JPH04138054A - Brake winding of permanent magnet synchronous machine - Google Patents

Brake winding of permanent magnet synchronous machine

Info

Publication number
JPH04138054A
JPH04138054A JP25842890A JP25842890A JPH04138054A JP H04138054 A JPH04138054 A JP H04138054A JP 25842890 A JP25842890 A JP 25842890A JP 25842890 A JP25842890 A JP 25842890A JP H04138054 A JPH04138054 A JP H04138054A
Authority
JP
Japan
Prior art keywords
brake winding
winding
armature
permanent magnet
brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25842890A
Other languages
Japanese (ja)
Inventor
Kenji Endo
研二 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25842890A priority Critical patent/JPH04138054A/en
Publication of JPH04138054A publication Critical patent/JPH04138054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PURPOSE:To obtain a brake winding of a permanent magnet synchronous machine, whose current conduction is facilitated by strengthening magnetic coupling to an armature and further weakening self inductance, by separating the brake winding from a permanent magnet to approach the armature, and fixing the brake winding to a rotor, in an air gap between a stator and the rotor. CONSTITUTION:A brake winding 6 is separated from a permanent magnet 2, serving as a field pole, by a holding mechanism 13 by the thickness of its mounting part to approach an armature, and the brake winding 6 is mounted to a rotor iron core 1a mutually between the permanent magnets in which N and S poles are alternately arranged. Since the brake winding 6 is fixed to the rotor iron core approaching the armature, magnetic coupling of the brake winding 6 to the armature is strengthened, and further since the brake winding 6 is separated from the permanent magnet 2, which is a magnetic substance, and the rotor iron core 1a, leakage flux, interlinked in the brake winding 6 itself, is reduced to decrease self inductance of the brake winding 6. As a result, the brake winding 6 sensitively reacts relating to a current change of the armature.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、励磁用の永久磁−石を搭載した永久磁石同
期機の制動巻線に関する。
The present invention relates to a brake winding for a permanent magnet synchronous machine equipped with permanent magnets for excitation.

【従来の技術】[Conventional technology]

潜水艦駆動電動機の励磁用として、寸法が小さく、軽量
でかつ効率がよいなどの理由で永久磁石同期機が用いら
れる。回転界磁型同期機は、永久磁石を円筒型回転子表
面に貼りつける構造と、回転子内部に埋め込む構造とに
大別される゛。最近では、回転子の構造が簡単であり、
がっ永久磁石の利用率が高い点とから、前者の構造が主
流となっている。 第3図(A)は、従来の永久磁石同期機の一部を示す断
面図、第3図(B)は第3図(A)のB部拡大図である
。第3図(A)において、永久磁石同期機は、円筒型の
回転子Iの回転子鉄心1aの表面上に極数に応じて永久
磁石2が貼り付けられている。永久磁石2は、N極であ
れば外周側がN、内周側がSという具合に、径方向に極
性を持つように設置されている。永久磁石2は、N極と
S極とが交互に配置されている。この結果、永久磁石2
で発生した磁束は空隙3.電機子4を経て循環磁路5を
形成する。制動巻線6は、永久磁石2の間に配置され、
永久磁石2及び制動巻線6の外周をガラスファイバーか
らなる保護巻7で巻いて遠心力により飛び出さないよう
に保護している。 なお、制動巻線は、銅棒あるいは黄銅棒がらなり、回転
子の軸方向両端で短絡リング8により電気的に短絡され
ている。 第4図は、永久磁石同期機の電機子電流変動時の制動巻
線の作用を示す断面図、第5図は第4図の制動巻線への
鎖交磁束を示す斜視図である。第4図において、回転子
には永久磁石2の間に制動巻線6を取り付けてあり、固
定子である電機子には溝の中に電機子巻線9を収納して
いて、電機子4と回転子1との間の空隙3には空隙磁束
1oが存在する。 運転中に、線間短絡などの故障が発生すると、電機子巻
線9の中の電流に突然変化を生じて空隙磁束10が変化
すると、制動巻線6に鎖交する磁束11が変化する。こ
の結果、制動巻線6は逆相回転磁界に対して、インピー
ダンスの小さい短絡回路として作用し、制動巻線6には
鎖交磁束11の変化を制限する方向の電流12が流れ、
空隙磁束10の変化が抑制される。この効果は、電機子
端子の電圧変動の抑制すなわち過渡りアクタンスの低減
として観測される他、電力動揺の抑制、負荷がインバー
タである場合には高調波起電力による磁束の抑制、また
、電動機として始動のときには電動機トルクの発生に利
用される。
Permanent magnet synchronous machines are used to excite submarine drive motors because of their small size, light weight, and high efficiency. Rotating field type synchronous machines are broadly divided into structures in which permanent magnets are attached to the surface of a cylindrical rotor and structures in which permanent magnets are embedded inside the rotor. Recently, the structure of the rotor is simple,
The former structure is the mainstream because it has a high utilization rate of permanent magnets. FIG. 3(A) is a sectional view showing a part of a conventional permanent magnet synchronous machine, and FIG. 3(B) is an enlarged view of part B in FIG. 3(A). In FIG. 3(A), in the permanent magnet synchronous machine, permanent magnets 2 are attached on the surface of a rotor core 1a of a cylindrical rotor I according to the number of poles. The permanent magnet 2 is installed so as to have polarity in the radial direction, such as N on the outer circumferential side and S on the inner circumferential side if it is a N pole. The permanent magnet 2 has N poles and S poles arranged alternately. As a result, permanent magnet 2
The magnetic flux generated in the air gap 3. A circulating magnetic path 5 is formed via the armature 4. The brake winding 6 is arranged between the permanent magnets 2,
The outer circumferences of the permanent magnet 2 and the brake winding 6 are wrapped with a protective winding 7 made of glass fiber to protect them from flying out due to centrifugal force. The brake winding is made of a copper rod or a brass rod, and is electrically short-circuited by short-circuiting rings 8 at both ends of the rotor in the axial direction. FIG. 4 is a sectional view showing the action of the damper winding when the armature current of the permanent magnet synchronous machine changes, and FIG. 5 is a perspective view showing the flux linkage to the damper winding in FIG. 4. In FIG. 4, a brake winding 6 is attached to the rotor between permanent magnets 2, and an armature winding 9 is housed in a groove in the armature, which is a stator. An air gap magnetic flux 1o exists in the air gap 3 between the rotor 1 and the rotor 1. During operation, when a fault such as a line short circuit occurs, the current in the armature winding 9 suddenly changes and the air gap magnetic flux 10 changes, causing the magnetic flux 11 interlinking with the brake winding 6 to change. As a result, the damper winding 6 acts as a short circuit with low impedance for the reverse phase rotating magnetic field, and a current 12 flows in the damper winding 6 in a direction that limits changes in the flux linkage 11.
Changes in the air gap magnetic flux 10 are suppressed. This effect is observed as suppression of voltage fluctuations at the armature terminals, that is, a reduction in transient actance, as well as suppression of power fluctuations, suppression of magnetic flux due to harmonic electromotive force when the load is an inverter, and suppression of magnetic flux due to harmonic electromotive force when the load is an inverter. During starting, it is used to generate motor torque.

【発明が解決しようとする課題】[Problem to be solved by the invention]

永久磁石同期機は、電機子である固定子と回転子との間
の空隙に、異磁極である永久磁石2.保護巻7及び予備
的な空間が含まれ、一般に機器の体格に比較して空隙長
が大きく電機子4と制動巻線6との間の磁気的な結合が
弱くなる傾向があり、制動巻線が1を機子側の電気的な
変動に対して全く機能しないというケースがあった。ま
た、制動巻線の自己インダクタンスの大きさから制動巻
線自身が磁束変化に対して効率的に反応できないという
欠点があった。 この発明は、電機子との磁気的結合を強め、かつ自己イ
ンダクタンスを弱くして電流通電を容易にした永久磁石
同期機の制動巻線を提供することを目的とする。
A permanent magnet synchronous machine uses two permanent magnets with different magnetic poles in the air gap between the stator, which is an armature, and the rotor. The protective winding 7 and the preliminary space are included, and the gap length is generally large compared to the size of the equipment, and the magnetic coupling between the armature 4 and the damper winding 6 tends to be weak. There was a case where 1 did not function at all due to electrical fluctuations on the machine side. Another drawback is that the brake winding itself cannot efficiently respond to changes in magnetic flux due to the large self-inductance of the brake winding. SUMMARY OF THE INVENTION An object of the present invention is to provide a damper winding for a permanent magnet synchronous machine that strengthens magnetic coupling with the armature and weakens self-inductance to facilitate current flow.

【課題を解決するための手段】[Means to solve the problem]

上記目的は、電機子からなる固定子と、異磁極である永
久磁石と制動巻線と回転子鉄心からなる回転子とを備え
た永久磁石同期機において、前記固定子と前記回転子と
の間の空隙中で、前記制動巻線を前記永久磁石から離し
て前記電機子に接近させ、前記制動巻線を前記回転子に
固定することによって達成される。 上記目的は、さらに、永久磁石同期機の制動巻線におい
て、制動巻線を非磁性の保持機構により永久磁石から離
して電機子に接近させ、前記永久磁石相互間で回転子鉄
心に固定することによって達成される。 上記目的は、さらに、永久磁石同期機の制動巻線におい
て、制動巻線を永久磁石の外周を被う保護巻と制動巻線
の外周を被う保護巻とにより挟んで、永久磁石から離し
て電機子に接近させ、永久磁石相互間に固定することに
よって達成される。
The above object is to provide a permanent magnet synchronous machine including a stator consisting of an armature, a rotor consisting of permanent magnets having different magnetic poles, a brake winding, and a rotor core, in which This is achieved by fixing the damper winding to the rotor by moving the damper winding away from the permanent magnets and closer to the armature in the air gap. The above object further includes, in a brake winding of a permanent magnet synchronous machine, separating the brake winding from the permanent magnets using a non-magnetic holding mechanism, moving the brake windings closer to the armature, and fixing the brake windings to the rotor core between the permanent magnets. achieved by. The above object is further achieved by separating the brake winding from the permanent magnet by sandwiching the brake winding between a protective winding that covers the outer circumference of the permanent magnet and a protective winding that covers the outer circumference of the brake winding. This is achieved by placing them close to the armature and fixing them between permanent magnets.

【作 用】[For use]

この発明は、永久磁石同期機の固定子と回転子との間の
空隙中で制動巻線を異磁極側から電機子側へ接近させて
回転子に固定するので、電機子と制動巻線との間の空隙
は、制動巻線を電機子側へ接近させた分狭くなり、電機
子と制動巻線との間の磁気的な結合が強くなる。さらに
、制動巻線を回転子の磁極及び回転子鉄心から引き離す
ので、制動巻線自身に鎖交する洩れ磁束を低減させ、そ
の結果制動巻線の自己インダクタンスを低下させる。電
機子電流が変動したときは、電機子電流を抑制する制動
巻線電流が流れ、変動を抑制する。 この発明は、請求項2によれば、制動巻線を非磁性の保
持機構により永久磁石から離して電機子に接近させ、前
記永久磁石相互間で回転子鉄心に固定するので、電機子
と制動巻線との間の磁気的な結合が強くなる。さらに、
制動巻線を回転子の磁極及び回転子鉄心から引き離すの
で、制動巻線自身に鎖交する洩れ磁束を低減させ、その
結果制動巻線の自己インダクタンスを低下させる。電機
子電流が変動したときは、電機子電流を抑制する制動巻
線電流が流れ、変動を抑制する。 この発明は、請求項3によれば、制動巻線を永久磁石の
外周を被う保護巻と制動巻線の外周を被う保護巻とによ
り挟んで、永久磁石から離して電機子へ接近させ、永久
磁石相互間に固定するので、電機子と制動巻線との間の
磁気的な結合が強くなる。さらに、制動巻線を回転子の
磁極及び回転子鉄心から引き離すので、制動巻線自身に
鎖交する洩れ磁束を低減させ、その結果制動巻線の自己
インダクタンスを低下させる。電機子電流が変動したと
きは、電機子電流を抑制する制動巻線電流が流れ、変動
を抑制する。
In this invention, the brake winding is fixed to the rotor by approaching the armature from the different magnetic pole side in the gap between the stator and the rotor of a permanent magnet synchronous machine, so that the armature and the brake winding are fixed to the rotor. The gap between the armature and the brake winding becomes narrower as the brake winding approaches the armature, and the magnetic coupling between the armature and the brake winding becomes stronger. Furthermore, since the brake winding is separated from the magnetic poles of the rotor and the rotor core, leakage magnetic flux interlinking with the brake winding itself is reduced, and as a result, the self-inductance of the brake winding is reduced. When the armature current fluctuates, a braking winding current flows to suppress the armature current, thereby suppressing the fluctuation. According to claim 2 of the present invention, the brake winding is separated from the permanent magnet by a non-magnetic holding mechanism and brought close to the armature, and is fixed to the rotor core between the permanent magnets. The magnetic coupling with the winding becomes stronger. moreover,
Since the brake winding is separated from the magnetic poles of the rotor and the rotor core, the leakage magnetic flux interlinking with the brake winding itself is reduced, and as a result, the self-inductance of the brake winding is reduced. When the armature current fluctuates, a braking winding current flows to suppress the armature current, thereby suppressing the fluctuation. According to claim 3 of the present invention, the brake winding is sandwiched between a protective winding that covers the outer periphery of the permanent magnet and a protective winding that covers the outer periphery of the brake winding, and is moved away from the permanent magnet and closer to the armature. Since the permanent magnets are fixed between each other, the magnetic coupling between the armature and the damper winding is strong. Furthermore, since the brake winding is separated from the magnetic poles of the rotor and the rotor core, leakage magnetic flux interlinking with the brake winding itself is reduced, and as a result, the self-inductance of the brake winding is reduced. When the armature current fluctuates, a braking winding current flows to suppress the armature current, thereby suppressing the fluctuation.

【実施例】【Example】

以下図に基づいてこの発明の詳細な説明する。 第1図はこの発明の実施例による制動巻線を備えた永久
磁石同期機の回転子の一部を示す斜視図である。第1図
において、回転子鉄心1aの外周には、N極とS極とが
交互に配置された永久磁石2の相互間に、制動巻線6を
保持機構13により、異磁極である永久磁石2から保持
機構13の取付部分の厚さだけ離して電機子に接近させ
、回転子鉄心1aに取り付けており、図示されない電機
子には溝の中に電機子巻線を収納している。制動巻線6
は、保持機構13の取付部分の厚さだけ電機子に接近す
る。保持機構13は、SO3などの非磁性の綱を用いる
。 制動巻線6は電機子に接近させて回転子鉄心に固定する
ので、制動巻線6と電機子4との磁気的結合を強め、か
つ制動巻線6を磁性体である永久磁石2及び回転子鉄心
1aから離すので、制動巻線6自身に鎖交する洩れ磁束
を低減させ、制動巻線の自己インダクタンスを低下させ
る。その結果、制動巻線6は電機子の電流変化に対して
鋭敏に反応する。 第2図はこの発明の他の実施例による制動巻線を備えた
永久磁石同期機の一部を示す断面図である。第2図にお
いて、回転子鉄心1aの外周に永久磁石2をN極、S極
交互に配置され、永久磁石2の相互間で、永久磁石2の
外周を被う保護巻7と制動巻線6の外周を被う保護巻7
により挟んで異磁極である永久磁石2から離して電機子
側へ接近させ、制動巻線6を回転子に固定した。保護巻
7はガラスファイバーから構成する。 制動巻線6は電機子に接近させて回転子鉄心に固定する
ので、制動巻線6と電機子4との磁気的結合を強め、か
つ制動巻線6を磁性体である永久磁石2及び回転子鉄心
1aから離すので、制動巻線6自身に鎖交する洩れ磁束
を低減させ、制動巻線の自己インダクタンスを低下させ
る。その結果、制動巻線6は電機子の電流変化に対して
鋭敏に反応する。
The present invention will be described in detail below based on the drawings. FIG. 1 is a perspective view showing a part of a rotor of a permanent magnet synchronous machine equipped with a brake winding according to an embodiment of the present invention. In FIG. 1, on the outer periphery of the rotor core 1a, a brake winding 6 is held by a holding mechanism 13 between permanent magnets 2 having N poles and S poles arranged alternately. The armature is attached to the rotor core 1a at a distance of the thickness of the mounting portion of the holding mechanism 13 from the armature 2, and the armature winding is housed in a groove in the armature (not shown). Brake winding 6
approaches the armature by the thickness of the mounting portion of the holding mechanism 13. The holding mechanism 13 uses a non-magnetic wire such as SO3. Since the brake winding 6 is fixed to the rotor core close to the armature, the magnetic coupling between the brake winding 6 and the armature 4 is strengthened, and the brake winding 6 is connected to the permanent magnet 2, which is a magnetic material, and the rotor core. Since it is separated from the child core 1a, the leakage magnetic flux interlinking with the brake winding 6 itself is reduced, and the self-inductance of the brake winding is reduced. As a result, the brake winding 6 responds sharply to changes in the armature current. FIG. 2 is a sectional view showing a part of a permanent magnet synchronous machine equipped with a damper winding according to another embodiment of the present invention. In FIG. 2, permanent magnets 2 are arranged around the outer periphery of the rotor core 1a in alternating north and south poles, and between the permanent magnets 2, a protective winding 7 and a brake winding 6 covering the outer periphery of the permanent magnets 2 are arranged. Protective winding 7 that covers the outer circumference of
The brake winding 6 was fixed to the rotor by sandwiching the brake winding 6 away from the permanent magnet 2 having different magnetic poles and approaching the armature. The protective winding 7 is made of glass fiber. Since the brake winding 6 is fixed to the rotor core close to the armature, the magnetic coupling between the brake winding 6 and the armature 4 is strengthened, and the brake winding 6 is connected to the permanent magnet 2, which is a magnetic material, and the rotor core. Since it is separated from the child core 1a, the leakage magnetic flux interlinking with the brake winding 6 itself is reduced, and the self-inductance of the brake winding is reduced. As a result, the brake winding 6 responds sharply to changes in the armature current.

【発明の効果】【Effect of the invention】

この発明は、永久磁石同期機の固定子と回転子との間の
空隙中で制動巻線を永久磁石から離して電機子に接近さ
せ、回転子に固定したので、電機子と制動巻線との間の
磁気的結合が強まり、かつ制動巻線自身に鎖交する洩れ
磁束を低減させるので、制動巻線への電流通電を容易に
し、同期発電機に適用される場合には、負荷変化に伴う
電圧変動を抑制し、隣接する他の発電機との電力動揺を
抑制することができる。また、同期電動機として適用さ
れる場合には、非同期始動トルクを増加させるとともに
、負荷トルクの脈動による回転子動揺を抑制することが
できる。 この発明は、制動巻線を非磁性の保持機構により永久磁
石相互間で回転子鉄心に固定させ、制動巻線を永久磁石
から電機子に接近させるので、電機子と制動巻線との間
の磁気的結合が強くなり、かつ制動巻線自身に鎖交する
洩れ磁束を低減させる。その結果、同期発電機に適用さ
れる場合には、負荷変化に伴う電圧変動を抑制し、隣接
する他の発電機との電力動揺を抑制することができる。 また、同期電動機として適用される場合には、非同期始
動トルクを増加させるとともに、負荷トルクの脈動によ
る回転子動揺を抑制することができる。 この発明は、制動巻線を永久磁石の外周を被う保護巻と
制動巻線の外周を被う保護巻とにより挟んで永久磁石相
互間に固定させ、制動巻線を永久磁石から離して電機子
に接近させるので、電機子と制動巻線との間の磁気的結
合が強くなり、かつ制動巻線自身に鎖交する洩れ磁束を
低減させる。 その結果、同期発電機に適用される場合には、負荷変化
に伴う電圧変動を抑制し、隣接する他の発電機との電力
動揺を抑制することができる。また、同期電動機として
適用される場合には、非同期始動トルクを増加させると
ともに、負荷トルクの脈動による回転子動揺を抑制する
ことができる。
In this invention, the brake winding is moved away from the permanent magnet in the gap between the stator and rotor of a permanent magnet synchronous machine, brought closer to the armature, and fixed to the rotor, so that the armature and the brake winding are separated. This strengthens the magnetic coupling between the brake windings and reduces leakage magnetic flux interlinking with the brake windings themselves, making it easier to conduct current to the brake windings, and when applied to a synchronous generator, it reduces load changes. It is possible to suppress accompanying voltage fluctuations and suppress power fluctuations with other adjacent generators. Furthermore, when applied as a synchronous motor, it is possible to increase asynchronous starting torque and suppress rotor oscillation due to pulsation of load torque. In this invention, the brake winding is fixed to the rotor core between the permanent magnets using a non-magnetic holding mechanism, and the brake winding is brought closer to the armature from the permanent magnets, so that the brake winding between the armature and the brake winding is Magnetic coupling is strengthened, and leakage magnetic flux interlinking with the damper winding itself is reduced. As a result, when applied to a synchronous generator, voltage fluctuations due to load changes can be suppressed, and power fluctuations with other adjacent generators can be suppressed. Furthermore, when applied as a synchronous motor, it is possible to increase asynchronous starting torque and suppress rotor oscillation due to pulsation of load torque. In this invention, the brake winding is fixed between the permanent magnets by being sandwiched between a protective winding that covers the outer circumference of the permanent magnet and a protective winding that covers the outer circumference of the brake winding, and the brake winding is separated from the permanent magnet. Since the armature is placed close to the brake winding, the magnetic coupling between the armature and the brake winding is strengthened, and leakage magnetic flux interlinking with the brake winding itself is reduced. As a result, when applied to a synchronous generator, voltage fluctuations due to load changes can be suppressed, and power fluctuations with other adjacent generators can be suppressed. Furthermore, when applied as a synchronous motor, it is possible to increase asynchronous starting torque and suppress rotor oscillation due to pulsation of load torque.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例による制動巻線を備えた永久
磁石同期機の一部を示す斜視図、第2図はこの発明の他
の実施例による制動巻線を備えた永久磁石同期機の回転
子の一部を示す断面図、第3図(A)は従来の永久磁石
同期機の一部を示す断面図、第3図(B)は第3図(A
)のB部拡大図、第4図は永久磁石同期機の電機子電流
変動時の制動巻線の作用を示す断面図、第5図は第4図
の制動巻線への鎖交磁束を示す斜視図である。 l:回転子1a:回転子鉄心、2:異磁極である永久磁
石、3:空隙、4:固定子である電機子、6:制動巻線
、7:保護巻、9:電機子巻線、13:保持機構。 保i+t!を檎 第 図 第 図 第 図 ム 第 図
FIG. 1 is a perspective view showing a part of a permanent magnet synchronous machine equipped with a brake winding according to an embodiment of the present invention, and FIG. 2 is a perspective view showing a part of a permanent magnet synchronous machine equipped with a brake winding according to another embodiment of the present invention. 3(A) is a sectional view showing a part of a conventional permanent magnet synchronous machine, and FIG. 3(B) is a sectional view showing a part of a conventional permanent magnet synchronous machine.
), Figure 4 is a sectional view showing the action of the damper winding when the armature current of the permanent magnet synchronous machine fluctuates, and Figure 5 shows the flux linkage to the brake winding in Figure 4. FIG. l: Rotor 1a: Rotor iron core, 2: Permanent magnet with different magnetic poles, 3: Air gap, 4: Armature as stator, 6: Brake winding, 7: Protective winding, 9: Armature winding, 13: Retention mechanism. Hoi+t! The map of the map

Claims (1)

【特許請求の範囲】 1)電機子からなる固定子と、異磁極である永久磁石と
制動巻線と回転子鉄心からなる回転子とを備えた永久磁
石同期機において、前記固定子と前記回転子との間の空
隙中で、前記制動巻線を前記永久磁石から離して前記電
機子に接近させ、前記制動巻線を前記回転子に固定する
ことを特徴とする永久磁石同期機の制動巻線。 2)請求項1記載の永久磁石同期機の制動巻線において
、制動巻線を非磁性の保持機構により永久磁石から離し
て電機子に接近させ、前記永久磁石相互間で回転子鉄心
に固定することを特徴とする永久磁石同期機の制動巻線
。 3)請求項1記載の永久磁石同期機の制動巻線において
、制動巻線を永久磁石の外周を被う保護巻と制動巻線の
外周を被う保護巻とにより挟んで、永久磁石から離して
電機子に接近させ、永久磁石相互間に固定することを特
徴とする永久磁石同期機の制動巻線。
[Scope of Claims] 1) A permanent magnet synchronous machine including a stator consisting of an armature, a rotor consisting of permanent magnets having different magnetic poles, a brake winding, and a rotor iron core, in which the stator and the rotating A brake winding of a permanent magnet synchronous machine, characterized in that the brake winding is fixed to the rotor by moving the brake winding away from the permanent magnet and approaching the armature in a gap between the brake and the rotor. line. 2) In the brake winding of the permanent magnet synchronous machine according to claim 1, the brake winding is separated from the permanent magnets and brought close to the armature by a non-magnetic holding mechanism, and fixed to the rotor core between the permanent magnets. A brake winding for a permanent magnet synchronous machine characterized by: 3) In the brake winding of the permanent magnet synchronous machine according to claim 1, the brake winding is sandwiched between a protective winding that covers the outer circumference of the permanent magnet and a protective winding that covers the outer circumference of the brake winding, and is separated from the permanent magnet. A brake winding for a permanent magnet synchronous machine, characterized in that the brake winding is brought close to the armature and fixed between the permanent magnets.
JP25842890A 1990-09-27 1990-09-27 Brake winding of permanent magnet synchronous machine Pending JPH04138054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25842890A JPH04138054A (en) 1990-09-27 1990-09-27 Brake winding of permanent magnet synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25842890A JPH04138054A (en) 1990-09-27 1990-09-27 Brake winding of permanent magnet synchronous machine

Publications (1)

Publication Number Publication Date
JPH04138054A true JPH04138054A (en) 1992-05-12

Family

ID=17320078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25842890A Pending JPH04138054A (en) 1990-09-27 1990-09-27 Brake winding of permanent magnet synchronous machine

Country Status (1)

Country Link
JP (1) JPH04138054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171675A (en) * 2008-01-11 2009-07-30 Mitsubishi Electric Corp Permanent magnet type dynamo-electric machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171675A (en) * 2008-01-11 2009-07-30 Mitsubishi Electric Corp Permanent magnet type dynamo-electric machine

Similar Documents

Publication Publication Date Title
US3237036A (en) Commutating dynamo-electric machine
JPH07288960A (en) Magnetic flux control type permanent magnet motor-generator
JPS63140647A (en) Total flux reversible and variable reluctance brushless apparatus
FR2543754B1 (en) ELECTROMAGNETIC ROTARY MACHINE WITH BRUSHLESS DIRECT CURRENT
US5059884A (en) Variable reluctance motor providing holding torque
JP2000041367A (en) Hybrid excitation type synchronous machine
KR910017709A (en) 2 stator induction synchronous motor
CN109412282A (en) A kind of multiphase fault-tolerant magneto
JPH04138054A (en) Brake winding of permanent magnet synchronous machine
RU2246167C1 (en) Face-type electrical machine
JP2002191157A (en) Synchronous rotating electric machine with combined use of permanent magnet
US3293467A (en) Single-phase electric motors
US4476406A (en) Generator
JP2002291216A (en) Single pole rotation electric machine
JPH1189123A (en) Motor provided with auxiliary magnetic circuit
JPH02159950A (en) Generator
JPH02311156A (en) Brake winding for permanent magnet synchronous machine
JPH10210722A (en) Ac generator for vehicle
RU2246168C1 (en) Face-type electrical machine
RU2119709C1 (en) Electric motor with closed magnetizing circuit including butt-end members of its frame
US2477423A (en) Synchronous cascade dynamoelectric unit
SU702464A1 (en) Brushless electric machine
SU1163419A1 (en) Stator of single-phase electric machine
SU1483558A1 (en) Synchronous tacho generator
CN115276281A (en) Axial excitation outer rotor doubly salient motor