JP2002291216A - Single pole rotation electric machine - Google Patents

Single pole rotation electric machine

Info

Publication number
JP2002291216A
JP2002291216A JP2001133404A JP2001133404A JP2002291216A JP 2002291216 A JP2002291216 A JP 2002291216A JP 2001133404 A JP2001133404 A JP 2001133404A JP 2001133404 A JP2001133404 A JP 2001133404A JP 2002291216 A JP2002291216 A JP 2002291216A
Authority
JP
Japan
Prior art keywords
armature
field
core
electric machine
rotating electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001133404A
Other languages
Japanese (ja)
Inventor
Tadashi Maeda
正 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001133404A priority Critical patent/JP2002291216A/en
Publication of JP2002291216A publication Critical patent/JP2002291216A/en
Pending legal-status Critical Current

Links

Landscapes

  • Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To change the low voltage and large current characteristics of a single pole rotation machine to the characteristics of voltage, current, the number of revolution, and efficiency, equivalent to that of a DC rotation electric machine of standard specification, in order to make the single pole rotation machine usable in actual use and to eliminate the brushless. SOLUTION: One coil strip of an armature coil is housed in a surface slot of an armature core so as to interlink sufficiently with field system magnetic flux, and the other coil strip is housed in a deep slot of the armature core so as not to interlink with the field system magnetic flux as much as possible, wherein each housed coil forms one armature. The above two armatures are coupled magnetically and a field system is generated so that the field system magnetic flux penetrates the armatures, then magnetic flux is generated, which is interlinked effectively with the coil strip in the surface slot of the armature core, to form a field system for the single pole rotation electric machine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単極回転電気機械
の電機子電圧を高めると共にブラッシレス化に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for increasing the armature voltage of a single-pole rotating electric machine and improving the brushlessness.

【0002】[0002]

【従来の技術】単極回転電気機械は、本質的に低電圧、
大電流とされているが実際に作られた物の中には例外的
に、300kw、500v、3000rpmという比較
的電圧の高いものもあると文献にある。また現在出願公
開されているもので高い電圧を発生するものもあるが、
一般の発電機や電動機として実用に耐えることは難しい
とおもわれる。
BACKGROUND OF THE INVENTION Monopolar rotating electrical machines are inherently low voltage,
It is reported in the literature that some of the products actually made with a large current have relatively high voltages of 300 kW, 500 V, and 3000 rpm. Also, some of the currently published applications generate a high voltage,
It is considered difficult to withstand practical use as a general generator or electric motor.

【0003】[0003]

【発明が解決しようとする課題】本発明は、単極回転電
気機械の特性である低電圧、大電流を一般的な直流回転
電気機械の仕様と同等の電圧、電流、回転数及び効率と
して実用に耐えうるようにすると共に、ブラッシレスと
する。
SUMMARY OF THE INVENTION According to the present invention, a low voltage and a large current, which are characteristics of a single-pole rotating electric machine, are put into practical use as voltages, currents, rotation speeds and efficiencies equivalent to those of a general DC rotating electric machine. And be brushless.

【0004】[0004]

【課題を解決するための手段】直流発電機に於て、ギャ
ップの不同等が原因で起電力の不同が生じて不具合であ
るので、従来から均圧環が利用されている。
Means for Solving the Problems In a DC generator, since an imbalance in the electromotive force occurs due to an unequal gap, which is a problem, a pressure equalizing ring has been conventionally used.

【0005】本発明は、この不具合いである起電力の不
同になる原因を単極回転電気機械内に作ることにより、
電機子コイル内に発生した起電力を出力として取り出
し、又は、外部から電力を加えることにより動力を取り
出す。
According to the present invention, the cause of the inconsistency of the electromotive force, which is a problem, is created in a unipolar rotating electric machine.
The electromotive force generated in the armature coil is taken out as an output, or power is taken out by applying power from the outside.

【0006】このために、電機子コイルの片方のコイル
辺を界磁磁束と充分鎖交するように電機子鉄心の表面の
スロットに納め、他方のコイル辺を電機子鉄心の深いス
ロット又は外側のスロットに納め界磁磁束と極力鎖交し
ないようにし、なお一層その効果を上げるため界磁磁束
に対し磁気シールドして電機子とする。
For this purpose, one of the coil sides of the armature coil is inserted into a slot on the surface of the armature core so as to sufficiently interlink with the field magnetic flux, and the other coil side is inserted into a deep slot or outside of the armature core. The armature is magnetically shielded with respect to the field magnetic flux in a slot so that the magnetic flux does not interlink with the field magnetic flux as much as possible.

【0007】この電機子を単極回転電気機械の主用部分
として1個使用する場合と2個を磁気的に結合するため
の電機子連結鉄を使用して使用する場合がある。
One of the armatures is used as a main part of a single-pole rotating electric machine, and the other is used by using an armature coupling iron for magnetically coupling the two.

【0008】まず2個の電機子を結合した電機子に界磁
磁束を通すための界磁として、電機子表面のスロット内
のコイル辺に均等に磁束を通すとともに界磁鉄心の鉄損
を軽減するため、けい素鋼板を環状に打ち抜いて積み重
ねた磁極環を電機子鉄心1個の幅の界磁鉄心の先端部に
取り付けた界磁鉄心が隣同志先端部が同極性となるよう
に界磁巻線を励磁し、界磁鉄心の付け根部は界磁を他方
の界磁に磁気的に結合するための界磁連結鉄に取り付
け、その反対側に、2個の電機子の隔離の長さ離れた位
置に前述と同形の界磁を取り付け、極性が反対になるよ
うに励磁し、電機子鉄心表面のスロット内のコイル辺に
有効に鎖交する磁束作る界磁を単極回転電気機械の界磁
とする。
First, as a field for passing a field magnetic flux through an armature formed by combining two armatures, a magnetic flux is evenly transmitted to a coil side in a slot on the armature surface and iron loss of the field core is reduced. In order to achieve this, a magnetic pole ring, which is formed by punching silicon steel sheets in an annular shape and stacked, is attached to the tip of a field core having a width of one armature iron so that the field irons have the same polarity at the tips of adjacent neighbors. Energize the windings and attach the field iron core to the field coupling iron to magnetically couple the field to the other field, and on the opposite side the separation length of the two armatures Attach a field of the same shape as above to the remote position, excite it so that the polarity is opposite, and create a field that creates a magnetic flux that effectively links to the coil side in the slot on the surface of the armature core of the monopolar rotating electric machine. Field.

【0009】次も2個の電機子を結合した電機子のため
の界磁であって、主軸と同心状の円筒状の界磁鉄心の中
央部の直径を2個の電機子の隔離の幅の部分を小さくし
て、界磁巻線を納め、界磁鉄心表面には鉄損を軽減する
ための磁極環を取り付け、単極回転電気機械の界磁とす
る、なお前記の界磁と合併した構造もできる。
The following is also a field for an armature in which two armatures are connected, wherein the diameter of the central portion of a cylindrical field core concentric with the main shaft is determined by the width of the separation between the two armatures. Part is reduced, the field winding is housed, and a magnetic pole ring is mounted on the surface of the field iron core to reduce iron loss, and used as the field of a single-pole rotating electric machine. It can also have a structured structure.

【0010】また前記電機子の界磁として主軸中央部外
周に円筒形の永久磁を2個の電機子の隔離の長さで、電
機子の内径より小さくして取り付け、その両端に電機子
1個の長さで、前記の永久磁石と同じ内外形の軟磁性体
を取り付け、その外側に磁極環を取り付けた円筒形永久
磁石を電機子と適正なギャップができるように取り付
け、単極回転電気機械の界磁とする。
As the field of the armature, a cylindrical permanent magnet is attached to the outer periphery of the central portion of the main shaft so as to have a separation length of the two armatures smaller than the inner diameter of the armature. Attach a soft magnetic body with the same inner and outer shape as the permanent magnet, and attach a cylindrical permanent magnet with a magnetic pole ring on the outside so that an appropriate gap can be formed with the armature. The field of the machine.

【0011】次は電機子1個を使用する場合の界磁とし
て電機子は磁極環又は界磁鉄心とのギャップを保持し、
かつ界磁巻線は奥に納まることができるような、主軸と
同心状の円筒形状の空間を持つ界磁鉄心に界磁巻線を納
めた界磁であって、磁極環を電機子のスロットが有る側
に取り付け、単極回転電気機械の界磁とする。
Next, as a field when one armature is used, the armature retains a gap with a magnetic pole ring or a field iron core,
In addition, the field winding is a field winding that is housed in a field iron core that has a cylindrical space that is concentric with the main shaft so that it can be housed in the back. On the side where there is, as the field of a single-pole rotating electric machine.

【0012】なお、この界磁に於ても界磁巻線を除外し
て界磁鉄心を永久磁石とした界磁とすることもできる。
[0012] In this field, the field winding may be omitted, and the field iron core may be a permanent magnet.

【0013】上記の各種の界磁巻線の励磁を、ブラシな
し励磁にするには単極回転電気機械を発電機として使用
する場合は同期発電機等で用いられているブラシなし励
磁機も利用できるが、回転電機子形交流発電機等が必要
である、まして電動機として使用する場合はブラシなし
励磁にすることはできないのが現状である。
In order to excite the above-mentioned various field windings to brushless excitation, when a single-pole rotating electric machine is used as a generator, a brushless exciter used in a synchronous generator or the like is also used. Although it is possible, a rotating armature type AC generator or the like is required, and when used as an electric motor, brushless excitation cannot be achieved at present.

【0014】然るに、本発明では、外鉄形状の変圧器の
鉄心を主軸回転方向の円筒状ギャップで固定部と回転部
に分離し、主軸回転方向の円筒部は、けい素鋼帯の幅を
段階的に変えて主軸中心線を含む面の断面が台形状にな
るように巻き、底部とし、その底部斜面に符合するよう
に、けい素鋼板を段階的に、かつ環状に打ち抜いて積み
重ね側部とし、固定部に一次巻線、回転部に二次巻線を
納めて回転結合変圧器とし、一次巻線に可変出力インバ
ータの出力を加え、二次巻線から出力を得て、半導体流
器を使用して整流し界磁巻線に供給する。
However, in the present invention, the core of the outer iron-shaped transformer is separated into a fixed portion and a rotating portion by a cylindrical gap in the main shaft rotation direction, and the cylindrical portion in the main shaft rotation direction has a width of the silicon steel strip. It is wound step by step so that the cross section of the plane including the center axis of the spindle becomes trapezoidal, the bottom is made, and silicon steel plates are punched out stepwise and annularly so as to match the bottom slope, and the stacking side parts The primary winding is placed in the fixed part and the secondary winding is placed in the rotating part to form a rotationally coupled transformer.The output of the variable output inverter is added to the primary winding, and the output is obtained from the secondary winding. And supply it to the field winding.

【0015】この回転結合変圧器の鉄心はフェライト系
軟磁性体も使用できるが、回転部はギャップに面する部
分を磁極環状の物で補強し、二次巻線の内周に接する面
はけい素鋼帯を巻いて補強すれば遠心力に対して耐える
ことが出来る。
A ferrite soft magnetic material can be used for the iron core of the rotary coupling transformer, but the rotating part has a portion facing the gap reinforced with a ring-shaped magnetic pole, and a surface in contact with the inner periphery of the secondary winding is silicon. If reinforced by winding a steel strip, it can withstand centrifugal force.

【0016】[0016]

【発明の実施の形態】図面によって本発明の実施の形態
を説明すと、図1、図2は第1の実施の形態で、固定子
外枠1の内側に電機子鉄心2が固定され電機子鉄心2の
表面のスロット48にはコイル辺5を納め、電機子鉄心
2の深いスロット49にはコイル辺6が納められ、各コ
イル辺はコイル端7で接続し1個の電機子コイル44を
成していてるが、1回巻コイル辺を使用する場合は片側
のコイル端は隣の電機子コイル44との接続役をする。
またn回巻では巻始めと巻終りがその役をする。この電
機子コイル44を電機子鉄心2の全周に納めた電機子4
3と電機子43aを電機子連結鉄3で磁気的に結合して
電機子45を構成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 and FIG. 2 show a first embodiment. The coil side 5 is accommodated in the slot 48 on the surface of the armature core 2, the coil side 6 is accommodated in the deep slot 49 of the armature core 2, and each coil side is connected at the coil end 7 to form one armature coil 44. However, when a single-turn coil side is used, one coil end serves as a connection with the adjacent armature coil 44.
In the case of n-turn winding, the beginning and end of the winding play the role. An armature 4 in which the armature coil 44 is placed all around the armature core 2
The armature 45 is formed by magnetically coupling the armature 3 and the armature 43 a with the armature connecting iron 3.

【0017】この結合に於て電機子鉄心ギャップ4は電
機子連結鉄3のけい素鋼板に垂直方向からの界磁磁束を
通り難くして電機子連結鉄3の鉄損を軽減している。
In this connection, the armature core gap 4 makes it difficult for the armature connecting iron 3 to pass the magnetic field flux from the vertical direction to the silicon steel plate of the armature connecting iron 3, thereby reducing the iron loss of the armature connecting iron 3.

【0018】電機子コイル44は電圧、電流等必要に応
じて全部直列に接続する場合と均等に分割して並列に接
続する場合がある。又は、これ等の接続はサイリスタ等
で随時切り換えて運転できる。
The armature coils 44 may be connected in series as necessary, such as voltage and current, or may be divided equally and connected in parallel. Alternatively, these connections can be switched and operated at any time by a thyristor or the like.

【0019】界磁46は、磁極環8、界磁鉄心9、界磁
巻線10、界磁連結鉄11、からなり、電機子43に対
する磁極をN極とすれば電機子43aに対する磁極はS
極なるように励磁する。
The field 46 comprises a magnetic pole ring 8, a field iron core 9, a field winding 10, and a field coupling iron 11. If the magnetic pole for the armature 43 is an N pole, the magnetic pole for the armature 43a is S.
Excitation to be pole.

【0020】いま界磁巻線9に励磁電流を流せばN極か
ら出た磁束はギャツプ47、電機子43の電機子鉄心2
の表面のスロット48内のコイル辺5、電機子鉄心2、
電機子連結鉄3、電機子43aの電機子鉄心2、その表
面スロット48内のコイル辺5、ギャップ47、S極、
界磁連結鉄11、N極へと通り、コイル辺6には殆ど鎖
交しないので、電機子コイル44に外部から電力を加え
ると電動機となり回転し主軸12から回転出力が現われ
るし、また主軸12を外部動力で回転すれば電機子コイ
ル44に誘導起電力を発生し発電機となる。
If an exciting current is applied to the field winding 9, the magnetic flux coming out of the N pole will cause the gap 47 and the armature core 2 of the armature 43.
Coil side 5 in the slot 48 on the surface of the armature core 2,
Armature connecting iron 3, armature core 2 of armature 43a, coil side 5 in its surface slot 48, gap 47, S pole,
Since the magnetic flux passes through the field connecting iron 11 and the N pole and hardly interlinks with the coil side 6, when electric power is externally applied to the armature coil 44, the armature coil 44 rotates as an electric motor, and a rotation output appears from the main shaft 12. Is rotated by external power, an induced electromotive force is generated in the armature coil 44, and the generator becomes a generator.

【0021】図3は第2の実施の形態の界磁を示す、電
機子は第1の実施の形態と同じでよく磁極環8aは界磁
鉄心13の外周面に取り付け、界磁連結鉄11aの外周
面に界磁巻線14を納め回転結合変圧器51を用いて励
磁する。
FIG. 3 shows the field of the second embodiment. The armature is the same as that of the first embodiment, and the magnetic pole ring 8a is attached to the outer peripheral surface of the field iron core 13. The field winding 14 is placed on the outer peripheral surface of the motor, and is excited by using the rotary coupling transformer 51.

【0022】回転結合変圧器51は、一次巻線19、二
次巻線19a、固定部鉄心の底部20、固定部鉄心の側
部21、回転部鉄心の底部20a、回転部鉄心の側部2
1aを主用部分とし、固定部鉄心の底部20はブラケッ
ト等の固定部22に取り付け回転部鉄心の底部20aは
通気孔23を付けた台座24を介して主軸12aに取り
付けてある。
The rotary coupling transformer 51 includes a primary winding 19, a secondary winding 19a, a bottom portion 20 of the fixed core, a side portion 21 of the fixed core, a bottom portion 20a of the rotating core, and a side portion 2 of the rotating core.
1a is a main portion, and the bottom 20 of the fixed portion core is attached to a fixed portion 22 such as a bracket, and the bottom portion 20a of the rotating portion core is attached to the main shaft 12a via a pedestal 24 provided with a ventilation hole 23.

【0023】この一次巻線19に出力可変インバータを
接続し電力を供給すれば、主軸12aが回転していても
停止していても、二次巻線には誘起起電力が発生するの
で、その出力を半導体整流器17を用いたブリッジ整流
器52で整流し界磁巻線14を励磁する。なお、これら
の励磁方法は他の実施の形態にも使用する。
If an output variable inverter is connected to the primary winding 19 and power is supplied, an induced electromotive force is generated in the secondary winding regardless of whether the main shaft 12a is rotating or stopped. The output is rectified by a bridge rectifier 52 using the semiconductor rectifier 17 to excite the field winding 14. Note that these excitation methods are used in other embodiments.

【0024】図4は図3の結線図であり、直流電源50
から界磁巻線14までの接続の状況を示している。
FIG. 4 is a connection diagram of FIG.
3 shows a connection state from the connection to the field winding 14.

【0025】図5は第1、第2の実施の形態の電機子コ
イルの1回巻の巻線図である。
FIG. 5 is a single-turn winding diagram of the armature coils according to the first and second embodiments.

【0026】図6は第1、第2の実施の形態の電機子コ
イルの2回巻の巻線図である。
FIG. 6 is a two-turn winding diagram of the armature coil according to the first and second embodiments.

【0027】図7は第1、第2の実施の形態の電機子コ
イルの1回巻の展開図である。
FIG. 7 is a developed view of a single turn of the armature coil according to the first and second embodiments.

【0028】図8は第1、第2の実施の形態の電機子コ
イルの2回巻の展開図である。
FIG. 8 is a developed view of the armature coil according to the first and second embodiments in two turns.

【0029】図9は第1、第2の実施の形態のn回巻電
機子コイルである。
FIG. 9 shows an n-turn armature coil according to the first and second embodiments.

【0030】図10は第1、第2の実施の形態に使用す
る電機子の部分図であり、シールド蓋28、シールド側
面29、シールドギャップ30をもってコイル辺6aを
界磁磁束からシールドしている。
FIG. 10 is a partial view of the armature used in the first and second embodiments. The coil side 6a is shielded from the field magnetic flux by a shield lid 28, a shield side surface 29, and a shield gap 30. .

【0031】図11は図10におけるシールドギャツプ
30をシールドギャップ30aのように、側面と底辺に
設けてシールド効果を上げている。
FIG. 11 shows that the shield gap 30 in FIG. 10 is provided on the side surface and the bottom side like the shield gap 30a to enhance the shielding effect.

【0032】図12は側面と底辺が一体になったシール
ド側面底面29bを非磁性体を電機子鉄心2cと同じよ
うに積み重ねたものか、絶縁体で作った支持物31、3
1aで支持し、シールドギャップ30bを作っている。
FIG. 12 shows a case where the non-magnetic material is stacked on the shield side surface bottom surface 29b in which the side surface and the bottom surface are integrated in the same manner as the armature core 2c, or the support members 31, 3 made of an insulator are used.
1a to form a shield gap 30b.

【0033】図13は第1、第2の実施の形態の界磁対
応の電機子の部分図である。電機子鉄心2dは間隙32
で分割されているので、巻線を容易にし、組み立てる前
にコイル辺5b、6dは電機子鉄心2dに納めることが
でき、また電機子鉄心2内と電機子連結鉄3bを周回す
る不要な磁束を軽減する。
FIG. 13 is a partial view of an armature corresponding to a magnetic field according to the first and second embodiments. The armature core 2d has a gap 32
The coil sides 5b and 6d can be accommodated in the armature core 2d before assembling, and unnecessary magnetic flux circulating in the armature core 2 and the armature coupling iron 3b is divided. To reduce

【0034】図14は図13と同類であるが、電機子連
結鉄3cのけい素鋼板が周回方向に対し概ね直角である
ことと、ギャッブ4bがないことである。
FIG. 14 is similar to FIG. 13, except that the silicon steel plate of the armature connecting iron 3c is substantially perpendicular to the circumferential direction and that there is no gab 4b.

【0035】図15、図16は第3の実施の形態を示
す、界磁54は円筒形状の空間55の奥に界磁巻線14
aを納め主軸12bに取り付けてあり、円筒状の電機子
53はブラケット34aに取り付けた状態でギャップ4
7aを保持して、円筒形状の空間55に挿入してある。
FIGS. 15 and 16 show a third embodiment. The field 54 is located at the back of a cylindrical space 55.
a is attached to the main shaft 12b, and the cylindrical armature 53 is attached to the bracket 34a.
7a is held and inserted into the cylindrical space 55.

【0036】図17は第3の実施の形態のn回巻電機子
巻線を示した。コイル辺5dとコイル端7cとの接続部
35、36は電機子鉄心の表面上にある。
FIG. 17 shows an n-turn armature winding according to the third embodiment. The connection portions 35 and 36 between the coil side 5d and the coil end 7c are on the surface of the armature core.

【0037】図18は第4の実施の形態を示す、界磁5
4aを外枠1bに取り付け、電機子53aを電機子取り
付け台座42に取り付け、主軸12cに取り付けてあ
り、電機子53aへの電力の入出力は集電環41とブラ
ッシ40を使用する。
FIG. 18 shows the fourth embodiment.
4a is mounted on the outer frame 1b, the armature 53a is mounted on the armature mounting pedestal 42, and mounted on the main shaft 12c. Input and output of power to the armature 53a uses the current collector ring 41 and the brush 40.

【0038】図19は第3、第4の実施の形態の電機子
の部分図であり、電機子鉄心2dの内外両側に電機子イ
ル辺5f、5g、6h、6iが納めてある。
FIG. 19 is a partial view of the armature according to the third and fourth embodiments, in which armature il sides 5f, 5g, 6h and 6i are accommodated on both the inside and outside of the armature core 2d.

【0039】図20は第3、第4の実施の形態の電機子
の取り付け部分図であり、切り込み55を入れることに
より、接続部35、35a、36、36aの膨らみを無
くすることが出来る。
FIG. 20 is a partial sectional view of the armature according to the third and fourth embodiments. By making the cuts 55, the bulges of the connecting portions 35, 35a, 36 and 36a can be eliminated.

【0040】図21は第5の実施の形態を示す、第3、
第4の実施の形態と基本的には同じであるが、電機子鉄
心2fは、けい素鋼帯を主軸12dの周回方向に巻重ね
たものである。
FIG. 21 shows a fifth embodiment.
Although it is basically the same as the fourth embodiment, the armature core 2f is formed by winding a silicon steel strip in the circumferential direction of the main shaft 12d.

【0041】図24は第1、第2の実施の形態に使用す
る界磁であり、界磁連結鉄11eと界磁鉄心13gは永
久磁石を用い、界磁連結鉄11fは軟磁性体を用いる。
FIG. 24 shows a field used in the first and second embodiments. The field coupling iron 11e and the field iron core 13g use permanent magnets, and the field coupling iron 11f uses a soft magnetic material. .

【0042】図25は第6の実施の形態を示す、第5の
実施の形態と基本的には同じであるが、界磁磁束が通り
やすいように主軸を主軸12eと主軸12fに分けてあ
る。
FIG. 25 shows a sixth embodiment, which is basically the same as the fifth embodiment, except that the main shaft is divided into a main shaft 12e and a main shaft 12f so that the field magnetic flux can easily pass through. .

【0043】[0043]

【発明の効果】本発明の効果を列挙すれば、次の通りで
ある。 1) 一般の回転電気機械と同等以上の電圧、電流、効
率及び回転数等を、ともに備えるものであり、従来の単
極回転電気機械では実現していない。 2) 励磁回路も含めてブラッシなしにすることが出来
る。 3) 電機子コイルの接続の切り換えが容易に出来るの
で、電圧、電流及び回転速度の変更が容易であり、界磁
の励磁電流の調整とブリッジ形可逆チョッパと併用すれ
ば、速度制御及び回生制動が有効且つ高効率に出来る。
The effects of the present invention are listed as follows. 1) It has both voltage, current, efficiency, rotation speed, and the like that are equal to or higher than those of a general rotating electric machine, and is not realized by a conventional single-pole rotating electric machine. 2) No brushing is possible including the excitation circuit. 3) Since the switching of the armature coil connection can be easily performed, the voltage, current and rotation speed can be easily changed. If the excitation current of the field is adjusted and used together with the bridge type reversible chopper, the speed control and the regenerative braking are performed. Can be made effective and highly efficient.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施の形態の主用部の断面図
で、図2のB−B断面図である。
FIG. 1 is a cross-sectional view of a main part according to a first embodiment of the present invention, and is a BB cross-sectional view of FIG.

【図2】 図1のA−A断面図FIG. 2 is a sectional view taken along line AA of FIG. 1;

【図3】 第2の実施の形態の界磁の断面図である。FIG. 3 is a sectional view of a field according to a second embodiment.

【図4】 図3の励磁部分の回路図である。FIG. 4 is a circuit diagram of an exciting portion of FIG.

【図5】 第1、第2の実施の形態の電機子コイルの1
回巻の巻線図である。
FIG. 5 shows an armature coil 1 according to the first and second embodiments.
It is a winding figure of a winding.

【図6】 第1、第2の実施の形態の電機子コイルの2
回巻の巻線図である。
FIG. 6 illustrates a second example of the armature coil according to the first and second embodiments.
It is a winding figure of a winding.

【図7】 第1、第2の実施の形態の電機子コイルの1
回巻の展開図である。
FIG. 7 shows one of the armature coils according to the first and second embodiments.
FIG.

【図8】 第1、第2の実施の形態の電機子コイルの2
回巻の展開図である。
FIG. 8 shows an armature coil 2 of the first and second embodiments.
FIG.

【図9】 第1、第2の実施の形態のn回巻電機子コイ
ルである。
FIG. 9 is an n-turn armature coil according to the first and second embodiments.

【図10】 図2の電機子を改良したものの一部分図で
ある。
FIG. 10 is a partial view of an improved armature of FIG. 2;

【図11】 図2の電機子を改良したものの一部分図で
ある。
FIG. 11 is a partial view of a modified version of the armature of FIG. 2;

【図12】 図2の電機子を改良したものの一部分図で
ある。
FIG. 12 is a partial view of an improved armature of FIG. 2;

【図13】 図2の電機子を改良したものの一部分図で
ある。
FIG. 13 is a partial view of a modification of the armature of FIG. 2;

【図14】 図2の電機子を改良したものの一部分図で
ある。
FIG. 14 is a partial view of a modification of the armature of FIG. 2;

【図15】 第3の実施の形態の断面図で、図16のD
−D断面図である。
FIG. 15 is a sectional view of the third embodiment,
It is -D sectional drawing.

【図16】 図15のC−C断面図である。16 is a sectional view taken along the line CC of FIG.

【図17】 第3の実施の形態のn回巻電機子コイルで
ある。
FIG. 17 shows an n-turn armature coil according to the third embodiment.

【図18】 第4の実施の形態の断面図である。FIG. 18 is a cross-sectional view of the fourth embodiment.

【図19】 図16の電機子を改良したものの一部分図
である。
FIG. 19 is a partial view of a modification of the armature of FIG. 16;

【図20】 図16の電機子を改良したものの一部分図
である。
FIG. 20 is a partial view of a modification of the armature of FIG. 16;

【図21】 第5の実施の形態の主要部の断面図であ
る。
FIG. 21 is a sectional view of a main part of the fifth embodiment.

【図22】 図21の電機子の側面図の一部分図であ
る。
FIG. 22 is a partial view of a side view of the armature shown in FIG. 21;

【図23】 図21の電機子を改良したものの一部分図
である。
FIG. 23 is a partial view of an improved armature of FIG. 21;

【図24】 第2の実施の形態の界磁に永久磁石を用い
た断面図である。
FIG. 24 is a cross-sectional view using a permanent magnet for the field according to the second embodiment.

【図25】 第6の実施の形態の主要部の断面図であ
る。
FIG. 25 is a sectional view of a main part of the sixth embodiment.

【図26】 第6の実施の形態の界磁の一部分図であ
る。
FIG. 26 is a partial view of a field according to a sixth embodiment.

【符号の説明】[Explanation of symbols]

1・・・固定子外枠 2・・・電機子鉄心 3・・・電機子連結鉄 4・・・電機子鉄心ギャプ 5・・・電機子鉄心の表面スロットの電機子コイル辺 6・・・電機子鉄心の深いスロットの電機子コイル辺 7・・・電機子コイル端 8・・・磁極環 9・・・界磁鉄心 10・・・界磁巻線 11・・・界磁連結鉄 12・・・主軸 13・・・第2の実施の形態の界磁鉄心 14・・・第2の実施の形態の界磁 19・・・回転結合変圧器一次巻線 19a・・・回転結合変圧器二次巻線 20・・・回転結合変圧器固定部鉄心の底部 20a・・・回転結合変圧器回転部鉄心の底部 21・・・回転結合変圧器固定部鉄心の側部 21a・・・回転結合変圧器回転部鉄心の側部 43・・・第1の実施の形態の電機子 43a・・・第1の実施の形態の電機子 44・・・第1の実施の形態の電機子コイル 45・・・電機子43、電機子43aをで磁気的に結合
した電機子 46・・・第1の実施の形態の界磁 47・・・ギャップ 48・・・電機子鉄心2の表面のスロット 49・・・電機子鉄心2の深いスロット
DESCRIPTION OF SYMBOLS 1 ... Stator outer frame 2 ... Armature core 3 ... Armature connection iron 4 ... Armature core gap 5 ... Armature coil side of the surface slot of armature core 6 ... Armature coil side of deep slot in armature core 7 Armature coil end 8 Magnetic pole ring 9 Field iron core 10 Field winding 11 Field coupling iron 12 ..Main shaft 13 ... Field iron core of the second embodiment 14 ... Field of the second embodiment 19 ... Rotary coupling transformer primary winding 19a ... Rotary coupling transformer 2 Next winding 20 ... Bottom of core of rotation-coupled transformer fixing part 20a ... Bottom of core of rotation-coupled transformer rotation part 21 ... Side of core of rotation-coupled transformer fixing part 21a ... Rotation-coupled transformer Side part 43 of container rotating part iron core Armature 43a of first embodiment 43a Armature of first embodiment 44 ················································································ Gap 48: Slot on the surface of armature core 2 49: Deep slot on armature core 2

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 電機子コイルの片方のコイル辺を電機子
鉄心の表面又は表面のスロットに納め界磁磁束と充分鎖
交させ、他方のコイル辺を電機子鉄心の深いスロット又
は外側に納め界磁磁束と極力鎖交しないようにした電機
子を有する単極回転電気機械。
1. An armature coil having one coil side provided in a surface or a slot of the armature core and sufficiently linked with a field magnetic flux, and the other coil side provided in a deep slot or outside of the armature core. A single-pole rotating electric machine having an armature that minimizes linkage with magnetic flux.
【請求項2】 「請求項1」の電機子2個を電機子連結
鉄で磁気的に結合した電機子を有する単極回転電気機
械。
2. A single-pole rotating electric machine having an armature in which two armatures according to claim 1 are magnetically coupled with an armature connecting iron.
【請求項3】 「請求項1又は2」の電機子鉄心の深い
スロットに納めたコイル辺を界磁磁束に対しシールドし
た電機子を有する単極回転電気機械。
3. A single-pole rotating electric machine having an armature according to claim 1 or 2, wherein the armature in which a coil side accommodated in a deep slot of the armature core is shielded from field magnetic flux.
【請求項4】 「請求項2又は3」の電機子鉄心の表面
のスロット内のコイル辺に均等に磁束を通すとともに界
磁鉄心の鉄損を軽減するため、けい素鋼板で作った磁極
環を界磁鉄心の先端部に取り付けた界磁鉄心が隣同士先
端部が同極性となるように界磁巻線に励磁電流を流し、
界磁鉄心の付け根部は界磁連結鉄に取り付け、その反対
側に前述と同形で異極性となるようにる励磁電流を流し
電機子鉄心表面のスロット内コイル辺に有効に鎖交する
磁束を作る界磁を有する単極回転電気機械。
4. A magnetic pole ring made of a silicon steel plate in order to transmit magnetic flux evenly to coil sides in slots on the surface of the armature core of claim 2 or 3 and to reduce iron loss of the field core. Excitation current is applied to the field winding so that the field iron core attached to the tip of the field iron has the same polarity at the adjacent ends,
The base of the field core is attached to the field-coupling iron, and an exciting current is applied to the opposite side so that it has the same shape and different polarity as described above, and the magnetic flux effectively linked to the coil side in the slot on the armature core surface A unipolar rotating electric machine with a field to make.
【請求項5】 「請求項2又は3」の電機子鉄心表面の
スロット内のコイル辺に有効に鎖交する界磁磁束を通す
ため、主軸と同心状の円筒形の界磁鉄心の中央部の直径
を小さくし界磁巻線を納め、界磁鉄心表面には鉄損を軽
減するための磁極環を取り付けた界磁を有する単極回転
電気機械。
5. A central portion of a cylindrical field iron core concentric with a main shaft to allow a magnetic flux of a magnetic field to effectively interlink with a coil side in a slot on a surface of an armature iron core according to claim 2 or 3. A single-pole rotating electric machine that has a field winding with a smaller diameter and a field winding with a magnetic pole ring attached to the surface of the field core to reduce iron loss.
【請求項6】 「請求項1又は3」の電機子は磁極環又
は界磁鉄心とのギャプ保持し、界磁巻線は奥に納まるよ
うな、主軸と同心状の円筒形状の空間を持つ磁極環を電
機子のスロットが有る側に取り付けた界磁鉄心に界磁巻
線を納めた界磁を有する単極回転電気機械。
6. The armature according to claim 1 or 3 holds a gap with a magnetic pole ring or a field core, and the field winding has a cylindrical space concentric with the main shaft so as to fit in the back. A single-pole rotating electric machine having a magnetic field in which a field winding is accommodated in a field core in which a magnetic pole ring is mounted on a side of an armature having a slot.
【請求項7】 外鉄形状の変圧器の鉄心を主軸回転方向
の円筒状ギャップで固定部と回転部に分離し、鉄心の主
軸回転方向の円筒部は、けい素鋼帯の幅を段階的に変え
て主軸中心線を含む面の断面が台形状になるように巻
き、底部とし、その底部斜面に符合するように、けい素
鋼板を段階的に、かつ環状に打ち抜いて積み重ね側部と
し、固定部に一次巻線、回転部に二次巻線を納め回転結
合変圧器とし一次巻線に可変出力インバータの出力を加
え、二次巻線から出力を得て半導体整流器で整流し界磁
巻線を励磁する界磁励磁装置を有する単極回転電気機
械。
7. The iron core of a core-shaped transformer is separated into a fixed part and a rotating part by a cylindrical gap in the main shaft rotation direction, and the cylindrical part of the iron core in the main shaft rotation direction has a stepped width of the silicon steel strip. In place, the section including the center axis of the spindle is wound so that the cross section of the surface becomes trapezoidal, and the bottom is formed. Put the primary winding in the fixed part and the secondary winding in the rotating part and use it as a rotary coupling transformer, add the output of the variable output inverter to the primary winding, obtain the output from the secondary winding, rectify it with a semiconductor rectifier, and perform field winding. A unipolar rotating electric machine having a field exciter for exciting a wire.
【請求項8】 「請求項7」における鉄心をフェライト
系軟磁性体とし回転部は、けい素鋼板及び鋼板で補強し
た界磁励磁装置を有する単極回転電気機械。
8. A single-pole rotating electric machine according to claim 7, wherein the iron core is a ferrite-based soft magnetic material, and the rotating part has a field exciting device reinforced with a silicon steel plate and a steel plate.
【請求項9】 「請求項2又は3」の電機子の界磁とし
て主軸中央部外周部に円筒形の永久磁石を、2個の電機
子の隔離の長さで、電機子の内径より小さくして取り付
け、その両端に電機子1個の長さで、前記の永久磁石と
同じ内外径の軟磁性体を取り付け、その外周に磁極環を
取り付けた円筒形永久磁石を電機子と適正なギャップ作
って取り付け永久磁石界磁を有する単極回転電気機械。
9. The armature according to claim 2 or 3, wherein a cylindrical permanent magnet is provided on an outer peripheral portion of a central portion of a main shaft as a field of the armature. A soft magnetic body having the same inner and outer diameters as the above-mentioned permanent magnet is attached to both ends of the armature, and a cylindrical permanent magnet with a magnetic pole ring attached to the outer periphery is fitted with an appropriate gap with the armature. Single pole rotating electric machine with permanent magnet field made and mounted.
【請求項10】 「請求項5又は6」の界磁を永久磁石
とした単極回転電気機械。
10. A single-pole rotating electric machine using the field of claim 5 or 6 as a permanent magnet.
JP2001133404A 2001-03-26 2001-03-26 Single pole rotation electric machine Pending JP2002291216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001133404A JP2002291216A (en) 2001-03-26 2001-03-26 Single pole rotation electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001133404A JP2002291216A (en) 2001-03-26 2001-03-26 Single pole rotation electric machine

Publications (1)

Publication Number Publication Date
JP2002291216A true JP2002291216A (en) 2002-10-04

Family

ID=18981269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001133404A Pending JP2002291216A (en) 2001-03-26 2001-03-26 Single pole rotation electric machine

Country Status (1)

Country Link
JP (1) JP2002291216A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6965183B2 (en) 2003-05-27 2005-11-15 Pratt & Whitney Canada Corp. Architecture for electric machine
US7709980B2 (en) 2003-05-27 2010-05-04 Pratt & Whitney Canada Corp. Architecture for electric machine
KR101497236B1 (en) * 2013-10-11 2015-02-27 김종인 DC homopolar motor
KR101503605B1 (en) * 2013-10-11 2015-03-17 김종인 Homopolar generator
FR3016092A1 (en) * 2013-12-30 2015-07-03 Thierry Lucidarme HOMOPOLAR MACHINE WITH ISOLATED PLOTS
CN109277187A (en) * 2018-12-04 2019-01-29 山东科力华电磁设备有限公司 Magnetic separation roller

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6965183B2 (en) 2003-05-27 2005-11-15 Pratt & Whitney Canada Corp. Architecture for electric machine
US7709980B2 (en) 2003-05-27 2010-05-04 Pratt & Whitney Canada Corp. Architecture for electric machine
US7919894B2 (en) 2003-05-27 2011-04-05 Pratt & Whitney Canada Corp. Architecture for electric machine
KR101497236B1 (en) * 2013-10-11 2015-02-27 김종인 DC homopolar motor
KR101503605B1 (en) * 2013-10-11 2015-03-17 김종인 Homopolar generator
FR3016092A1 (en) * 2013-12-30 2015-07-03 Thierry Lucidarme HOMOPOLAR MACHINE WITH ISOLATED PLOTS
CN109277187A (en) * 2018-12-04 2019-01-29 山东科力华电磁设备有限公司 Magnetic separation roller

Similar Documents

Publication Publication Date Title
JP6332011B2 (en) Axial gap type rotating electrical machine
US8294321B2 (en) Brushless machine having ferromagnetic side plates and side magnets
US5552651A (en) Alternating current generator
JP2009112091A (en) Rotating electrical machine and drive controller therefor
JP2000156947A (en) Magnet-type motor and power generator
US6972504B1 (en) Permanent magnet machine and method with reluctance poles for high strength undiffused brushless operation
US20060082237A1 (en) Toroidal AC motor
JP2002369473A (en) Synchronous motor using permanent magnet
US7129611B2 (en) Method and radial gap machine for high strength undiffused brushless operation
JP2016538817A (en) Transverse flux type electric machine
JP2000041367A (en) Hybrid excitation type synchronous machine
CN110838779B (en) Mixed excitation wound rotor and mixed excitation wound synchronous motor
JP2002291216A (en) Single pole rotation electric machine
JP6755435B1 (en) Rotor and rotating electric machine
JPH05236714A (en) Permanent magnet type synchronous motor
EP1798842A1 (en) Self magnetizing motor and method for winding coils on stator thereof
JPH10304633A (en) Synchronous rotary machine using permanent magnet and method for driving it
JP2002238194A (en) Structure of rotor of permanent-magnet motor
JPS6323541A (en) Magnetization of motor
JP3508709B2 (en) Magnet field rotating type rotary electric machine
JP3829742B2 (en) Rotating electric machine
JP2008187863A (en) Axial gap rotary electric machine and compressor
JP2003102159A (en) Unipolar electrical rotating machine
WO2013001559A1 (en) Dynamo-electric machine
US20140210305A1 (en) Single phase switched reluctance machine with axially extending stator laminations