JPH04137361A - Sealed type nickel-hydrogen storage battery - Google Patents

Sealed type nickel-hydrogen storage battery

Info

Publication number
JPH04137361A
JPH04137361A JP2258016A JP25801690A JPH04137361A JP H04137361 A JPH04137361 A JP H04137361A JP 2258016 A JP2258016 A JP 2258016A JP 25801690 A JP25801690 A JP 25801690A JP H04137361 A JPH04137361 A JP H04137361A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
nickel
storage battery
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2258016A
Other languages
Japanese (ja)
Inventor
Seiji Kamiharashi
征治 上原子
Takashi Takano
隆 高野
Toshihisa Hiroshima
広島 敏久
Munehisa Ikoma
宗久 生駒
Shingo Tsuda
津田 信吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2258016A priority Critical patent/JPH04137361A/en
Publication of JPH04137361A publication Critical patent/JPH04137361A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the oxidation-resistant property of a negative electrode and to improve the stabity of the cell internal pressure and the cycle life by mixing a metallic condition of nickel layer and cobalt layer, and an oxide layer of at least one component of the alloy components to the surface of the alloy powder of a hydrogen storage alloy negative electrode. CONSTITUTION:To the surface of a hydrogen storage alloy, not the alloy condition of nickel and cobalt, but a metallic condition of nickel layer and cobalt layer, and an oxide layer of La, Ce, Co, Mn, or the like which is at least one component of the alloy components are mixed, and a hydrogen storage alloy negative electrode including these powders and a binder, and a nickel oxide positive electrode are contacted closely through a separator to form an electrode body, which is housed in a battery container, and an electrolyte is poured and sealed. As a result, at the oxidation-resistant property in the electrolyte, and in an overcharged condition, the resistance to oxidation to the oxygen gas generated from the positive electrode is increased, and the service life of the battery is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電解液中で電気化学的に水素を可逆的に吸蔵
・放出する水素吸蔵合金を負極の電極材料に用いた密閉
形ニッケル・水素蓄電池に関するものであるつ 従来の技術 活物質である水素を多量に吸蔵・放出しうる水素吸蔵合
金は、高エネルギー密度を有する電極材料として注目さ
れ、高容量化を目指す密閉形ニッケル・水素蓄電池への
応用が図られている。しかし、水素吸蔵合金はアルカリ
電解液中で酸化されやすく、しかも過充電時に正極から
発生する酸素ガスによって酸化が促進され、表面に水酸
化物を形成するという問題があった。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sealed nickel-hydrogen storage battery using a hydrogen storage alloy that electrochemically absorbs and releases hydrogen reversibly in an electrolytic solution as a negative electrode material. Hydrogen storage alloys, which are active materials that can store and release large amounts of hydrogen, are attracting attention as electrode materials with high energy density, and are being used in sealed nickel-metal hydride storage batteries that aim to increase capacity. Applications are being planned. However, hydrogen storage alloys are easily oxidized in alkaline electrolytes, and the oxidation is accelerated by oxygen gas generated from the positive electrode during overcharging, resulting in the formation of hydroxides on the surface.

このために負極である水素吸蔵電極の充電効率が低下し
、密閉電池中で水素ガスが多量に発生して電池内圧が上
昇し、漏液や電池の内部抵抗の増大により、充放電サイ
クル寿命を短かいものにするという欠点がある。
This reduces the charging efficiency of the hydrogen storage electrode, which is the negative electrode, and generates a large amount of hydrogen gas in the sealed battery, increasing the internal pressure of the battery, causing leakage and increasing internal resistance of the battery, which shortens the charge/discharge cycle life. It has the disadvantage of being short.

これまで上述したような水素吸蔵合金の酸化を防止して
長寿命化を図るために、水素吸蔵合金表面の少なくとも
一部に合金成分の酸化被膜をあらかじめ形成した粉末と
触媒および結着剤からなる水素吸蔵合金負極を用いたニ
ッケル・水素蓄電池が提案されている(特開昭62−2
91862号公報)。しかしその効果は十分ではなかっ
た。
In order to prevent oxidation of the hydrogen storage alloy and extend its life as described above, a hydrogen storage alloy is made of a powder, a catalyst, and a binder that has an oxide film of the alloy component formed in advance on at least a portion of the surface of the hydrogen storage alloy. A nickel-hydrogen storage battery using a hydrogen-absorbing alloy negative electrode has been proposed (Japanese Patent Application Laid-Open No. 1986-2
91862). However, the effect was not sufficient.

発明が解決しようとする課題 本発明は上記の課題を解決するものである。すなわち水
素吸蔵合金負極の耐酸化性を高めることによシ、電池内
圧の安定性と電池のサイクル寿命の向上を図ることを目
的とするものである。
Problems to be Solved by the Invention The present invention aims to solve the above problems. That is, the purpose is to improve the stability of battery internal pressure and the cycle life of the battery by increasing the oxidation resistance of the hydrogen storage alloy negative electrode.

さらに合金表面に酸化被膜を形成することによって起こ
る電気抵抗の増大をおさえ、ガス消失触媒の添加を不必
要にすることを目的とするものである。
Furthermore, the purpose is to suppress the increase in electrical resistance caused by the formation of an oxide film on the alloy surface, thereby making it unnecessary to add a gas dissipation catalyst.

課題を解決するための手段 この課題を解決するために本発明は、水素吸蔵合金の表
面に合金状態のニッケルあるいはコバルトではなく、金
属状態のニッケル層とコバルト層および合金成分の少な
くとも一成分、例えばLA。
Means for Solving the Problems In order to solve this problem, the present invention provides a surface of a hydrogen storage alloy with a nickel layer and a cobalt layer in a metallic state, and at least one of the alloy components, e.g., instead of nickel or cobalt in an alloy state. L.A.

C6,Go、Mnの酸化物層を混在させ、この粉末と結
着剤を含有する水素吸蔵合金負極と、ニッケル酸化物正
極とをセパレータを介して密着させた電極体を電池容器
内に収容し、電解液を注入してこれを密閉して電池とし
たものである。
An electrode body in which a hydrogen storage alloy negative electrode containing a mixture of C6, Go, and Mn oxide layers and containing this powder and a binder and a nickel oxide positive electrode is closely attached via a separator is housed in a battery container. A battery is created by injecting an electrolyte and sealing it.

なお本発明に用いられる表面に金属状態のニッケル層と
コバルト層および合金成分の少なくとも一成分の酸化物
層を混在させた水素吸蔵合金粉末は粉砕後、アルカリ浸
漬処理・水洗・乾燥する方法あるいは機械的粉砕を湿式
で行い、その後水洗・乾燥を行う方法などによシ調整す
ることができる。
In addition, the hydrogen-absorbing alloy powder used in the present invention, which has a surface mixed with a metallic nickel layer, a cobalt layer, and an oxide layer of at least one of the alloy components, is prepared by a method or machine in which the powder is pulverized and then immersed in an alkali, washed with water, and dried. It can be adjusted by wet grinding, followed by washing and drying.

作用 このような密閉形ニッケル・水素蓄電池によれば、水素
吸蔵合金負極の合金粉末の表面に金属状態のニッケル層
とコバルト層および合金成分の少なくとも一成分の酸化
物層を混在させているため、アルカリ電解液中における
耐酸化性および過充電時において正極から発生する酸素
ガスに対する耐酸化性が高まり、電池寿命の向上を可能
にすることとなる。
Function: According to such a sealed nickel-metal hydride storage battery, the surface of the alloy powder of the hydrogen-absorbing alloy negative electrode contains a metallic nickel layer, a cobalt layer, and an oxide layer of at least one of the alloy components. The oxidation resistance in an alkaline electrolyte and the oxidation resistance against oxygen gas generated from the positive electrode during overcharging are improved, making it possible to improve battery life.

また、このような表面層を形成することによって水素ガ
スの吸収速度を促進させる触媒の効果を示緬すとともに
、表面の電気抵抗も酸化物層のみを形成した場合に比べ
て小さく、カーボン触媒などを添加することなく、充電
時のガス発生量を押さえるため、充放電サイクルの繰り
返しによる電池内圧の上昇はわずかであり、電池寿命の
向上を可能にすることとなる。
In addition, the formation of such a surface layer shows the effectiveness of the catalyst in accelerating the absorption rate of hydrogen gas, and the electrical resistance of the surface is also lower than that when only an oxide layer is formed. Since the amount of gas generated during charging is suppressed without adding anything, the internal pressure of the battery increases only slightly due to repeated charging and discharging cycles, making it possible to improve the battery life.

なお、本発明において表面に形成される酸化物混在層の
厚みは200〜2000人の範囲が適当であり、この酸
化物混在層内に混在する合金状態でない金属ニッケルお
よび金属コバルトの存在量は合計で飽和磁化量として0
.05〜12emu/gの範囲が適当であり、かつこれ
らの表面物性を有する水素吸蔵合金粉末のBET比表面
積は0.1〜1tsvf/gの範囲が最適である。
In addition, in the present invention, the appropriate thickness of the oxide mixed layer formed on the surface is in the range of 200 to 2000, and the amount of non-alloyed metal nickel and metal cobalt mixed in this oxide mixed layer is 0 as the saturation magnetization amount
.. The range of 0.05 to 12 emu/g is appropriate, and the BET specific surface area of the hydrogen storage alloy powder having these surface properties is optimally in the range of 0.1 to 1 tsvf/g.

実施例 以下、本発明の実施例を図面を参照しながら説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

水素吸蔵合金の組成として、’m ’ix、s sMn
o、4AlO,3co0.75 (Mlはミツシュメタ
ル)を選び、機械的な方法例えばジェットミルあるいは
ボールミルで粉砕し、所定の平均粒径をもつ合金粉末を
調製した。
As the composition of the hydrogen storage alloy, 'm'ix, s sMn
o, 4AlO, 3co0.75 (Ml is Mitshu Metal) was selected and ground by a mechanical method such as a jet mill or a ball mill to prepare an alloy powder having a predetermined average particle size.

次に、この粉末をアルカリ液である比重1,35のKO
H水溶液中に80’Cで30分間浸漬した後、水洗して
乾燥した。
Next, this powder is mixed with KO, which is an alkaline solution and has a specific gravity of 1.35.
After being immersed in an H aqueous solution at 80'C for 30 minutes, it was washed with water and dried.

この粉末の表面物性を、酸化物層の厚みをオーンエ電子
分光分析および燃焼−赤外分光分析法による酸素の分析
により求めた。金属状態のニッケルおよびコバルトにつ
いては、この合金が弱い磁性体であり、ニッケルあるい
はコバルトが単独の金属状態になると強磁性体に変化す
るため、飽和磁化率を測定することによって定量するこ
とが可能である。
The surface properties of this powder were determined by the thickness of the oxide layer and oxygen analysis using Ohne electron spectroscopy and combustion-infrared spectroscopy. Regarding nickel and cobalt in the metallic state, this alloy is weakly magnetic, and when nickel or cobalt becomes a single metallic state, it changes to a ferromagnetic material, so it is possible to quantify it by measuring the saturation magnetic susceptibility. be.

またこれらの元素は合金の他の元素に比べ、KOH水溶
液に対する溶解速度が遅いため、表面層に存在している
ことは容易に推定される。比表面積はチッ素ガスを用い
てBIT法によシ測定した。
Furthermore, since these elements have a slower dissolution rate in a KOH aqueous solution than other elements in the alloy, it is easily presumed that they are present in the surface layer. The specific surface area was measured by the BIT method using nitrogen gas.

同様にして、所定の粒径の合金粉末を作製し、次いでK
OH濃度、処理温度、処理時間および乾燥温度を段階的
に変化させて表面物性の異なる粉末試料を作製した。こ
れらの粉末試料をポリビニルアルコールの5wt%水溶
液でベーヌト状にし、電極基体である発泡ニッケル製多
孔体に充填、乾燥、加圧して水素吸蔵電極を得た。次に
、酸化ニッケル正極として公知の方法で得られた発泡式
ニッケル正極(理論充填電気量1o5o〜1100mム
h)を用い、セパレータにはポリアミドの不織布、電解
液には水酸化リチウムを40 g / l溶解した比重
1300KOH水溶液をそれぞれ使用し、前記負極と組
合せて公称容量1000 mAhの単3サイズ(ムλサ
イズ)の密閉形ニッケル・水素蓄電池を構成した。
In the same manner, an alloy powder with a predetermined particle size was prepared, and then K
Powder samples with different surface properties were prepared by changing the OH concentration, treatment temperature, treatment time, and drying temperature in stages. These powder samples were made into a beinet shape with a 5 wt % aqueous solution of polyvinyl alcohol, filled into a porous nickel foam material serving as an electrode base, dried, and pressurized to obtain a hydrogen storage electrode. Next, a foamed nickel positive electrode obtained by a known method (theoretical charging charge of 1050 to 1100 mmh) was used as a nickel oxide positive electrode, a polyamide nonwoven fabric was used as the separator, and 40 g/min of lithium hydroxide was used as the electrolyte. Each dissolved KOH aqueous solution with a specific gravity of 1300 was used and combined with the negative electrode to form a sealed nickel-metal hydride storage battery of AA size (mu λ size) with a nominal capacity of 1000 mAh.

これらの電池を20°Cの一定温度下で、1サイクル目
の充電を4cmムで15時間、2サイクル目以後はV3
Cmムで4.5時間行った。また放電は2サイクル目ま
でをQ、、2 C!Itム一定で、3サイクル目以後は
0.50 mム一定とし、終止電圧は1.ovとして行
った。
These batteries were charged at a constant temperature of 20°C for 15 hours with a 4 cm charger for the first cycle, and at V3 from the second cycle onwards.
It was conducted for 4.5 hours at Cmm. Also, the discharge is Q,,2C! up to the second cycle. It is constant, 0.50 mm is constant after the third cycle, and the final voltage is 1. I went as an ov.

第1図にこの際のサイクル寿命および1oサイクル後の
電池内圧と合金表面の酸化物層の厚みとの関係を示した
FIG. 1 shows the relationship between the cycle life and the battery internal pressure after 10 cycles and the thickness of the oxide layer on the alloy surface.

第2図には合金表面の酸化物混在層に混在する合金状態
でない金属状態のニッケルおよびコバルト量を飽和磁化
量で把握し、この飽和磁化量とサイクル寿命の関係を示
した。第3図にはBIT比表面積とサイクル寿命との関
係を示した。図中のサイクル寿命については、いずれも
放電容量が公称容量の棒になったサイクル数で示した。
FIG. 2 shows the amount of nickel and cobalt in the non-alloyed metal state mixed in the oxide mixed layer on the alloy surface in terms of the saturation magnetization amount, and shows the relationship between the saturation magnetization amount and the cycle life. FIG. 3 shows the relationship between BIT specific surface area and cycle life. The cycle life in the figure is expressed by the number of cycles at which the discharge capacity becomes a bar at the nominal capacity.

第1図、第2図および第3図から明らかなように、酸化
物混在層の厚みはおよそ200〜2000人の範囲で、
磁化量はおよそ0.05〜12 evau/gの範囲で
、BEET比表面積はおよそ0.1〜10rrf/gの
範囲で、それぞれサイクル寿命が長くなることがわかる
。また第1図から明らかなようにこのような表面物性を
形成することによって、電池内圧を低レベルに保つこと
ができる。以上はアルカリ浸漬処理による実施例につい
て記述したが、合金の粉砕を湿式粉砕によって行う方法
、合金表面にあらかじめ所定の膜厚の酸化物層を空気酸
化法で形成後、ニッケルあるいはコバルトを蒸着する方
法などによっても同様な効果が得られる。
As is clear from FIGS. 1, 2, and 3, the thickness of the mixed oxide layer ranges from about 200 to 2000.
It can be seen that the magnetization amount is in the range of about 0.05 to 12 evau/g, and the BEET specific surface area is in the range of about 0.1 to 10 rrf/g, and the cycle life is longer in each case. Furthermore, as is clear from FIG. 1, by forming such surface properties, the internal pressure of the battery can be maintained at a low level. The above has described an example using an alkali immersion treatment, but there is also a method in which the alloy is pulverized by wet pulverization, and a method in which an oxide layer of a predetermined thickness is formed on the alloy surface by air oxidation, and then nickel or cobalt is vapor-deposited. A similar effect can also be obtained by

発明の効果 以上詳述した如く本発明によれば、電池寿命が長く、電
池内で発生する酸素および水素による電池内圧の上昇を
低く抑えることのできる密閉形ニッケル・水素蓄電池を
提供できるものである。
Effects of the Invention As detailed above, according to the present invention, it is possible to provide a sealed nickel-metal hydride storage battery that has a long battery life and can suppress the increase in internal pressure of the battery due to oxygen and hydrogen generated within the battery. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の密閉形ニッケル・水素蓄電池
の負極合金表面の酸化物層の厚みと放電容量が公称容量
の棒になるまでの充放電サイクル数および電池内圧との
関係を示す特性図、第2図は本発明の実施例の密閉形ニ
ッケル・水素蓄電池の負極合金表面の酸化物と混在する
ニッケルおよびコバルト量と放電容量が公称容量のにに
なるまでの充放電サイクル数との関係を示す特性図、第
3図は本発明の実施例の密閉形ニッケル・水素蓄電池の
負極合金のBET比表面積と放電容量が公称容量の棒に
なるまでの充放電サイクル数との関係を示す特性図であ
る。 代理人の氏名 弁理士 小鍜治 明 ほか2名#−”?
 CS目樹◆@
Figure 1 shows the relationship between the thickness of the oxide layer on the surface of the negative electrode alloy of a sealed nickel-metal hydride storage battery according to an embodiment of the present invention, the number of charge/discharge cycles until the discharge capacity reaches the nominal capacity, and the battery internal pressure. The characteristic diagram, Figure 2, shows the amount of nickel and cobalt mixed with oxides on the surface of the negative electrode alloy of the sealed nickel-metal hydride storage battery of the embodiment of the present invention, and the number of charge/discharge cycles until the discharge capacity reaches the nominal capacity. Figure 3 shows the relationship between the BET specific surface area of the negative electrode alloy of the sealed nickel-metal hydride storage battery of the embodiment of the present invention and the number of charge/discharge cycles until the discharge capacity reaches the nominal capacity. FIG. Name of agent: Patent attorney Akira Okaji and 2 others #-”?
CS Meki◆@

Claims (1)

【特許請求の範囲】 (1)金属酸化物を主たる構成材料とする正極と、活物
質である水素を電気化学的に吸蔵・放出することが可能
な水素吸蔵合金を主たる構成材料とする負極と、アルカ
リ電解液と、セパレータとからなり、前記負極の水素吸
蔵合金の表面は、合金状態のニッケルあるいはコバルト
ではなく、金属状態のニッケル層とコバルト層および合
金成分の少なくとも一成分の酸化物層が混在しているこ
とを特徴とする密閉形ニッケル・水素蓄電池、 (2)負極の水素吸蔵合金の組成が、一般式A_1_−
_xB_xC_y(但し、AはLa単独か、希土類元素
の混合物、またはミッシュメタル、BはTi,Zr,C
a,Y,Hfのうちの一種またはこれらの混合物、0≦
x≦0.2であり、CはNi,Co,Mn,Al,Fe
,Cu,Crのうちの一種またはこれらの混合物からな
り、Niの場合y>3.5、Coの場合y≦1.0、M
nの場合y≦0.6、Alの場合y≦0.5、Feの場
合y≦0.3、Cuの場合y≦1.0、Crの場合y≦
0.3で示され4.7≦y≦5.3である)で表される
ことを特徴とする特許請求の範囲第1項記載の密閉形ニ
ッケル・水素蓄電池。 (3)負極の水素吸蔵合金の組成が、一般式A_1_−
_xB_xC_yD_z(但し、AはLa単独か、希土
類元素の混合物、またはミッシュメタル、BはTi,Z
r,Ca,Y,Hf、のうちの一種またはこれらの混合
物、0≦x≦0.2であり、CはNi,Co,Mn,A
l,Fe,Cu,Crのうちの一種またはこれらの混合
物であり、Niの場合y≧3.5、Coの場合y≦1.
0、Mnの場合y≦0.6、Alの場合y≦0.5、F
eの場合y≦0.3、Cuの場合y≦1.0、Crの場
合y≦0.3で示され、DはV,In,Tl,Gaのう
ちの一種またはこれらの混合物であり、Vの場合0.0
2≦Z≦0.3、Inの場合0.02≦Z≦0.1、T
lの場合0.02≦Z≦0.1、Gaの場合0.02≦
Z≦0.1で示され、4.7≦y+z≦5.3である)
で示されることを特徴とする特許請求の範囲第1項記載
の密閉形ニッケル・水素蓄電池。 (4)水素吸蔵合金の表面層の金属状態のニッケルおよ
びコバルト量が飽和磁化量で0.05〜12emu/g
であることを特徴とする特許請求の範囲第1項記載の密
閉形ニッケル・水素蓄電池。 (6)水素吸蔵合金の表面の酸化物混在層の厚みが20
0〜2000Åであることを特徴とする特許請求の範囲
第1項記載の密閉形ニッケル・水素蓄電池。 (6)水素吸蔵合金のBET比表面積が、0.1〜10
m^2/gであることを特徴とする特許請求の範囲第1
項記載の密閉形ニッケル・水素蓄電池。 (7)水素吸蔵合金粉末表面がアルカリ浸漬処理されて
いることを特徴とする特許請求の範囲第1項記載の密閉
形ニッケル・水素蓄電池。 (8)水素吸蔵合金粉末表面が湿式粉砕により改良され
ていることを特徴とする特許請求の範囲第1項記載の密
閉形ニッケル・水素蓄電池。
[Claims] (1) A positive electrode whose main constituent material is a metal oxide, and a negative electrode whose main constituent material is a hydrogen storage alloy that can electrochemically absorb and release hydrogen, which is an active material. , an alkaline electrolyte, and a separator, and the surface of the hydrogen storage alloy of the negative electrode is not composed of nickel or cobalt in an alloy state, but a nickel layer and a cobalt layer in a metallic state, and an oxide layer of at least one of the alloy components. A sealed nickel-metal hydride storage battery characterized in that (2) the composition of the hydrogen storage alloy of the negative electrode is expressed by the general formula A_1_-
_xB_xC_y (However, A is La alone, a mixture of rare earth elements, or misch metal, B is Ti, Zr, C
one of a, Y, Hf or a mixture thereof, 0≦
x≦0.2, and C is Ni, Co, Mn, Al, Fe
, Cu, Cr, or a mixture thereof, y>3.5 in the case of Ni, y≦1.0 in the case of Co, M
y≦0.6 for n, y≦0.5 for Al, y≦0.3 for Fe, y≦1.0 for Cu, y≦ for Cr.
0.3 and 4.7≦y≦5.3). The sealed nickel-hydrogen storage battery according to claim 1. (3) The composition of the hydrogen storage alloy of the negative electrode is expressed by the general formula A_1_-
_xB_xC_yD_z (However, A is La alone, a mixture of rare earth elements, or misch metal, B is Ti, Z
r, Ca, Y, Hf, or a mixture thereof, 0≦x≦0.2, and C is Ni, Co, Mn, A
1, Fe, Cu, and Cr, or a mixture thereof; in the case of Ni, y≧3.5; in the case of Co, y≦1.
0, y≦0.6 for Mn, y≦0.5 for Al, F
In the case of e, y≦0.3, in the case of Cu, y≦1.0, and in the case of Cr, y≦0.3, D is one of V, In, Tl, Ga or a mixture thereof, 0.0 for V
2≦Z≦0.3, In case of 0.02≦Z≦0.1, T
0.02≦Z≦0.1 for l, 0.02≦ for Ga
Z≦0.1, and 4.7≦y+z≦5.3)
A sealed nickel-metal hydride storage battery according to claim 1, characterized in that: (4) The amount of nickel and cobalt in the metallic state of the surface layer of the hydrogen storage alloy is 0.05 to 12 emu/g in terms of saturation magnetization.
A sealed nickel-metal hydride storage battery according to claim 1, characterized in that: (6) The thickness of the oxide mixed layer on the surface of the hydrogen storage alloy is 20
The sealed nickel-hydrogen storage battery according to claim 1, characterized in that the thickness is 0 to 2000 Å. (6) The BET specific surface area of the hydrogen storage alloy is 0.1 to 10
Claim 1 characterized in that m^2/g
Sealed nickel-metal hydride storage battery as described in section. (7) The sealed nickel-hydrogen storage battery according to claim 1, wherein the surface of the hydrogen-absorbing alloy powder is subjected to alkali immersion treatment. (8) The sealed nickel-hydrogen storage battery according to claim 1, wherein the surface of the hydrogen-absorbing alloy powder is improved by wet pulverization.
JP2258016A 1990-09-26 1990-09-26 Sealed type nickel-hydrogen storage battery Pending JPH04137361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2258016A JPH04137361A (en) 1990-09-26 1990-09-26 Sealed type nickel-hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2258016A JPH04137361A (en) 1990-09-26 1990-09-26 Sealed type nickel-hydrogen storage battery

Publications (1)

Publication Number Publication Date
JPH04137361A true JPH04137361A (en) 1992-05-12

Family

ID=17314360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2258016A Pending JPH04137361A (en) 1990-09-26 1990-09-26 Sealed type nickel-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JPH04137361A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843371A1 (en) * 1996-11-18 1998-05-20 Shin-Etsu Chemical Co., Ltd. Hydrogen storage alloy powder and an electrode comprising the same
EP0845823A1 (en) * 1996-11-29 1998-06-03 SANYO ELECTRIC Co., Ltd. Hydrogen absorbing alloy electrode, method of fabricating hydrogen absorbing alloy electrode, and alkali secondary battery
JP2001135311A (en) * 1999-11-04 2001-05-18 Matsushita Electric Ind Co Ltd Alkaline storage battery
JP2002343349A (en) * 2001-05-17 2002-11-29 Matsushita Electric Ind Co Ltd Hydrogen storage alloy electrode
WO2015199072A1 (en) * 2014-06-27 2015-12-30 Fdk株式会社 Nickel hydrogen secondary battery
CN110106426A (en) * 2019-04-29 2019-08-09 北京铂陆氢能科技开发有限公司 Easily-activated hydrogen bearing alloy, its manufacturing method and smelting equipment

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5968225A (en) * 1996-11-18 1999-10-19 Shin-Etsu Chemical Co., Ltd. Hydrogen storage alloy powder and an electrode comprising the same
EP0843371A1 (en) * 1996-11-18 1998-05-20 Shin-Etsu Chemical Co., Ltd. Hydrogen storage alloy powder and an electrode comprising the same
EP0845823A1 (en) * 1996-11-29 1998-06-03 SANYO ELECTRIC Co., Ltd. Hydrogen absorbing alloy electrode, method of fabricating hydrogen absorbing alloy electrode, and alkali secondary battery
US6605387B1 (en) 1999-11-04 2003-08-12 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery
JP2001135311A (en) * 1999-11-04 2001-05-18 Matsushita Electric Ind Co Ltd Alkaline storage battery
US6808549B2 (en) 2001-05-17 2004-10-26 Matsushita Electric Industrial Co., Ltd Hydrogen absorption alloy electrode
JP2002343349A (en) * 2001-05-17 2002-11-29 Matsushita Electric Ind Co Ltd Hydrogen storage alloy electrode
US7070644B2 (en) 2001-05-17 2006-07-04 Matsushita Electric Industrial Co., Ltd. Hydrogen absorption alloy electrode
WO2015199072A1 (en) * 2014-06-27 2015-12-30 Fdk株式会社 Nickel hydrogen secondary battery
JP2016012443A (en) * 2014-06-27 2016-01-21 Fdk株式会社 Nickel-hydrogen secondary battery
CN106463786A (en) * 2014-06-27 2017-02-22 Fdk株式会社 Nickel hydrogen secondary battery
CN106463786B (en) * 2014-06-27 2020-04-21 Fdk株式会社 Nickel-hydrogen secondary battery
US10693194B2 (en) 2014-06-27 2020-06-23 Fdk Corporation Nickel hydrogen secondary battery
CN110106426A (en) * 2019-04-29 2019-08-09 北京铂陆氢能科技开发有限公司 Easily-activated hydrogen bearing alloy, its manufacturing method and smelting equipment
CN110106426B (en) * 2019-04-29 2020-09-04 北京铂陆氢能科技开发有限公司 Easily activated hydrogen storage alloy, method for producing same, and melting apparatus

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
JP2926734B2 (en) Alkaline storage battery using hydrogen storage alloy
KR100416428B1 (en) A hydrogen occlusion electrode, a nickel electrode, and an alkaline storage battery
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPH06103973A (en) Nickel positive electrode for alkali secondary battery nickel-hydrogen secondary battery employing aforesaid nickel positive electrode
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JPH0521064A (en) Nickel hydroxide4 active material powder and nickel positive electrode and alkaline storage battery using this
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JPH04137361A (en) Sealed type nickel-hydrogen storage battery
JP2001076730A (en) Nickel-hydrogen secondary battery
JP4420767B2 (en) Nickel / hydrogen storage battery
JP4747233B2 (en) Alkaline storage battery
JP3200822B2 (en) Nickel-metal hydride storage battery
JP3653710B2 (en) Hydrogen storage electrode
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JPH0737609A (en) Alkaline storage battery
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP3198896B2 (en) Nickel-metal hydride battery
JP2733230B2 (en) Sealed nickel-hydrogen storage battery using hydrogen storage alloy
JP3221040B2 (en) Alkaline storage battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JPH04284369A (en) Nickel-metal hydride storage battery
JP2679441B2 (en) Nickel-metal hydride battery