32のうち、Nr=32の
場合を図3中に×印で示しているが、無負荷の場合は、
従来の磁極角度θ=60°で波形狂い率kwが最も小さ
くなる。この×印で示した点より波形狂い率kwを小さ
くできるのが、図3中に斜線を施した領域に入る部分で
ある。
In the conventional turbine generator, the magnetic pole angle θ is 6
About 0 ° and the number of slots Nr is selected to 24, 28, or 32. In FIG. 3, the magnetic pole angle θ = 60
3 and the case where Nr = 32 out of Nr = 24, 28, 32 is indicated by an X mark in FIG. 3, but in the case of no load,
The waveform deviation rate kw becomes the smallest at the conventional magnetic pole angle θ = 60 °. It is the portion within the shaded area in FIG. 3 that the waveform deviation rate kw can be made smaller than the point indicated by the cross mark.

【0019】図4は、磁極角度θと負荷時の所要界磁起
磁力ATfの関係を示したものであるが、図3と同じ条
件で比較した場合について示している。ここで、図4中
に黒抜きの点で示したスロット数Nr=24でかつ磁極
角度θ=40,60,70,80,90°の5点は、図
3と同様に100MAV級の2極タービン発電機と相似
な断面の小形モデルによって実測した所要界磁起磁力を
100MAV級の2極タービン発電機の界磁起磁力に換
算した点であり、その他の白抜きの点は、それらの点か
ら推定した負荷時の所要界磁起磁力ATfである。図4
に示すように、何れのスロット数Nrを選択しても、磁
極角度θが65°〜80°程度の範囲で負荷時の所要界
磁起磁力ATfが小さくなっている。
FIG. 4 shows the relationship between the magnetic pole angle θ and the required field magnetomotive force ATf at the time of loading, but shows the case where comparison is made under the same conditions as in FIG. Here, the five points with the number of slots Nr = 24 and the magnetic pole angles θ = 40, 60, 70, 80, 90 ° indicated by the black dots in FIG. 4 are two poles of 100 MAV class as in FIG. The required field magnetomotive force measured by a small model having a cross section similar to that of the turbine generator is converted into the field magnetomotive force of a 100 MAV class two-pole turbine generator, and other white points are those points. It is the required field magnetomotive force ATf under load estimated from Figure 4
As shown in FIG. 5, no matter which slot number Nr is selected, the required field magnetomotive force ATf at the time of load is small in the range of the magnetic pole angle θ of about 65 ° to 80 °.

【0020】すなわち、無負荷時において端子電圧波形
狂い率kwが最も小さくなる磁極角度θ=60°で、負
荷時の所要界磁起磁力ATfが最小とならないことが分
かる。磁極角度θが65°〜80°程度の範囲で負荷時
の所要界磁起磁力ATfが小さくなるのは、次のような
理由による。磁極角度の小さい領域では、磁極角度θを
大きくすると磁極部6の磁気飽和が緩和され、ATfが
小さくなる。磁極角度の大きい領域では、磁極角度が大
きくなって前述の磁極部6の磁気飽和は緩和されるが、
同期リアクタンスが増大してしまうため、同期リアクタ
ンスを同じ値に維持するためにはギャップ11の径方向
長を長くする必要があり、ギャップ11の磁気抵抗が増
加するためである。そのため、磁極角度θが65°〜8
0°付近で負荷時の所要界磁起磁力ATfを最も小さく
できるのである。また、所要界磁起磁力ATfの値は、
スロット数Nrによっても変化し、磁極角度θが同一で
あれば、スロット数が少ないほうがATfを低減でき
る。これは、スロット数Nrが少ないほど、スロット7
の開口幅が増加し、スロット7上側の幅方向磁気抵抗が
増加するため、ティース8の先端間をギャップ11や固
定子1の内径側で電機子巻線4と鎖交しないで通過する
漏れ磁束が減少することによって、回転子2を通過する
全磁束が少なくなり、回転子2の磁気飽和が緩和される
ためである。
That is, it can be seen that the required field magnetomotive force ATf at the time of load is not minimum at the magnetic pole angle θ = 60 ° at which the terminal voltage waveform deviation rate kw becomes the smallest under no load. The reason why the required field magnetomotive force ATf under load is small in the range where the magnetic pole angle θ is about 65 ° to 80 ° is as follows. In the region where the magnetic pole angle is small, increasing the magnetic pole angle θ reduces the magnetic saturation of the magnetic pole portion 6 and reduces ATf. In the region where the magnetic pole angle is large, the magnetic pole angle becomes large and the magnetic saturation of the magnetic pole portion 6 is alleviated,
This is because the synchronous reactance increases, so that the radial length of the gap 11 must be increased in order to maintain the synchronous reactance at the same value, and the magnetic resistance of the gap 11 increases. Therefore, the magnetic pole angle θ is 65 ° to 8
The required field magnetomotive force ATf under load can be minimized near 0 °. Further, the value of the required field magnetomotive force ATf is
The number of slots Nr also changes, and if the magnetic pole angle θ is the same, the smaller the number of slots, the more the ATf can be reduced. This means that the smaller the number of slots Nr, the more slots 7
Of the leakage magnetic flux passing between the tips of the teeth 8 on the gap 11 and the inner diameter side of the stator 1 without interlinking with the armature winding 4 because the opening width of the tooth 7 increases and the width-direction magnetic resistance on the upper side of the slot 7 increases. This is because the total magnetic flux passing through the rotor 2 is reduced and the magnetic saturation of the rotor 2 is alleviated due to the decrease of the.

【0021】図4においては、現行機である磁極角度θ
=60°でかつNr=24,28,32のうち、図4中
に×印の点で示した点が、負荷時の界磁起磁力ATfが
最も小さくなる場合であり、Nr=24となっている。
この×印の点より負荷時の界磁起磁力ATfを小さくで
きるのが、図4中に斜線を施した領域に入る部分であ
る。
In FIG. 4, the magnetic pole angle .theta.
= 60 ° and Nr = 24, 28, 32, a point indicated by a cross in FIG. 4 is a case where the field magnetomotive force ATf at the time of load becomes the smallest, and Nr = 24. ing.
The field magnetomotive force ATf at the time of loading can be made smaller than the point of this X mark in the portion in the shaded area in FIG.

【0022】図5は、本実施例の磁極角度とスロット数
の選定範囲を示した図であり、図3で示した現行機より
負荷時の波形狂い率kwを低減できる領域と、図4で示
した現行機より負荷時の界磁起磁力ATfを低減できる
領域を示している。また、図3,図4の斜線領域内の数
値をみる限りでは、θが5°程度変化する範囲では、波
形狂い率kw、界磁起磁力ATfとも大きく数値が変化
しないため、図5においては、磁極角度θは5°間隔で
表示した。図5に示すように、65°≦θ<75°でか
つNr=20+4m(ここで、m=1,2,3)、ある
いは75°≦θ<80°でかつNr=16+4m(ここ
で、m=1,2,3)の何れかの関係を満足する領域
で、現行機より負荷時の波形狂い率kwと所要起磁力A
Tfを低減できる。
FIG. 5 is a diagram showing a selection range of the magnetic pole angle and the number of slots in the present embodiment. In FIG. 4, a region where the waveform deviation rate kw under load can be reduced as compared with the current machine shown in FIG. It shows a region where the field magnetomotive force ATf under load can be reduced as compared with the current machine shown. Also, as far as the numerical values in the shaded areas in FIGS. 3 and 4 are concerned, in the range in which θ changes by about 5 °, the numerical values of the waveform deviation rate kw and the field magnetomotive force ATf do not significantly change, so in FIG. , The magnetic pole angle θ is shown at 5 ° intervals. As shown in FIG. 5, 65 ° ≦ θ <75 ° and Nr = 20 + 4 m (here, m = 1, 2, 3), or 75 ° ≦ θ <80 ° and Nr = 16 + 4 m (here, m = 1, 2, 3), the waveform deviation rate kw and the required magnetomotive force A when the load is higher than that of the current machine in a region satisfying any of the relations.
Tf can be reduced.

【0023】以上説明したように、磁極角度と波形狂い
率を低減できる範囲を選定することにより、負荷時にお
ける端子電圧の波形を良好にして供給電力の品質が向上
するとともに、負荷時における界磁電流の低減を図るこ
とができる。その結果、界磁巻線銅損を減少させること
による発電機効率の向上や界磁巻線の温度上昇を低減で
きる。
As described above, by selecting a range in which the magnetic pole angle and the waveform deviation rate can be reduced, the waveform of the terminal voltage at the time of load is improved, the quality of the supplied power is improved, and the field at the time of load is improved. The current can be reduced. As a result, it is possible to improve the generator efficiency and reduce the temperature rise of the field winding by reducing the copper loss of the field winding.

【0024】また、本実施例では、100MVA級の発
電機の解析結果を述べたが、この他、100MVA級の
発電機の相似モデルの実測結果に基づいて200MVA
級,700MVA級,1000MVA級機の推定をして
も、本実施例と同様の結果が得られることを確認でき
た。一方、力率を遅れ0.8puから1.0puの範囲として
推定しても、やはり同様な結果となることを確認してい
る。
In the present embodiment, the analysis result of the 100 MVA class generator is described. In addition to this, based on the measurement result of the similarity model of the 100 MVA class generator, 200 MVA is obtained.
It was confirmed that the same results as in this example were obtained even when the estimation of the class, 700 MVA class, and 1000 MVA class machines was performed. On the other hand, even if the power factor is estimated to fall within the range of 0.8 pu to 1.0 pu, it has been confirmed that the same result is obtained.

【0025】また、例えば特公昭60−34340 号公報など
に記載されているように、界磁巻線9と回転子ウエッジ
10の間にダンパバーが挿入されて回転子2が構成され
ている場合にも上述した本実施例の構成は適用すること
ができ、同様の効果が得られる。
Further, as described in, for example, Japanese Patent Publication No. 60-34340, when the rotor 2 is constructed by inserting a damper bar between the field winding 9 and the rotor wedge 10. Also, the configuration of the present embodiment described above can be applied, and the same effect can be obtained.

【0026】[0026]

【発明の効果】以上述べたように、本発明によれば、負
荷時における端子電圧の波形を良好にして供給電力の品
質が向上するとともに、負荷時における界磁電流の低減
を図ることができる。その結果、界磁巻線銅損を減少さ
せることによる発電機効率の向上や界磁巻線の温度上昇
の低減が実現できる。また同一体格で出力の大きいター
ビン発電機が得られる効果がある。また、界磁を励磁す
るための励磁装置の容量も低減することができ、発電シ
ステム全体を経済的、かつコンパクトに構成できる効果
がある。
As described above, according to the present invention, it is possible to improve the quality of the supplied power by improving the waveform of the terminal voltage when the load is applied and to reduce the field current when the load is applied. . As a result, it is possible to improve the generator efficiency and reduce the temperature rise of the field winding by reducing the copper loss of the field winding. Further, there is an effect that a turbine generator having the same physical structure and a large output can be obtained. In addition, the capacity of the exciter for exciting the field can be reduced, and the entire power generation system can be economically and compactly constructed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す2極タービン発電機の
回転子の横断面図である。
FIG. 1 is a cross-sectional view of a rotor of a two-pole turbine generator showing an embodiment of the present invention.

【図2】本実施例の2極タービン発電機の横断面図であ
る。
FIG. 2 is a cross-sectional view of the two-pole turbine generator of this embodiment.

【図3】磁極角度と負荷時波形狂い率の関係を示す図で
ある。
FIG. 3 is a diagram showing a relationship between a magnetic pole angle and a waveform deviation rate under load.

【図4】磁極角度と負荷時界磁起磁力の関係を示す図で
ある。
FIG. 4 is a diagram showing a relationship between a magnetic pole angle and a field magnetomotive force under load.

【図5】本実施例の範囲を示す磁極角度とスロット数の
関係を示す図である。
FIG. 5 is a diagram showing a relationship between a magnetic pole angle and the number of slots showing the range of the present embodiment.

【図6】磁極角度と無負荷時波形狂い率の関係を示す図
である。
FIG. 6 is a diagram showing a relationship between a magnetic pole angle and an unloaded waveform deviation rate.

【符号の説明】[Explanation of symbols]

2…回転子、6…磁極部、7…回転子スロット、8…回
転子ティース、9…界磁巻線、10…回転子ウエッジ。
2 ... Rotor, 6 ... Magnetic pole part, 7 ... Rotor slot, 8 ... Rotor teeth, 9 ... Field winding, 10 ... Rotor wedge.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 和彦 茨城県日立市大みか町七丁目2番1号 株式会社 日立製作所 電力・電機開発 本部内 (72)発明者 小原木 春雄 茨城県日立市大みか町七丁目2番1号 株式会社 日立製作所 電力・電機開発 本部内 (72)発明者 湧井 真一 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 宮川 家導 茨城県日立市幸町三丁目1番1号 株式 会社 日立製作所 日立工場内 (72)発明者 八木 恭臣 茨城県日立市幸町三丁目1番1号 株式 会社 日立製作所 日立工場内 (56)参考文献 特開 平4−21338(JP,A) 特開 平6−14502(JP,A) 特開 平7−95752(JP,A) 特開 平6−178480(JP,A) 特開 昭50−26011(JP,A) 特開 平3−261340(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02K 1/26 H02K 19/26 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiko Takahashi 7-2-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi, Ltd. Electric Power & Electric Development Division (72) Haruo Obaragi Omika-cho, Hitachi-shi, Ibaraki 7-2-1, Hitachi Ltd., Electric Power & Electric Machinery Development Headquarters (72) Inventor Shinichi Yukai 7-1-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Miyagawa Ieda 3-1, 1-1 Sachimachi, Hitachi, Ibaraki Hitachi Ltd., Hitachi factory (72) Inventor Yasuomi Yagi 3-1-1, Sachimachi, Hitachi, Ibaraki Hitachi, Ltd. (56) Reference References JP-A-4-21338 (JP, A) JP-A-6-14502 (JP, A) JP-A-7-95752 (JP, A) JP-A-6-178480 (J , A) JP Akira 50-26011 (JP, A) JP flat 3-261340 (JP, A) (58 ) investigated the field (Int.Cl. 7, DB name) H02K 1/26 H02K 19/26

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固定子と、該固定子と隙間を有して軸受け
により支持された回転子を備えた2極タービン発電機に
おいて、前記回転子が磁極部と該磁極部以外の複数個の
巻線挿入用スロットと該スロット間に形成されたティー
スとを有する塊状回転子鉄心と、該巻線挿入用スロット
内に挿入された界磁巻線と、該界磁巻線保持用のウエッ
ジを有するものであって、前記磁極部最寄りの前記巻線
挿入用スロット間角度をθ、該巻線挿入用スロットの数
をNrとしたとき、θが65°≦θ<75°の範囲でか
つNrがNr=20+4m(m=1,2,3)の関係を
有するようにして構成したことを特徴とする2極タービ
ン発電機。
1. A two-pole turbine generator comprising a stator and a rotor supported by bearings with a gap from the stator, wherein the rotor comprises a magnetic pole part and a plurality of parts other than the magnetic pole part. A lumped rotor core having winding insertion slots and teeth formed between the slots, a field winding inserted in the winding insertion slot, and a wedge for holding the field winding. When the angle between the winding insertion slots closest to the magnetic pole portion is θ and the number of the winding insertion slots is Nr, θ is in the range of 65 ° ≦ θ <75 ° and Nr. Is configured so as to have a relationship of Nr = 20 + 4 m (m = 1, 2, 3), a two-pole turbine generator.
【請求項2】固定子と、該固定子と隙間を有して軸受け
により支持された回転子を備えた2極タービン発電機に
おいて、前記回転子が磁極部と該磁極部以外の複数個の
巻線挿入用スロットと該スロット間に形成されたティー
スとを有する塊状回転子鉄心と、該巻線挿入用スロット
内に挿入された界磁巻線と、該界磁巻線保持用のウエッ
ジを有するものであって、前記磁極部最寄りの前記巻線
挿入用スロット間角度をθ、該巻線挿入用スロットの数
をNrとしたとき、θが75°≦θ<80°の範囲でか
つNrがNr=16+4m(m=1,2,3)の関係を
有するようにして構成したことを特徴とする2極タービ
ン発電機。
2. A two-pole turbine generator comprising a stator and a rotor supported by bearings with a gap from the stator, wherein the rotor comprises a magnetic pole part and a plurality of parts other than the magnetic pole part. A lumped rotor core having winding insertion slots and teeth formed between the slots, a field winding inserted in the winding insertion slot, and a wedge for holding the field winding. When the angle between the winding insertion slots closest to the magnetic pole portion is θ and the number of the winding insertion slots is Nr, θ is in the range of 75 ° ≦ θ <80 ° and Nr. Is configured so as to have a relationship of Nr = 16 + 4 m (m = 1, 2, 3), a two-pole turbine generator.
【請求項3】磁極部と該磁極部以外に複数個の等間隔に
設置された巻線挿入用スロットと該スロット間に形成さ
れたティースとを有する塊状回転子鉄心と、該巻線挿入
用スロット内に挿入された界磁巻線と、該界磁巻線保持
用のウエッジとを備えた2極タービン発電機の回転子に
おいて、前記磁極部最寄りの前記巻線挿入用スロット間
角度をθ、該巻線挿入用スロットの数をNrとしたと
き、θが65°≦θ<75°の範囲でかつNrがNr=
20+4m(m=1,2,3)の関係を有するようにし
て構成したことを特徴とする2極タービン発電機の回転
子。
3. A mass rotor core having a magnetic pole portion, a plurality of winding insertion slots provided at equal intervals other than the magnetic pole portion, and teeth formed between the slots, and the winding insertion core. In a rotor of a two-pole turbine generator including a field winding inserted in a slot and a wedge for holding the field winding, an angle between the winding insertion slots closest to the magnetic pole portion is θ. , Θ is in the range of 65 ° ≦ θ <75 ° and Nr is Nr =
A rotor for a two-pole turbine generator, characterized in that it is configured to have a relationship of 20 + 4 m (m = 1, 2, 3).
【請求項4】磁極部と該磁極部以外に複数個の等間隔に
設置された巻線挿入用スロットと該スロット間に形成さ
れたティースとを有する塊状回転子鉄心と、該巻線挿入
用スロット内に挿入された界磁巻線と、該界磁巻線保持
用のウエッジとを備えた2極タービン発電機の回転子に
おいて、前記磁極部最寄りの前記巻線挿入用スロット間
角度をθ、該巻線挿入用スロットの数をNrとしたと
き、θが75°≦θ<80°の範囲でかつNrがNr=
16+4m(m=1,2,3)の関係を有するようにし
て構成したことを特徴とする2極タービン発電機の回転
子。
4. A lump rotor core having a magnetic pole portion, a plurality of winding insertion slots provided at equal intervals other than the magnetic pole portion, and teeth formed between the slots, and the winding insertion core. In a rotor of a two-pole turbine generator including a field winding inserted in a slot and a wedge for holding the field winding, an angle between the winding insertion slots closest to the magnetic pole portion is θ. When the number of slots for winding insertion is Nr, θ is in the range of 75 ° ≦ θ <80 ° and Nr is Nr =
A rotor for a two-pole turbine generator, which is configured to have a relationship of 16 + 4 m (m = 1, 2, 3).
【請求項5】前記発電機が100MVA級から1000
MVA級の範囲である請求項1又は2に記載の2極ター
ビン発電機。
5. The generator is 100 MVA class to 1000.
The two-pole turbine generator according to claim 1 or 2, which is in the MVA class range.
【請求項6】前記界磁巻線と前記回転子ウエッジの間に
ダンパバーを装着した請求項3又は4に記載の2極ター
ビン発電機の回転子。
6. A rotor for a two-pole turbine generator according to claim 3, wherein a damper bar is mounted between the field winding and the rotor wedge.
JP04092196A 1996-02-28 1996-02-28 Two-pole turbine generator and its rotor Expired - Lifetime JP3407529B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP04092196A JP3407529B2 (en) 1996-02-28 1996-02-28 Two-pole turbine generator and its rotor
IN208CA1997 IN192451B (en) 1996-02-28 1997-02-05
CN97102580A CN1109395C (en) 1996-02-28 1997-02-27 Two-pole turbine generator and rotor thereof
KR1019970006083A KR100444736B1 (en) 1996-02-28 1997-02-27 Two-pole turbine generator and exciter electronics
CN02107680A CN1377115A (en) 1996-02-28 2002-03-29 Two-pole turbine generator and rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04092196A JP3407529B2 (en) 1996-02-28 1996-02-28 Two-pole turbine generator and its rotor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000081730A Division JP2000287392A (en) 2000-01-01 2000-03-17 Two-pole turbine generator and its rotor

Publications (2)

Publication Number Publication Date
JPH09233743A JPH09233743A (en) 1997-09-05
JP3407529B2 true JP3407529B2 (en) 2003-05-19

Family

ID=12593972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04092196A Expired - Lifetime JP3407529B2 (en) 1996-02-28 1996-02-28 Two-pole turbine generator and its rotor

Country Status (4)

Country Link
JP (1) JP3407529B2 (en)
KR (1) KR100444736B1 (en)
CN (2) CN1109395C (en)
IN (1) IN192451B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295264A (en) * 2007-05-28 2008-12-04 Toshiba Corp Rotor of dynamo-electric machine
CN105391261B (en) * 2015-12-02 2018-03-06 上海大学 The implicit pole synchronous motor Structural Parameters of its Rotor of air-gap field Sine distribution determines method
CN107196432A (en) * 2016-03-14 2017-09-22 瑞智精密股份有限公司 Self-riveting motor rotor is unshakable in one's determination
CN106253516B (en) * 2016-08-18 2018-07-31 华北电力大学 A kind of double axis excitation rotor of steam turbo generator winding construction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160049A (en) * 1986-01-08 1987-07-16 Nippon Electric Ind Co Ltd Three-phase induction motor
NL8801700A (en) * 1988-07-05 1990-02-01 Philips Nv ELECTRIC MULTI-POLE MACHINE.
US5073087A (en) * 1990-04-13 1991-12-17 Westinghouse Electric Corp. Generator blower rotor structure
JPH0767279A (en) * 1993-06-18 1995-03-10 Hitachi Ltd Turbine generator

Also Published As

Publication number Publication date
KR970063862A (en) 1997-09-12
KR100444736B1 (en) 2004-11-12
IN192451B (en) 2004-04-24
CN1161590A (en) 1997-10-08
CN1109395C (en) 2003-05-21
JPH09233743A (en) 1997-09-05
CN1377115A (en) 2002-10-30

Similar Documents

Publication Publication Date Title
El-Refaie et al. Optimal flux weakening in surface PM machines using fractional-slot concentrated windings
JP4311643B2 (en) Method for manufacturing permanent magnet type rotating electric machine and method for manufacturing permanent magnet type synchronous generator for wind power generation
Matsuo et al. Rotor design optimization of synchronous reluctance machine
Jensen et al. A low-loss permanent-magnet brushless DC motor utilizing tape wound amorphous iron
US6057622A (en) Direct control of air gap flux in permanent magnet machines
US8546991B2 (en) Synchronous generator and synchronous generator system for reducing distortion of current waveform
US3428840A (en) Axial air gap generator with cooling arrangement
US20040150283A1 (en) Trapezoidal shaped magnet flux intensifier motor pole arrangement for improved motor torque density
El-Refaie et al. Optimal flux weakening in surface PM machines using concentrated windings
Xinghe et al. Numerical analysis on the magnetic field of hybrid exciting synchronous generator
US4792710A (en) Construction of electrical machines
JP3407529B2 (en) Two-pole turbine generator and its rotor
US3175111A (en) Dynamoelectric machine with odd multiple harmonic excited field
Köster et al. Electromagnetic design considerations on hts excited homopolar inductor alternators
JP3214508B2 (en) AC generator for vehicles
Jia et al. Comparison of stator DC-excited vernier reluctance machines with synchronous reluctance machines
US7836576B2 (en) Method for converting a commutator exciter into a brushless exciter
JP3533798B2 (en) Rotor of bipolar turbine generator
JP2000287392A (en) Two-pole turbine generator and its rotor
JP3303674B2 (en) Rotating electric machine and its cylindrical rotor
Avusula et al. Design of 15 kW, 440 V Three Phase Induction Motor for Electrical Vehicle Applications with Improved Efficiency and Wide Speed Range
JPH077900A (en) Brushless three-phase synchronous generator
JPH09154246A (en) Rotor of rotating machine
JPH1189132A (en) Cylindrical rotor for rotary electric machine
Nair Inductor generators for alternative energy schemes

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term