JPH04137392A - Driving method for organic electro-luminescence element and emission device making use of said driving method - Google Patents

Driving method for organic electro-luminescence element and emission device making use of said driving method

Info

Publication number
JPH04137392A
JPH04137392A JP2258695A JP25869590A JPH04137392A JP H04137392 A JPH04137392 A JP H04137392A JP 2258695 A JP2258695 A JP 2258695A JP 25869590 A JP25869590 A JP 25869590A JP H04137392 A JPH04137392 A JP H04137392A
Authority
JP
Japan
Prior art keywords
light
time
driving
light emission
brightness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2258695A
Other languages
Japanese (ja)
Other versions
JP2766063B2 (en
Inventor
Masahide Matsuura
正英 松浦
Tadashi Kusumoto
正 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17323814&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04137392(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2258695A priority Critical patent/JP2766063B2/en
Publication of JPH04137392A publication Critical patent/JPH04137392A/en
Application granted granted Critical
Publication of JP2766063B2 publication Critical patent/JP2766063B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable the same light emission in an AC driving system as in a DC driving system, while thermal deterioration is restrained, by specifying driving wave form in an AC driving system. CONSTITUTION:In order that time average brightness per second is equal to or more than standard brightness in the case of DC driving, light is emitted on condition that an equation of integral Ldt/integral dt >=L0 has to be satisfied, the interval of emission has to be less than the order of 30ms in order that the light can apparently be recognized as continuous emission, and driving wave form has to be used, which causes time for no emission to be equal to or more than temperature relaxing time within elements, and furthermore to be equal to or more than time for just before emission wherein L0 represents standard brightness in the case of DC driving, and L represents brightness in the case of repeating fluashing. This thereby prevents brightness from being lowered due to thermal generation within the elements, and the life of each element can thereby lengthened.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、有機エレクトロルミネッセンス素子の駆動方
法および該駆動方法を用いた発光装置に関し、特に、素
子の発熱による輝度低下を抑え、高寿命化を図ることの
てきる有機エレクトロルミネッセンス素子の駆動方法お
よび該駆動方法を用いた発光装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for driving an organic electroluminescent element and a light emitting device using the driving method, and particularly to a method for suppressing a decrease in brightness due to heat generation of the element and increasing the lifespan. The present invention relates to a method for driving an organic electroluminescent element that can achieve the following, and a light emitting device using the driving method.

[従来の技術と解決すべき劃1 エレクトロルミネッセンス素子(EL素子)は、自己発
光のため視認性が高く、また完全固体素子であることか
ら耐衝撃性に優れるという特徴を有している。このよう
なことから、現在、無機、有機化合物を用いたいろいろ
な素子が提案され、かつ実用化か試みられている。
[Prior Art and Problems to be Solved 1 Electroluminescent elements (EL elements) are characterized by high visibility because they emit light by themselves, and excellent impact resistance because they are completely solid-state elements. For this reason, various devices using inorganic and organic compounds are currently being proposed and attempts are being made to put them into practical use.

これらの素子のうち特に有機EL素子は、印加電圧を大
幅に低下させることかできることから、各種の有機材料
を素子として利用する研究、開発か進められている。
Among these devices, organic EL devices in particular are capable of significantly lowering the applied voltage, and therefore research and development are underway to utilize various organic materials as devices.

しかしながら、上述した有機EL素子は、動作(発光)
か安定せず、劣化か激しいため実用性に欠けるという問
題かある。すなわち、有機EL素子の劣化の要因は、動
作時の発熱によるところか大きく、無機EL素子に比べ
低発熱量にて劣化か進行し易い。したがって、連続駆動
時における素子の発熱による劣化の問題を解消し、輝度
の低下を抑制することは、有機EL素子の高寿命化を図
る上て重要なことといえる。
However, the above-mentioned organic EL element cannot operate (light emit light)
The problem is that it is not stable and deteriorates rapidly, making it impractical. That is, the deterioration of organic EL elements is largely due to heat generation during operation, and deterioration progresses more easily with a lower amount of heat generation than inorganic EL elements. Therefore, it is important to solve the problem of deterioration due to heat generation of the element during continuous driving and to suppress the decrease in brightness in order to extend the life of the organic EL element.

一方、従来におけるEL素子の駆動方法としては、直流
駆動方式と交流駆動方式とか知られている。
On the other hand, as conventional methods for driving EL elements, there are known direct current driving methods and alternating current driving methods.

直流駆動方式は、主として電荷注入型発光素子における
駆動方式であり、その発光原理は、電圧印加によって正
孔および/または電子か電極から有機多層部へ注入され
、両者か高電界による加速を受けずに移動し、発光層に
おいて再結合することにより発光するものである。
The DC drive method is mainly a drive method for charge injection type light emitting devices, and its light emission principle is that holes and/or electrons are injected from the electrode into the organic multilayer part by voltage application, and both are not accelerated by a high electric field. It emits light by recombining in the light-emitting layer.

また、交流駆動方式は、主として衝突励起型発光素子に
おける駆動方式であり、その発光原理は、発光層内にあ
らかじめ存在する伝導電子、もしくは界面より注入した
電子が高電界により加速され、この加速された電子か発
光中心を励起しこのとき生ずる電子と正孔か発光中心を
介して発光するものである。
The AC drive method is mainly a drive method for collision-excited light emitting devices, and its light emission principle is that conduction electrons that already exist in the light emitting layer or electrons injected from the interface are accelerated by a high electric field. The emitted electrons excite the luminescent center, and the electrons and holes generated at this time emit light via the luminescent center.

その他、特開平2−15595号には、素子の発光の確
認法の一つとして電荷注入型発光素子を交流駆動する技
術が開示されている。
In addition, Japanese Patent Application Laid-Open No. 2-15595 discloses a technique for AC driving a charge injection type light emitting element as one method for confirming light emission from the element.

また、特開昭62−189497号には、交流型薄膜E
L稟子(MIS構造のEL素子)の交流駆動方式として
、非対称の交流電圧を印加する技術か開示されている。
In addition, Japanese Patent Application Laid-Open No. 189497/1989 describes AC thin film E
A technique for applying an asymmetrical AC voltage has been disclosed as an AC drive system for L-shaped EL elements (MIS-structured EL elements).

この方法は、空間電荷の蓄積を抑制することにより輝度
低下を防止する方法である。
This method is a method for preventing a decrease in brightness by suppressing the accumulation of space charges.

さらに、光電相互変換第125委員会第129回研究会
資料には、有機EL素子(発光層かアルミキレートであ
るもの)をパルス駆動する技術か開示されている。
Furthermore, the materials of the 129th study session of the 125th Photoelectric Interconversion Committee disclose a technique for pulse-driving an organic EL element (the light-emitting layer is made of aluminum chelate).

[発明が解決しようとする課jII] しかしなから上述したEL素子の駆動方法には、以下に
示すような問題かある。
[Issue jII to be solved by the invention] However, the above-described method for driving an EL element has the following problems.

まず、電荷注入型発光素子における直流駆動方式は、連
続発光するため、素子か発光により劣化し、輝度の低下
をきたし易いという問題かある。
First, the direct current driving method of a charge injection type light emitting element has a problem in that, because it emits light continuously, the element is likely to deteriorate due to the light emission, resulting in a decrease in brightness.

同様に、衝突励起型発光素子における交流駆動方式は、
電極に極性がないので、原理的に連続発光するための方
法である。
Similarly, the AC drive method for collision-excited light emitting devices is
Since the electrodes have no polarity, this is a method for continuous light emission in principle.

また、特開平2−15595号、特開昭62−1119
497号および上記資料に記載の技術は、作製した素子
の発光能力の有無の確認や、初期発光効率の検討のため
に交流電圧を印加するものであり、素子を交流駆動しよ
うとするものではない、したかって。
Also, JP-A-2-15595, JP-A-62-1119
The techniques described in No. 497 and the above materials apply AC voltage to confirm whether the manufactured device has light-emitting ability or to examine the initial luminous efficiency, and are not intended to drive the device with AC. , I wanted to.

電荷注入型発光素子を交流駆動するための具体的条件(
見掛は上達続発光として認識される条件や平均発光輝度
の条件など)および交流駆動を継続した場合の素子の劣
化等に関しては何ら開示されていない。
Specific conditions for AC driving a charge injection type light emitting device (
There is no disclosure regarding the conditions under which the apparent continuous light emission is recognized, the conditions for the average light emission brightness, etc., and the deterioration of the element when AC driving is continued.

なお2発光ダイオードの分野において、発光ダイオード
を変調駆動する技術か開示されている(電子デイスプレ
ィデバイス第7章)が、かかる技術は注入されたキャリ
ヤの寿命に周波数か関係するというものであり、本発明
を何ら示唆するものではない。
2 In the field of light-emitting diodes, a technique for modulating and driving light-emitting diodes has been disclosed (Electronic Display Devices Chapter 7), but this technique is related to frequency or the lifetime of the injected carriers. It does not imply the present invention in any way.

本発明は、上述した事情にかんがみてなされたもので、
素子の発熱による輝度低下を抑え、高寿命化を図ること
のできる有機エレクトロルミネッセンス素子の駆動方法
および該駆動方法を用いた発光装置の提供を目的とする
The present invention was made in view of the above-mentioned circumstances, and
An object of the present invention is to provide a method for driving an organic electroluminescent element that can suppress reduction in brightness due to heat generation of the element and extend its life, and a light emitting device using the driving method.

上記目的を達成するために本発明者等は鋭意研究を重ね
た結果、有機EL素子の駆動方式として交流駆動方式を
採用し、かつ、駆動波形を特定のものとすることにより
、熱劣化を抑えつつ直流駆動の場合と同等の発光を行な
わせることができることを見出し本発明を完成させるに
至った。
In order to achieve the above object, the inventors of the present invention have conducted extensive research and have adopted an AC drive method as the drive method for organic EL elements, and by using a specific drive waveform, thermal deterioration can be suppressed. The present inventors have discovered that it is possible to emit light equivalent to that of direct current drive, and have completed the present invention.

[課題を解決するための手段] すなわち、本発明の請求項1記載の有機EL素子の駆動
方法は、陽極と陰極の間に有機化合物からなる発光層を
含む有機多層部を有する有機エレクトロルミネッセンス
素子の発光駆動において、一秒当たりの時間平均輝度か
直流駆動を行なう際の標準輝度以上となるような発光駆
動波形てあって、かつ、この発光駆動波形における無発
光時間が、見掛け上連続発光駆動と認識される周期以下
であり、素子内の温度緩和時間以上かつ直前の発光時間
以上であるような発光駆動波形を用いて駆動するように
しである。
[Means for Solving the Problems] That is, the method for driving an organic EL device according to claim 1 of the present invention provides an organic electroluminescent device having an organic multilayer portion including a light emitting layer made of an organic compound between an anode and a cathode. In the light emission drive of The light emitting drive waveform is designed to be driven using a light emission drive waveform that is shorter than the period recognized as , longer than the temperature relaxation time within the element, and longer than the immediately preceding light emission time.

また請求項2記載の発光装置は、陽極と陰極の間に有機
化合物からなる発光層を含む有機多層部を有する有機エ
レクトロルミネッセンス素子と、一秒当たりの時間平均
輝度が直流駆動を行なう際の標準−度以上となるように
発光駆動波形を設定し、かつ、この発光駆動波形におけ
る無発光時間が、見掛け上連続発光駆動と認識される周
期以下であり、素子内の温度緩和時間以上かつ直前の発
光時間以上であるように発光駆動波形を設定した駆動源
とを具備した構成としである。
Further, the light emitting device according to claim 2 includes an organic electroluminescent element having an organic multilayer portion including a light emitting layer made of an organic compound between an anode and a cathode, and a time average luminance per second that is a standard when performing DC drive. The light emission drive waveform is set so that the light emission drive waveform is equal to or higher than This configuration includes a drive source whose light emission drive waveform is set to be longer than the light emission time.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本第−発明は、陽極と陰極の間に有機化合物からなる発
光層を含む有機多層部を有する有機EL素子を特定の駆
動波形によって駆動するものである。
A third aspect of the present invention is to drive an organic EL element having an organic multilayer section including a light emitting layer made of an organic compound between an anode and a cathode using a specific drive waveform.

ここで、有機EL素子は、基板上に作製されたものであ
ることか好ましい。この基板の材料については、特に制
限はなく、従来より有機EL稟子に慣用されているもの
、例えば、ガラス、透明プラスチックあるいは、石英等
を用いることかできる。また、基板の厚さは、有機EL
素子の10倍以上であることが好ましい。
Here, it is preferable that the organic EL element be fabricated on a substrate. There are no particular limitations on the material of this substrate, and materials conventionally used for organic EL crystals, such as glass, transparent plastic, or quartz, can be used. In addition, the thickness of the substrate is
It is preferable that it is 10 times or more that of the element.

電極(陽極または陰極)の形成材料としては、金、アル
ミニウム、インジウム、マグネシウム。
Materials for forming the electrode (anode or cathode) include gold, aluminum, indium, and magnesium.

銅、#I等の金属、これらの金属の合金、混合物。Metals such as copper and #I, alloys and mixtures of these metals.

特開昭63−295695号公報に開示されている合金
、混合物電極、あるいは、ITO(インジウムチンオキ
サイド;酸化インジウムと酸化スズの混合酸化物) 、
 5n02 (酸化第二スズ) 、 Z、O(酸化亜鉛
)等の透明電極材料等が用いられる。
An alloy, a mixture electrode, or ITO (indium tin oxide; a mixed oxide of indium oxide and tin oxide) disclosed in JP-A No. 63-295695,
Transparent electrode materials such as 5n02 (stannic oxide), Z, and O (zinc oxide) are used.

この際、陽極には、仕事関数の大きい金属または電気伝
導性化合物を用いるのか好ましい。陰極には、仕事関数
の小さい金属または電気伝導性化合物を用いるのか好ま
しい。
In this case, it is preferable to use a metal with a large work function or an electrically conductive compound for the anode. It is preferable to use a metal or an electrically conductive compound with a small work function for the cathode.

これらの電極は、少なくとも一方を透明もしくは半透明
とすることが、発光の透過率を高める上で好ましい、電
極の厚さは10n−〜1#L鳳、特に、2QOnm以下
であることか透過率を高める観点からすると好ましい。
It is preferable for at least one of these electrodes to be transparent or semi-transparent in order to increase the transmittance of the emitted light. This is preferable from the viewpoint of increasing the

電極は、公知の方法1例えば、蒸着法やスパッタリング
法によって形成される。
The electrodes are formed by a known method such as a vapor deposition method or a sputtering method.

有機多層部は少なくとも有機化合物からなる発光層を有
し、この有機多層部の構成態様としては、発光層のみか
らなる場合(この場合有機多層部は単層である)、発光
層/正孔注入層からなる場合、電子輸送N/発光層から
なる場合、電子輸送層/発光層/正孔注入層からなる場
合、その他の場合(特開平1−068387号等参照)
等が挙げられる。この有機多層部の構成順序は電極によ
り逆になってもよい。
The organic multilayer part has at least a light emitting layer made of an organic compound, and the structure of this organic multilayer part is such that when it consists only of a light emitting layer (in this case, the organic multilayer part is a single layer), the light emitting layer/hole injection When it consists of a layer, when it consists of an electron transport layer/a light emitting layer, when it consists of an electron transport layer/a light emitting layer/a hole injection layer, in other cases (see JP-A No. 1-068387, etc.)
etc. The order of construction of this organic multilayer portion may be reversed depending on the electrode.

発光層は、注入機能、輸送機能および発光機能を有する
The light-emitting layer has an injection function, a transport function, and a light-emitting function.

ここで、注入機能とは、電界印加時に陽極または正孔注
入層より正孔を注入可能とする機能および陰極または電
子注入層より電子を注入可能とする機能をいう。
Here, the injection function refers to a function that allows holes to be injected from an anode or a hole injection layer when an electric field is applied, and a function that allows electrons to be injected from a cathode or an electron injection layer.

また、輸送機能とは、正孔及び電子を電界の力により移
動(輸送)させる機能をいう。
Furthermore, the transport function refers to a function of moving (transporting) holes and electrons by the force of an electric field.

さらに、発光機能とは、正孔と電子の再結合の場を提供
し、発光させる機能をいう。
Furthermore, the light-emitting function is a function of providing a field for recombination of holes and electrons to cause light emission.

この場合、正孔注入性と電子注入性の能力に違いがあっ
てもよい0発光層の厚さは、5n−〜51L朧の範囲内
とすることが好ましい。
In this case, the thickness of the light-emitting layer, which may have a difference in hole-injecting ability and electron-injecting ability, is preferably within the range of 5n- to 51L hazy.

正孔注入層および電子注入層は、必ずしも設ける必要は
ないが、発光性能向上のため設けることか好ましい。
Although it is not necessary to provide a hole injection layer and an electron injection layer, it is preferable to provide them in order to improve the light emitting performance.

正孔注入層は、より低い電界で正孔を発光層に輸送する
材料で形成される。正孔の移動度は、104〜10’v
/c■の電場のもとて少なくとも1O−6C厘2/v−
secの値を有することか好ましい。
The hole injection layer is formed of a material that transports holes to the emissive layer at lower electric fields. The mobility of holes is 104 to 10'v
Under an electric field of /c■, at least 1O-6C 厘2/v-
It is preferable to have a value of sec.

電子注入層は、より低い電界で電子を発光層に輸送する
材料で形成される。
The electron injection layer is formed of a material that transports electrons to the emissive layer at lower electric fields.

なお、上記構成からなる有機EL素子の作製方法は特に
制限されないが、蒸着法を用いれば、蒸着法だけで有機
EL素子を作製することかでき、設備面および生産時間
面より有利であるため好ましい。
Note that the method for producing the organic EL element having the above structure is not particularly limited, but it is preferable to use a vapor deposition method because the organic EL element can be produced only by the vapor deposition method, which is more advantageous in terms of equipment and production time. .

上記構成からなる有機EL素子は、陽極と陰極の間に電
圧を印加してエージングを行なったものであってもよい
The organic EL element having the above structure may be aged by applying a voltage between the anode and the cathode.

ここでいうエージングとは、電圧を印加して、リーク電
流を発生させる領域を除去するとともに、素子内に貯っ
た正孔や電子を除去することをいう(特願平2−117
885号参照)、これにより有機EL素子に、安定動作
を行なわせる0本発明方法に用いられる有機EL素子は
必ずしもこのエージングを行なったものである必要はな
いが、素子の動作の安定化の観点からするとエージング
を行なフたものであることか好ましい。
Aging here refers to applying a voltage to remove regions that generate leakage current, as well as removing holes and electrons accumulated within the device (Japanese Patent Application No. 2-117
(Refer to No. 885), thereby allowing the organic EL element to perform stable operation. The organic EL element used in the method of the present invention does not necessarily have to undergo this aging, but from the viewpoint of stabilizing the operation of the element. From this point of view, it is preferable to use a material that does not undergo aging.

本発明方法においては、上記構成からなる有機EL素子
を特定の駆動波形を有する電圧(電流)によって駆動す
る。
In the method of the present invention, the organic EL element having the above structure is driven by a voltage (current) having a specific drive waveform.

ここて、上記構成からなる有機EL素子は、陽極が陰極
より高い電位(順電位)にあるときのみ発光を生じる。
Here, the organic EL element having the above structure emits light only when the anode is at a higher potential (forward potential) than the cathode.

逆の電位を生じているとき、もしくは、ゼロ電位のとき
には、発光は生じず、また、電流も流れない、したがっ
て、直流発光駆動時には、素子に定常的に熱が発生し、
これか素子の劣化の原因となって、寿命か短くなってい
る。
When the opposite potential is generated or when the potential is zero, no light is emitted and no current flows. Therefore, when driving DC light, heat is constantly generated in the element.
This may cause deterioration of the element, shortening its lifespan.

以下、本発明方法における駆動波形の条件について詳細
に説明する。
Hereinafter, the driving waveform conditions in the method of the present invention will be explained in detail.

本発明方法においては、駆動波形として、一秒当たりの
時間平均輝度が直流駆動を行なう際の標準輝度以上とな
るような発光駆動波形を用いることか必要である(波形
条件l)。
In the method of the present invention, it is necessary to use a light emission drive waveform in which the time average luminance per second is equal to or higher than the standard luminance when performing DC drive (waveform condition 1).

上述のように電荷注入型有機EL素子の基本的な駆動方
法は直流であり、「直流駆動を行なう際の標準−度」と
は、この直流駆動の場合における標準輝度をさす。
As mentioned above, the basic driving method for charge injection type organic EL elements is direct current, and "standard brightness when performing direct current driving" refers to the standard brightness in the case of direct current driving.

「直流駆動を行なう際の標準輝度」の値は、素子の発光
色や用途によって異なるが、一般に100cd/■2程
度か要求特性であり、素子の一度低下を評価する場合は
100c、d/履2に設定することが妥当である。
The value of "standard brightness when performing DC drive" varies depending on the emitted light color and application of the device, but it is generally about 100cd/■2 or the required characteristic, and when evaluating a single drop in the device, it is 100cd/2. It is appropriate to set it to 2.

また、「一秒当たりの時間平均輝度」とは、]1!続発
光でなく点滅を繰り返す駆動の場合(例えば、交流駆動
やパルス駆動)における輝度の時間平均値を示す、すな
わち、直流駆動の場合には発光が連続しているので通常
「輝度」と表現されるが1点滅を繰り返す場合には、輝
度の値は刻々変化し、発光しない時もあるため、輝度の
時間平均値をとって「時間平均輝度」と表現するもので
ある。さらに、本発明方法においては、−秒間て輝度が
変化する場合も含まれるので、このような表現を用いる
Also, "time average luminance per second" is ]1! Indicates the time average value of luminance in the case of a drive that does not emit light continuously but repeatedly blinks (for example, AC drive or pulse drive). In other words, in the case of DC drive, the light emission is continuous, so it is usually expressed as "luminance". However, when one blink is repeated, the brightness value changes moment by moment, and there are times when no light is emitted, so the time average value of the brightness is taken and expressed as "time average brightness." Furthermore, since the method of the present invention includes cases where the brightness changes over - seconds, such expressions are used.

そして、この「時間平均輝度」は直流駆動の場合の輝度
と比較するために用いられる。なお、輝度は素子を発光
させて輝度測定装置(例えば、フォトダイオード等)に
よって測定される。
Then, this "time average luminance" is used for comparison with the luminance in the case of DC drive. Note that the brightness is measured by a brightness measuring device (for example, a photodiode, etc.) by causing the element to emit light.

上記波形条件1を満たす駆動波形は、直流駆動を行なう
際の標準輝度をり。とじ、点滅を繰り返す駆動の場合に
おける輝度をLとすると、下記(1)式で表わされる。
A drive waveform that satisfies the waveform condition 1 above has a standard brightness when performing DC drive. Letting L be the luminance in the case of driving in which closing and blinking are repeated, it is expressed by the following equation (1).

5Ldt/Sdt≧L O−−−−−−(t)駆動波形
は上記(1)式を満たせばよく、波形は特に制限されな
い。
5Ldt/Sdt≧L O------(t) The drive waveform only needs to satisfy the above equation (1), and the waveform is not particularly limited.

点滅を繰り返す駆動の場合の時間平均輝度りを、直流駆
動を行なう際の標準−度し。以上とするためには、ピー
ク発光時の輝度を標準輝度り。
The time average brightness in the case of a drive that repeats blinking is the standard degree when performing a DC drive. In order to achieve the above, the brightness at peak emission should be equal to the standard brightness.

より大きくしなければならなす、そのようにするため駆
動波形(特に、ピーク電圧(電流); V*)が設定さ
れる。
In order to do so, the drive waveform (in particular, the peak voltage (current); V*) is set.

時間平均輝度は、その値が小さい程発熱による一度低下
は小さい、したかって、直流駆動との比較においては、
直流駆動と同等の輝度を発揮させれば十分であるため、
時間平均輝度を標準輝度L0と等しく (S Ldt/
 5dt=Lo ) L/て、発熱による輝度低下を最
小限とすることか好ましい。
The smaller the value of time-averaged luminance, the smaller the drop caused by heat generation. Therefore, in comparison with DC drive,
It is sufficient to achieve the same brightness as DC drive, so
The time average luminance is equal to the standard luminance L0 (S Ldt/
5dt=Lo)L/It is preferable to minimize the reduction in brightness due to heat generation.

たたし、時間平均輝度を標準輝度し。より大きくした場
合であっても、直流駆動の場合に比べれば、発熱による
輝度低下を少なくすることかてきる。
However, the time average brightness is taken as the standard brightness. Even if it is made larger, the reduction in brightness due to heat generation can be reduced compared to the case of DC drive.

上記波形条件1は、時間の経過にともない発光駆動時と
無発光時の両者を含み、しかも無発光時すなわち電流か
0もしくは非常に小さい時には熱の発生かないため、素
子内に蓄積された熱は拡散により放熱される。したかっ
て、素子内の温度上昇は発光時に上昇するが、無発光時
には温度上昇が抑えられるが、もしくは温度か下降する
ので、素子内の温度上昇は直流駆動の場合に比べ穏やか
なものとなり、素子の発熱を抑制できる。
The above waveform condition 1 includes both light emission driving and no light emission as time passes, and since no heat is generated when no light is emitted, that is, when the current is 0 or very small, the heat accumulated in the element is Heat is dissipated by diffusion. Therefore, the temperature inside the element increases when it emits light, but when it does not emit light, the temperature rise is suppressed or the temperature decreases, so the temperature rise inside the element is milder than in the case of DC drive, and the element heat generation can be suppressed.

なお、上述したようにピーク発光時の輝度は直流駆動の
場合の標準輝度し。より大きくしなければならないので
、瞬間的に電力は大きくなり、発光瞬間の熱の発生量は
直流駆動の場合に比べ瞬間的に多くなるが、一般に輝度
は電流の1〜2乗に比例し、また、電流は電圧の2乗以
上に比例、すなわち、少しの電圧と電流の増加で大きな
輝度の増加か得られ、かつ、これは瞬間的なものである
ので、全体として見れば素子の温度上昇は小さくなる。
As mentioned above, the brightness during peak emission is the standard brightness in the case of DC drive. Since it has to be made larger, the electric power increases instantaneously, and the amount of heat generated at the moment of light emission is instantaneously larger than in the case of DC drive, but in general, brightness is proportional to the 1st to 2nd power of the current. Also, the current is proportional to the square of the voltage or more, that is, a small increase in voltage and current can result in a large increase in brightness, and since this is instantaneous, the temperature of the element increases as a whole. becomes smaller.

また、駆動波形としては、見掛は上連続発光と認識でき
る駆動波形とする必要かあり、このためには、発光時間
を見掛け上連続発光駆動と認識される周期以下とするこ
とか必要である(波形条件2)。
In addition, the drive waveform needs to be one that can be recognized as continuous light emission in appearance, and for this purpose, the light emission time needs to be shorter than the cycle that can be recognized as continuous light emission drive. (Waveform condition 2).

ここて、「無発光時間」とは、素子か発光していない時
間もしくは極めて低輝度発光している時間をいい、具体
的には素子に0(ゼロ)もしくは負の電界か印加され素
子か発光していない状態にある時間もしくは肉眼にて確
認不可能な輝度で発光している時間か無発光時間に該当
する。
Here, "non-emission time" refers to the time when the element does not emit light or the time when it emits light at extremely low brightness. Specifically, the term "non-emission time" refers to the time when the element does not emit light or the time when it emits light at an extremely low intensity. This corresponds to the time when the light is off, the time when the light is emitted at a brightness that cannot be seen with the naked eye, or the time when the light is not emitted.

また、「見掛は上連続発光と認識される周期」とは、点
滅が繰り返されているにもかかわらず、発光か連続して
いるかのように認識しつるだめの発光と発光の間の時間
をさす、一般的には、発光と発光の間隔が30■S程度
以下であれば、肉眼には連続発光しているかのように認
識される。
In addition, ``the period at which the apparent continuous light emission is recognized'' refers to the time period between the light emission and light emission of the hanging lamp, which is recognized as continuous light emission even though the blinking is repeated. In general, if the interval between light emissions is about 30 μS or less, it will be perceived by the naked eye as if the light is being emitted continuously.

さらに、駆動波形としては、無発光時間か素子内の温度
緩和時間以上となり、かつ直前の発光時間以上となるよ
うな駆動波形を用いることか必要である(波形条件3)
Furthermore, it is necessary to use a driving waveform that is longer than the non-emission time or the temperature relaxation time in the element, and longer than the immediately preceding light emission time (waveform condition 3).
.

ここで、「温度緩和時間」とは、素子への電圧(もしく
は電流)の印加を中止したときの時刻を時刻0とし、そ
の後、素子の温度か最高温度の1/e(eは自然対数)
の値に達するまでに要する時間をさす。
Here, the "temperature relaxation time" refers to the time when the application of voltage (or current) to the element is stopped as time 0, and then the temperature of the element or 1/e of the maximum temperature (e is the natural logarithm).
The time required to reach the value of

このように、無発光時間を温度緩和時間以上とすること
によって、素子内への熱の蓄積が抑えられ、素子の温度
上昇を抑えることかできる。
In this way, by making the non-emission time equal to or longer than the temperature relaxation time, it is possible to suppress the accumulation of heat within the element and suppress the temperature rise of the element.

また、「直前の発光時間」とは、ある任意の無発光時間
に着目した場合に、その直前に発光している時間をいう
6例えば、第2図に示すように、無発光時間t2に対す
る直前の発光時間はt□となり、無発光時間t4に対す
る直前の発光時間はt3となる。したがって、「無発光
時間が直前の発光時間以上となる」ための条件は、t□
<1.、あるいは1、< 1.どなる、かかる条件は、
温度上昇の抑制のため必要となる。
In addition, the term "immediately preceding light emitting time" refers to the time during which light is being emitted just before a certain arbitrary non-emitting time 6 For example, as shown in FIG. 2, immediately before the non-emitting time t2. The light emission time is t□, and the light emission time immediately before the non-light emission time t4 is t3. Therefore, the condition for ``the non-emission time to be longer than the previous emission time'' is t□
<1. , or 1, < 1. Howar, such conditions are
This is necessary to suppress temperature rise.

以上の波形条件1〜3を満足する駆動波形としては、例
えば、第1図(a)〜(e)に示す波形か挙げられる。
Examples of drive waveforms that satisfy the above waveform conditions 1 to 3 include the waveforms shown in FIGS. 1(a) to 1(e).

第1図(a)および(b)はパルス矩形波形を示し、こ
の場合、周波数50H2以上て、かつデユーティ(負荷
時間)50%以下とするのか好ましい。
FIGS. 1(a) and 1(b) show pulse rectangular waveforms. In this case, it is preferable that the frequency be 50H2 or more and the duty (load time) be 50% or less.

第1図(C)および(d)は三角波形および交流波形を
示し、第1図(e)はパルス波形と交流波形との重ね合
わせ波形を示す。
FIGS. 1(C) and (d) show a triangular waveform and an AC waveform, and FIG. 1(E) shows a superimposed waveform of a pulse waveform and an AC waveform.

なお、駆動波形は、第1図(a)〜(e)に示すように
同じ波形が繰り返えされる一定の周波数をもったもので
ある必要はなく、時間とともに変化するものであっても
よい。
Note that the driving waveform does not need to have a constant frequency in which the same waveform is repeated as shown in FIGS. 1(a) to (e), and may change over time. .

次に、第二発明に係る発光装置について図面を参照して
説明する。
Next, a light emitting device according to a second invention will be explained with reference to the drawings.

第3図は、本発明の発光装置の一例を示す正面図である
FIG. 3 is a front view showing an example of the light emitting device of the present invention.

同図において、1は有機EL素子、2は金属電極(陰極
)、3は発光層、4は ITO電極(陽極)、5は駆動
源である。
In the figure, 1 is an organic EL element, 2 is a metal electrode (cathode), 3 is a light emitting layer, 4 is an ITO electrode (anode), and 5 is a driving source.

第二発明に係る発光装置は、少なくとも有機EL素子1
と所定の駆動源5からなるものである。
The light emitting device according to the second invention includes at least an organic EL element 1
and a predetermined drive source 5.

ここで、有機EL素子1に関しては上述した第一発明の
場合と同様である。
Here, the organic EL element 1 is the same as in the case of the first invention described above.

また、所定の駆動源5とは、−上述した第一発明の場合
における特定の駆動波形を発生させるように設定された
駆動源をさす。具体的には、ファンクション・ジェネレ
ータ(5G−4511岩崎通信機(株)社II) 中電
圧発生器(IflDO−BANDOFLINXU丁1O
N GENERATOR)  謔0DEL FG−16
1(NF CIRCUIT DESIGN BLOCK
 CO,LTD製)等の任意波形発生装置によれば特定
の駆動波形を発生させることができる。
Further, the predetermined drive source 5 refers to a drive source set to generate a specific drive waveform in the case of the first invention described above. Specifically, the function generator (5G-4511 Iwasaki Tsushinki Co., Ltd. II), the medium voltage generator (IflDO-BANDOFLINXU-1O
N GENERATOR) 0DEL FG-16
1 (NF CIRCUIT DESIGN BLOCK
A specific drive waveform can be generated using an arbitrary waveform generator such as one manufactured by CO, LTD.

上記構成からなる発光装置は、駆動lI5から駆動波形
が発せられ、これによって有機EL素子1が発光する。
In the light emitting device having the above configuration, a drive waveform is emitted from the drive lI5, whereby the organic EL element 1 emits light.

[実施例] 以下、実施例にもとづき本発明をさらに詳細に説明する
[Examples] Hereinafter, the present invention will be explained in more detail based on Examples.

実施例1 25醜鳳×75■曽X 1.1l層のサイズのガラス基
板上にITO電極を蒸着法にて1100nの厚さて製膜
したものを透明支持基板とした。
Example 1 A transparent support substrate was prepared by forming an ITO electrode to a thickness of 1100 nm by vapor deposition on a glass substrate having a size of 25 x 75 x 1.1 l layers.

この透明支持基板を市販の蒸S装M(日本真空技術■製
)の基板ホルダに固定し、モリブデン製の抵抗加熱ボー
トにN、N′−ジフェニル−N、N′−ビス−(3−メ
チルフェニル)−[1,1′−ビフェニル]−4,4’
−シアミン(TP[lA)を2(10mg入れ、また違
うモリブデン製の抵抗加熱ボードにトリス(8−キノリ
ツール)アルミニウム(AM Q3)を200B入れて
、真空槽をlx l1l−’Paまて減圧した。
This transparent support substrate was fixed to a substrate holder of a commercially available Vapor S unit M (manufactured by Japan Vacuum Technology ■), and N,N'-diphenyl-N,N'-bis-(3-methyl phenyl)-[1,1'-biphenyl]-4,4'
- Put 2 (10 mg) of cyamine (TP[lA), put 200B of tris(8-quinolitool) aluminum (AM Q3) into a different resistance heating board made of molybdenum, and reduce the pressure in the vacuum chamber to lx l1l-'Pa. .

その後、TPDA入りの前記ボートを215〜220℃
まで加熱し、TPDAを蒸着速度0.1〜0.3n議/
sて透明支持基板上に蒸着して、膜厚60n■の正孔注
入層を製膜させた。このときの基板温度は室温であった
。これを真空槽より取り出すことなく、正孔注入層の上
に、もう一つのボートより Alq3を発光層として6
0n膳積層蒸着した。蒸着条件はボート温度か230℃
で蒸着速度が0.01〜0.[12ns/s、基板温度
は室温であった。これを真空槽より取り出し、上記発光
層の上にステンレススチール製のマスクを設置し、再び
基板ホルタ−に固定した。
After that, the boat containing TPDA was heated to 215-220°C.
and TPDA at a deposition rate of 0.1 to 0.3 n/min.
A hole injection layer having a thickness of 60 nm was formed by vapor deposition on a transparent support substrate. The substrate temperature at this time was room temperature. Without taking this out of the vacuum chamber, Alq3 was placed on the hole injection layer from another boat as a light emitting layer.
A 0n layer was deposited. Vapor deposition conditions are boat temperature or 230℃
When the deposition rate is 0.01 to 0. [12 ns/s, substrate temperature was room temperature. This was taken out from the vacuum chamber, a stainless steel mask was placed on top of the light emitting layer, and it was again fixed to the substrate holder.

次に、モリラテン製の抵抗加熱ボートにマグネシウムリ
ボン1gを入れ、また違うタングステン製バスケットに
銀ワイヤー500mgを装着した。その後、真空槽を2
X IQ−’Paまて減圧してから、銀を0.1nm/
sの蒸着速度で、同時に抵抗加熱法によりもう一方のモ
リブテン製ボートからマグネシウムを1.4nm/sの
蒸着速度で蒸着し始めた。
Next, 1 g of magnesium ribbon was placed in a Mori Latin resistance heating boat, and 500 mg of silver wire was attached to another tungsten basket. After that, open the vacuum chamber 2
After reducing the pressure to X IQ-'Pa, add silver to 0.1 nm/
At the same time, magnesium was started to be deposited from the other molybdenum boat using a resistance heating method at a deposition rate of 1.4 nm/s.

上記条件で、マグネシウムと銀の混合金属電極を発光層
の上に150n−積層蒸着し対向電極とした。
Under the above conditions, a 150n layer of a mixed metal electrode of magnesium and silver was deposited on the light emitting layer to serve as a counter electrode.

大気中にて、この素子に、 ITO電極を陽極、金属電
極を除権として、直流電界をOv/cmから8.3X 
10’ v/cmまで4.2X 10’ v/cm間隔
で2秒づつ印加し、電圧電流特性を測定しながら、エー
ジングを行なった。さらに、直流電界をOv/c+sか
ら−8,3X 10’ v/cmまで4.2X 1G’
 v/Cm間隔で2秒づつ印加し、同様に電圧電流特性
を測定しながら、エージングを行なった。この後、直流
電界5.6x 20’v/c■を10分間印加し、エー
シングな行なった。
In the atmosphere, a DC electric field of 8.3X was applied to this device from Ov/cm using the ITO electrode as the anode and the metal electrode as the anode.
Aging was performed while applying up to 10' v/cm at intervals of 4.2 x 10' v/cm for 2 seconds each and measuring the voltage-current characteristics. Furthermore, the DC electric field was increased from Ov/c+s to -8.3X 10' v/cm by 4.2X 1G'
The voltage was applied for 2 seconds at v/Cm intervals, and aging was performed while measuring the voltage-current characteristics in the same manner. Thereafter, a DC electric field of 5.6 x 20'v/c was applied for 10 minutes to perform acing.

以上の工程後、窒素雰囲気中にて、周波数lKH,、デ
ーL−チーr−503、ピーク電界6.8x 10’V
/C鳳−GV/amのパルス矩形波形を、電圧発生器(
lll0DEL PG−161(NF CIRCUIT
 DESIGN BLO(:KC:O,LTD製)を用
いて印加し、素子を発光させた。
After the above steps, in a nitrogen atmosphere, frequency 1KH, DA L-Qi r-503, peak electric field 6.8x 10'V.
/C Otori-GV/am pulse rectangular waveform is generated by a voltage generator (
lll0DEL PG-161 (NF CIRCUIT
A voltage was applied using DESIGN BLO (:KC:O, manufactured by LTD) to cause the device to emit light.

なお、初期発光時における一秒当たりの時間平均輝度は
100cd/s”であった。
Note that the time average luminance per second at the time of initial light emission was 100 cd/s''.

上記条件て素子を連続発光させて2時間、 4時間およ
び50時間後の輝度低下をフォトダイオードにて測定し
た。その結果を第1表に示す。
The device was allowed to emit light continuously under the above conditions, and the decrease in brightness was measured using a photodiode after 2 hours, 4 hours, and 50 hours. The results are shown in Table 1.

実施例2 パルス矩形波形の周波数条件を200H,とじた以外は
実施例1と同様にして輝度低下の程度を調べた。その結
果を第1表に示す。
Example 2 The degree of luminance reduction was investigated in the same manner as in Example 1 except that the frequency condition of the pulse rectangular waveform was 200H. The results are shown in Table 1.

1惠勇ユ パルス矩形波形の周波数条件を50H8とした以外は実
施例1と同様にして輝度低下の程度を調べた。その結果
を第1表に示す。
1. The degree of luminance reduction was investigated in the same manner as in Example 1 except that the frequency condition of the Yuyu pulse rectangular waveform was set to 50H8. The results are shown in Table 1.

実」014 パルス矩形波形の周波数条件をzoott、とし、デユ
ーティ−条件を30% 、ピーク電界条件を9.2×1
05v/c■−0■/c曹とした以外は実施例1と同様
にして輝度低下の程度を調べた。その結果を第1表に示
す。
014 The frequency condition of the pulse rectangular waveform is zoot, the duty condition is 30%, and the peak electric field condition is 9.2×1.
The degree of reduction in brightness was examined in the same manner as in Example 1 except that 05v/c■-0■/c soda was used. The results are shown in Table 1.

ル敷透ユ 直流電界5.8x 10’v/c■で素子を駆動した以
外は実施例1と同様にして素子の輝度低下の程度を調べ
た。その結果を第1表に示す。
The degree of reduction in luminance of the device was examined in the same manner as in Example 1, except that the device was driven with a direct current electric field of 5.8 x 10'v/c. The results are shown in Table 1.

X惠璽1 1−ビス(4−ジ−p−トリアルミノフェノール)シク
ロヘキサン(TPAC)を用いて正孔注入層を形成し、
ピーク電界条件を6.9X 10’v/cm−OV/a
mとした以外は実施例1と同様にして輝度低下の程度を
調べた。その結果を第1表に示す。
Forming a hole injection layer using 1-bis(4-di-p-trialuminophenol)cyclohexane (TPAC),
Peak electric field condition is 6.9X 10'v/cm-OV/a
The degree of luminance reduction was investigated in the same manner as in Example 1 except that m was used. The results are shown in Table 1.

Kl輿1 パルス矩形波形の周波数条件を2001.とじた以外は
実施例5と同様にして輝度低下の程度を調べた。その結
果を第1表に示す。
Kl 1 The frequency condition of the pulse rectangular waveform is set to 2001. The degree of reduction in brightness was examined in the same manner as in Example 5 except that the paper was closed. The results are shown in Table 1.

害mユ パルス矩形波形の周波数条件を200)1.とし、デユ
ーティ−条件を3oz、ピーク電界条件を9.1×10
″v/c諺−OV/cmとした以外は実施例5と同様に
して輝度低下の程度を調べた。その結果を第1表に示す
Set the frequency conditions of the pulse rectangular waveform to 200) 1. The duty condition is 3oz, and the peak electric field condition is 9.1×10
The degree of luminance reduction was investigated in the same manner as in Example 5 except that the value was set to ``v/c proverb-OV/cm.The results are shown in Table 1.

星艶豊l 直流電界6.7x 10’v/c■で素子を駆動した以
外は実施例5と同様にして素子の輝度低下の程度を調べ
た。その結果を第1表に示す。
The degree of luminance reduction of the device was examined in the same manner as in Example 5, except that the device was driven with a DC electric field of 6.7 x 10'v/c. The results are shown in Table 1.

火惠輿遣 25mmx 75■■×1.1層−のサイズのガラス基
板上にITO電極を蒸着法にて100r++wの厚さで
製膜したものを透明支持基板とした。
A transparent support substrate was prepared by forming an ITO electrode into a film with a thickness of 100 r++w by vapor deposition on a glass substrate with a size of 25 mm x 75 x 1.1 layers.

この透明支持基板を市販の蒸着装置(日本真空技術■製
)の基板ホルダに固定し、モリブデン製の抵抗加熱ボー
ドにN、N’−ジフェニル−N、N’ビス−(3−メチ
ルフェニル)−[1,1’−ビフエニJし]−4,4’
−ジアミン(TPDA)を200麿g入れ、また違うモ
リブデン製の抵抗加熱ボードに1.4−ビス(2,2−
シーp−トリルビニル)キシレン(DTVX)を200
璽g入れて、真空槽をLX 10−’Paまて減圧した
This transparent support substrate was fixed to the substrate holder of a commercially available vapor deposition apparatus (manufactured by Japan Vacuum Technology ■), and N,N'-diphenyl-N,N'bis-(3-methylphenyl)- [1,1'-bihuenijishi]-4,4'
- Add 200g of diamine (TPDA) and place it on a different molybdenum resistance heating board.
p-tolylvinyl)xylene (DTVX) 200
The vacuum chamber was depressurized to LX 10-'Pa.

(−17)後、TPDA入りの前記ボートを215〜2
20℃まで加熱し、TPDAを蒸着速度(1,1〜[l
ln履/Sて透明支持基板上に蒸着して、膜厚70nm
の正孔注入層を製膜させた。このときの基板温度は室温
であった。これを真空槽より取り出すことなく、正孔注
入層の上に、もう一つのボートよりDTVXを発光層と
して60n寵積層蒸着した。蒸着条件はボート温度か2
35℃で蒸着速度か(Ll〜0.2層m/s 、基板温
度は室温であった。これを真空槽より取り出し、上記発
光層の上にステンレススチール製のマスクを設置し、再
び基板ホルダーに固定した。
After (-17), the said boat containing TPDA is 215~2
Heating to 20°C, TPDA was deposited at a deposition rate of 1,1~[l
Deposited on a transparent support substrate with a film thickness of 70 nm.
A hole injection layer was formed. The substrate temperature at this time was room temperature. Without taking this out of the vacuum chamber, DTVX was deposited as a light-emitting layer in a 60 nm stack on the hole injection layer from another boat. The deposition conditions are boat temperature or 2.
The deposition rate was 35°C (Ll ~ 0.2 layers m/s), and the substrate temperature was room temperature. This was taken out of the vacuum chamber, a stainless steel mask was placed on top of the light emitting layer, and the substrate holder was placed again. Fixed.

次に、モリブテン製の抵抗加熱ボートにマグネシウムリ
ボン1gを入れ、また違うタングステン製バスケットに
インジウム5(longを装着した。その後、真空槽を
2x 10−’Paまで減圧してから、インジウムを0
.03〜0.08n■/Sの蒸着速度で、同時に抵抗加
熱法によりもう一方のモリブデン製ボートからマグネシ
ウムを1.7〜2.3層m/sの蒸着速度で蒸着し始め
た。
Next, 1 g of magnesium ribbon was placed in a molybdenum resistance heating boat, and indium 5 (long) was placed in another tungsten basket.Then, the vacuum chamber was depressurized to 2x 10-'Pa, and indium was removed to 0.
.. At the same time, magnesium was started to be deposited from the other molybdenum boat by the resistance heating method at a deposition rate of 1.7 to 2.3 m/s.

上記条件で、マグネシウムとインジウムの混合金属電極
を発光層の上に150ns a1層蒸着し対向電極とし
た。
Under the above conditions, a 150 ns a1 layer of a mixed metal electrode of magnesium and indium was deposited on the light emitting layer to serve as a counter electrode.

大気中にて、この素子に、 ITO電極を陽極、金属電
極を陰極として、直流電界をOv/c■から7.7X 
10’ v/amまで4.2X 10’ v/cw+間
隔で2秒づつ印加し、電圧電流特性を測定しながら、エ
ージングを行なった。さらに、直流電界をOv/amか
ら−7,7X 10’ v/cssまで4.2x 10
’ v/cmMi隔で2秒づつ印加し、同様に電圧電流
特性を測定しながら、エージングを行なった。この後、
直流電界6.5X 10’v/c■を10分間印加し、
エージングを行なった。
In the atmosphere, apply a DC electric field from Ov/c to 7.7X using the ITO electrode as the anode and the metal electrode as the cathode.
Aging was performed while applying up to 10' v/am at 4.2 x 10' v/cw+ intervals for 2 seconds each and measuring the voltage-current characteristics. Furthermore, the DC electric field was increased from Ov/am to -7,7X 10' v/css by 4.2x 10
'V/cmMi was applied for 2 seconds at intervals, and aging was performed while measuring the voltage-current characteristics in the same manner. After this,
Apply a DC electric field of 6.5X 10'v/c for 10 minutes,
Aging was performed.

以上の工程後、窒素雰囲気中にて、周波数508、 、
デューテ4 50% 、 ピーク電界7.7X 1(1
’v/cm−OV/c■のパルス矩形波形を印加し、素
子を発光させた。なお、初期発光時における一秒当たり
の時間平均輝度は100cd/m”であった。
After the above steps, in a nitrogen atmosphere, the frequency of 508, ,
Duty 4 50%, peak electric field 7.7X 1 (1
A pulse rectangular waveform of 'v/cm-OV/c■ was applied to cause the device to emit light. Note that the time average luminance per second at the time of initial light emission was 100 cd/m''.

上記条件で素子を連続発光させて2時間、 4時間およ
び50時間後の輝度低下をフォトダイオードにて測定し
た。その結果を第1表に示す。
The device was allowed to emit light continuously under the above conditions, and the decrease in brightness was measured using a photodiode after 2 hours, 4 hours, and 50 hours. The results are shown in Table 1.

塩敷璽J 直流電界7.2x 10’v/c■て素子を駆動した以
外は実施例8と同様にして素子の輝度低下の程度を調べ
た。その結果を第1表に示す。
The degree of luminance reduction of the device was examined in the same manner as in Example 8, except that the device was driven with a DC electric field of 7.2×10'v/c. The results are shown in Table 1.

[以下、余白] 第 表 第1表から明らかなように、本発明の駆動方法(実施例
1〜8)によれば、直流電圧駆動の場合(比較例1〜3
)に比べ時間に対する輝度低下か小さくなっている。
[Hereinafter, blank spaces] As is clear from Table 1, according to the driving method of the present invention (Examples 1 to 8), in the case of DC voltage driving (Comparative Examples 1 to 3)
), the brightness decrease over time is smaller than that of

[発明の効果] 以上説明したように本発明の有機EL素子の駆動方法お
よびこの駆動方法を用いた発光装置によれば、素子の発
熱による輝度低下を抑え、素子の高寿命化を図ることか
できる。
[Effects of the Invention] As explained above, according to the method for driving an organic EL element of the present invention and the light emitting device using this driving method, it is possible to suppress a reduction in brightness due to heat generation of the element and to extend the life of the element. can.

【図面の簡単な説明】 第1図(a)〜(e)は第一発明に係る有機EL素子の
駆動方法に用いられる駆動波形の態様を示す図、第2図
は同じく「直前の発光時間」を説明するための波形図、
第3図は第二発明に係る発光装置の一例を示す正面図で
ある。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1(a) to (e) are diagrams showing aspects of driving waveforms used in the method for driving an organic EL element according to the first invention, and FIG. A waveform diagram to explain
FIG. 3 is a front view showing an example of a light emitting device according to the second invention.

Claims (2)

【特許請求の範囲】[Claims] (1)陽極と論極の間に有機化合物からなる発光層を含
む有機多層部を有する有機エレクトロルミネッセンス素
子の発光駆動において、一秒当たりの時間平均輝度が直
流駆動を行なう際の標準輝度以上となるような発光駆動
波形てあって、かつ、この発光駆動波形における無発光
時間が、見掛け上連続発光駆動と認識される周期以下で
あり、素子内の温度緩和時間以上かつ直前の発光時間以
上であるような発光駆動波形を用いて駆動することを特
徴とした有機エレクトロルミネッセンス素子の駆動方法
(1) In light emission driving of an organic electroluminescent device having an organic multilayer part including a light emitting layer made of an organic compound between the anode and the pole, the time average brightness per second is higher than the standard brightness when driving with direct current. There is a light emission drive waveform such that the non-emission time in this light emission drive waveform is shorter than the period that is apparently recognized as continuous light emission drive, longer than the temperature relaxation time in the element, and longer than the immediately preceding light emission time. A method for driving an organic electroluminescent device, characterized in that it is driven using a certain light emission driving waveform.
(2)陽極と陰極の間に有機化合物からなる発光層を含
む有機多層部を有する有機エレクトロルミネッセンス素
子と、 一秒当たりの時間平均輝度が直流駆動を行なう際の標準
輝度以上となるように発光駆動波形を設定し、かつ、こ
の発光駆動波形における無発光時間が、見掛け上連続発
光駆動と認識される周期以下であり、素子内の温度緩和
時間以上かつ直前の発光時間以上であるように発光駆動
波形を設定した駆動源とを具備することを特徴とした発
光装置。
(2) An organic electroluminescent element having an organic multilayer part including a light-emitting layer made of an organic compound between an anode and a cathode, and an organic electroluminescent element that emits light so that the time average brightness per second is higher than the standard brightness when driving with direct current. Set the drive waveform, and emit light so that the non-emission time in this light emission drive waveform is shorter than the cycle that is recognized as continuous light emission drive, longer than the temperature relaxation time in the element, and longer than the previous light emission time. A light emitting device comprising a drive source having a set drive waveform.
JP2258695A 1990-09-27 1990-09-27 Driving method of organic electroluminescence element and light emitting device using the driving method Expired - Lifetime JP2766063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2258695A JP2766063B2 (en) 1990-09-27 1990-09-27 Driving method of organic electroluminescence element and light emitting device using the driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2258695A JP2766063B2 (en) 1990-09-27 1990-09-27 Driving method of organic electroluminescence element and light emitting device using the driving method

Publications (2)

Publication Number Publication Date
JPH04137392A true JPH04137392A (en) 1992-05-12
JP2766063B2 JP2766063B2 (en) 1998-06-18

Family

ID=17323814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2258695A Expired - Lifetime JP2766063B2 (en) 1990-09-27 1990-09-27 Driving method of organic electroluminescence element and light emitting device using the driving method

Country Status (1)

Country Link
JP (1) JP2766063B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786796A (en) * 1995-03-03 1998-07-28 Tdk Corporation Image desplay device
WO2004057561A1 (en) * 2002-12-19 2004-07-08 Semiconductor Energy Laboratory Co., Ltd. Driving method for light emitting device, and electronic equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786796A (en) * 1995-03-03 1998-07-28 Tdk Corporation Image desplay device
WO2004057561A1 (en) * 2002-12-19 2004-07-08 Semiconductor Energy Laboratory Co., Ltd. Driving method for light emitting device, and electronic equipment
JPWO2004057561A1 (en) * 2002-12-19 2006-04-27 株式会社半導体エネルギー研究所 Driving method of light emitting device and electronic apparatus
US7573445B2 (en) 2002-12-19 2009-08-11 Semiconductor Energy Laboratory Co., Ltd. Driving method of light emitting device and electronic apparatus
JP5137294B2 (en) * 2002-12-19 2013-02-06 株式会社半導体エネルギー研究所 Driving method of light emitting device

Also Published As

Publication number Publication date
JP2766063B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
US7279237B2 (en) OLEDs doped with phosphorescent compounds
US20040113547A1 (en) Electroluminescent devices with low work function anode
JPH0414794A (en) Manufacture of organic electroluminescence element
JP3905265B2 (en) Organic electroluminescence device
KR100962739B1 (en) Driving method of electroluminescent device
JPH10321374A (en) Organic el(electroluminescent)element
JPH11297474A (en) Organic electroluminescence element
US10839734B2 (en) OLED color tuning by driving mode variation
US20130069552A1 (en) Organic electroluminescent device with space charge/voltage instability stabilization drive
JPH02139892A (en) Organic thin film el element
JPH0613181A (en) Emission method of organic thin film light emitting element
JP4154215B2 (en) Method for manufacturing organic electroluminescence display element
JP4801907B2 (en) Transparent electrode for organic electroluminescence element, organic electroluminescence element and method for producing the same
JP3129200B2 (en) Light emitting element
JPH0665569A (en) Electroluminescent element
KR100547055B1 (en) Organic Electroluminescent Device
JPH04137392A (en) Driving method for organic electro-luminescence element and emission device making use of said driving method
KR100581639B1 (en) Organic Electroluminescent Device
JPH0617047A (en) Organic electroluminescent element
JP2947276B1 (en) Driving method of organic EL device
JP4306026B2 (en) Method for driving light emission of organic electroluminescence device
JPH06231881A (en) Organic thin film luminous element
KR102115567B1 (en) Organic electroluminescence device
JP3253368B2 (en) EL device
JPH09134786A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100403

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100403

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110403

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110403

Year of fee payment: 13