JPH04136172A - Method for coating inside with diamond - Google Patents

Method for coating inside with diamond

Info

Publication number
JPH04136172A
JPH04136172A JP25644490A JP25644490A JPH04136172A JP H04136172 A JPH04136172 A JP H04136172A JP 25644490 A JP25644490 A JP 25644490A JP 25644490 A JP25644490 A JP 25644490A JP H04136172 A JPH04136172 A JP H04136172A
Authority
JP
Japan
Prior art keywords
diamond
pipe
wall
microwaves
cavity resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25644490A
Other languages
Japanese (ja)
Inventor
Shingo Morimoto
信吾 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP25644490A priority Critical patent/JPH04136172A/en
Publication of JPH04136172A publication Critical patent/JPH04136172A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To deposit diamond on only the desired part of the inner wall of a tubular or spherical body made of a nonmetallic material by arranging metal wires in a prescribed shape in a microwave cavity resonator when the surface of the inner wall is coated with diamond by plasma CVD. CONSTITUTION:Holes are pierced in a cavity resonator causing H1 mode resonance in a direction perpendicular to the H face. The inside of a transparent quartz pipe is activated, Nichrome wires are wound around the central part of the pipe and the pipe is put in the holes. A gaseous mixture of hydrogen with 2.5% methane is fed into the pipe from one end, the other end is connected to a rotary oil pump and microwaves are applied to the resonator while keeping 50Torr pressure. After the lapse of 30min, the application of microwaves is stopped. Diamond has been densely deposited on the central part of the inner wall of the pipe at 700 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアルミナ、シリカ、窒化珪素、炭化珪素などの
非金属材料で構成されたパイプ状または球状物体の内壁
面にマイクロ波プラズマCVD法でダイヤモンドをコー
ティングして耐蝕性、耐摩耗性を特定場所にて向上させ
る方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to the use of a microwave plasma CVD method to coat the inner wall surface of a pipe-shaped or spherical object made of a non-metallic material such as alumina, silica, silicon nitride, or silicon carbide. This invention relates to a method of coating diamond to improve corrosion resistance and wear resistance in specific locations.

(従来の技術) ダイヤモンドをコーティングする方法については既に特
許第1272928.1272929゜1332452
.1332457等において公知の技術となっており最
近では直流プラズマ法、燃焼炎法など高速で析出出来る
手法も開発されている。ダイヤモンド自体は耐薬品性が
非常に優れ硬さにおいても自然界で最高の値を持ってい
るので耐蝕、耐摩耗材料として広く使われているが前述
のコーティングダイヤモンドもほぼ同一の能力。
(Prior art) A method for coating diamond has already been disclosed in patent No. 1272928.1272929゜1332452.
.. 1332457, etc., and recently, methods capable of high-speed precipitation, such as a direct current plasma method and a combustion flame method, have been developed. Diamond itself has excellent chemical resistance and has the highest hardness in nature, so it is widely used as a corrosion-resistant and wear-resistant material, but the coated diamond mentioned above has almost the same ability.

特性を示すことが確認されて以来コーティング工具など
として利用されようとしている。しかしこれらのコーテ
ィングは平面上になされたものであり特異な例として特
開平1−138110に記されたパイプ等の外表面に析
出させるものがあるぐらいである。
Since it was confirmed that it exhibits these properties, it has been used as a coating tool. However, these coatings are applied on a flat surface, and a unique example is one described in JP-A-1-138110 in which the coating is deposited on the outer surface of a pipe or the like.

(発明が解決しようとする課題) 従来の方法では平面または外表面しかコーティングでき
なかったがより広い用途へ展開しようとしたときパイプ
の内壁面へコーティングする必要が生じてくる1例えば
腐食性流体、摩耗性スラリーを流すパイプなどがその例
である。コーティングしたダイヤモンド膜は透光性が良
いので内部がよく見えるというメリットもある。又透光
性の良さを積極的に利用して耐久性のある覗き窓とする
こともできる。
(Problems to be Solved by the Invention) Conventional methods have been able to coat only flat surfaces or outer surfaces, but when expanding to a wider range of applications, it becomes necessary to coat the inner wall surfaces of pipes. For example, corrosive fluids, An example is a pipe carrying an abrasive slurry. The coated diamond film has good translucency, so it has the advantage of allowing you to see the inside clearly. Also, by actively utilizing its good translucency, it is possible to make a durable viewing window.

パイプまたは球の内面へCVD法でダイヤモンドをコー
ティングするとなるとプラズマトーチ法1、燃焼炎法と
言った高速析出型の手法は装置上、微小部分の励起が出
来ない、熱バランスがとれない等の制約があってつかえ
ない、むしろ熱フイラメント法、マイクロ波CVD法と
いう比較的マイルドな手法が適している。熱フイラメン
ト法の場合フィラメントをパイプ内に仕込めばコーティ
ングも可能ではあるがフィラメントの変形トラブルを考
慮すると実用的ではない。最後に残る手段としてマイク
ロ波CVD法を検討した。
When coating the inner surface of a pipe or sphere with diamond using the CVD method, high-speed deposition methods such as the plasma torch method 1 and the combustion flame method have limitations such as the inability to excite microscopic parts and the inability to maintain thermal balance due to equipment limitations. Rather, relatively mild methods such as the thermal filament method and the microwave CVD method are suitable. In the case of the hot filament method, it is possible to coat the pipe by placing the filament inside the pipe, but it is not practical due to the problem of deformation of the filament. The microwave CVD method was considered as the last remaining method.

マイクロ波CVD法は減圧反応空間をマイクロ波による
無極放電で励起する方法であるのでパイプ内を励起空間
とすれば本目的に合致した手法と言える。但し従来から
行われている手法をそのまま踏襲するとパイプ内でマイ
クロ波が励起できる空間全体が析出可能空間となり意図
した任意場所へ析出させることはできない。そのまま析
出させると析出むらの大きいものになる。
The microwave CVD method is a method in which a reduced pressure reaction space is excited by non-polar discharge using microwaves, so if the inside of the pipe is used as the exciting space, it can be said to be a method that meets the purpose. However, if the conventional method is followed as it is, the entire space in the pipe where microwaves can be excited becomes a space in which deposition can occur, making it impossible to deposit in any intended location. If it is allowed to precipitate as it is, the precipitation will be highly uneven.

(!1題を解決するための手段) ダイヤモンドが析出するには大きく分けて反応ガス、基
材温度、励起状態、核発生用の表面活性化が必要と言わ
れている。これらのなかで任意の場所にできるだけ均一
にダイヤモンドを析出させるために励起空間の制御と析
出場所の選択的加熱に注目した。
(Means for Solving Problem 1) It is said that in order for diamond to precipitate, it is necessary to broadly divide the reaction gas, substrate temperature, excited state, and surface activation for nucleation. Among these, we focused on controlling the excitation space and selectively heating the deposition location in order to deposit diamond as uniformly as possible at any location.

励起空間の制御に関しては反応容器内の圧力を高めにす
ればある程度の調整はできるが過大になるとプラズマ状
態を維持できない。ここである程度と述べたのは反応空
間が小さくなると壁の効果が出てきて意図した所にプラ
ズマが発生しないことを示している。
Regarding the control of the excitation space, it is possible to make some adjustment by increasing the pressure inside the reaction vessel, but if it becomes too high, the plasma state cannot be maintained. The reason why we say "to a certain extent" here indicates that when the reaction space becomes smaller, the wall effect comes into play and plasma is not generated at the intended location.

析出場所の選択的加熱については必要部分に補助ヒータ
ーをつけることも考えられるがマイクロ波の流れている
所に金属製のヒーターを挿入するとその金属を伝ってマ
イクロ波が大量にリークするので危険である。ヒーター
をシールドすることによっである程度それを抑止できる
が安全上は補助ヒーターは使用しない方が好ましい。
For selective heating of the deposition site, it is possible to attach auxiliary heaters to the necessary areas, but inserting a metal heater in a place where microwaves are flowing is dangerous because a large amount of microwaves will leak through the metal. be. This can be prevented to some extent by shielding the heater, but for safety reasons it is preferable not to use an auxiliary heater.

マイクロ波が導波管の中をHI11モードで進んでいる
ときの電場の様子を示すと図1(a)のようになってい
る、実際にプラズマを発生させて反応させている時は共
振状態であるので図1(b)のように反射面から1/4
波長の所に最も強い電気振動が生じている。この部分に
反応容器を置くのであるがそこに工夫をしたのが本発明
である。すなわちこの電場の強い所に、外部電源と電気
的tこ接続されていない独立した耐熱金属を置くと金属
内を流れる渦電流によるジュール発熱で近接して置かれ
た反応容器の必要部分を加熱することができる。またこ
の金属をループ状にするとプラズマの閉じ込めもできる
Figure 1(a) shows the state of the electric field when microwaves are traveling through a waveguide in HI11 mode.When plasma is actually generated and reacted, it is in a resonant state. Therefore, as shown in Figure 1(b), 1/4 from the reflective surface
The strongest electrical vibrations occur at the wavelength. The reaction container is placed in this part, and the present invention is designed to do so. In other words, if an independent heat-resistant metal that is not electrically connected to an external power supply is placed in a place where this electric field is strong, the Joule heat generated by the eddy current flowing within the metal will heat the necessary parts of the reaction vessel placed nearby. be able to. Plasma can also be confined by forming this metal into a loop.

このようにするとマイクロ波空洞共振器という限られた
空間(周波数2.45GHzの時6cmX12cm)の
中で直径3cm程度の中空物体の内壁にダイヤモンドを
析出させることが出来る。
In this way, diamond can be deposited on the inner wall of a hollow object with a diameter of about 3 cm within the limited space of a microwave cavity (6 cm x 12 cm at a frequency of 2.45 GHz).

H@+モードを使う空洞共振器の使用法として通常は8
面(長い方の辺)に穴を開けて反応容器を挿入するが本
発明の場合H面(短い方の辺)に穴を開は反応容器を挿
入した。こうした方がプラズマ発生場所を、より一層制
御しやすいメリットがある。
The usual way to use a cavity resonator using H@+ mode is 8.
A hole is made on the side (long side) and a reaction vessel is inserted, but in the case of the present invention, a hole is made on the H side (short side) and a reaction vessel is inserted. This has the advantage of making it easier to control the location where plasma is generated.

耐熱製金属としては使用雰囲気および温度を考えるとカ
ンタル線またはニクロム線が適している。
Kanthal wire or nichrome wire is suitable as the heat-resistant metal considering the usage atmosphere and temperature.

線材以外に網状、板状のものであっても良い。In addition to wire rods, mesh or plate shapes may also be used.

基材としては内部を減圧にする関係で気孔の無いもので
なければならない、透明石英、アルミナは最も適した材
料であるが気孔が極めて少ないか封孔処理が出来るもの
であれば、その他の材料であっても使える。
The base material must be free of pores in order to reduce internal pressure. Transparent quartz and alumina are the most suitable materials, but other materials may be used as long as they have very few pores or can be sealed. It can be used even if

基材表面の活性化については従来から採用されているダ
イヤモンド微粒での傷付けが適しているがコーテイング
膜層が薄いときは密に傷をつけて使用する。
For activation of the surface of the base material, scratching with fine diamond particles, which has been used in the past, is suitable, but when the coating film layer is thin, it is used by making dense scratches.

(作用) パイプ内壁面、球体内壁面等へのダイヤモンドコーティ
ングは、原料ガスの励起、並びに析出面の温度維持を同
時にバランス良く行う適当な手段が無く難しかったが、
本発明のごとくマイクロ波の特性を巧妙に使用する事に
より可能となった。
(Function) It was difficult to apply diamond coating to the inner wall surfaces of pipes, inner walls of spheres, etc. as there was no suitable means to simultaneously excite the source gas and maintain the temperature of the deposition surface in a well-balanced manner.
This was made possible by skillfully using the characteristics of microwaves as in the present invention.

基材温度維持は基材近傍の耐熱金属体内にマイクロ波に
よって抗Bされる渦電流によるジュール熱によって行わ
れ、原料ガス励起はマイクロ波によって行われる。ダイ
ヤモンド析出機構は1通常の気相法ダイヤモンドの場合
と同じである。以下に実施例を紹介する。
The temperature of the base material is maintained by Joule heat generated by an eddy current generated by microwaves in a heat-resistant metal body near the base material, and the raw material gas is excited by microwaves. The diamond precipitation mechanism is the same as in the case of ordinary vapor phase diamond. Examples are introduced below.

(実施例1) HII+モードで共振する空洞共振器H面を直角に貫通
する穴を開け(図2−a)、  中央部に図2−bに示
すようにニクロム線を巻いた外径12mm内面活性化処
理済みの透明石英パイプを通し一方からメタン2.5%
を含む水素混合ガス20cc/ m i nを流し他方
を油回転ポンプに接続し圧力を50Torrに保ち空洞
共振器部に150Wのマイクロ波を送った。その時に発
生したプラズマの長さは50 m mであった。30分
後にマイクロ波を止めたところパイプ内壁中央部で、長
さ30mmの所に厚さ1μmのダイヤモンドが密に析出
していた。この時の基材パイプの温度は中央部で700
℃であった。
(Example 1) A hole is made perpendicularly through the H-plane of a cavity resonator that resonates in HII+ mode (Fig. 2-a), and a 12 mm outer diameter inner surface is wrapped with nichrome wire in the center as shown in Fig. 2-b. 2.5% methane from one side through an activated transparent quartz pipe
A hydrogen mixed gas containing 20 cc/min was flowed through the pump, and the other end was connected to an oil rotary pump, and the pressure was kept at 50 Torr, and 150 W microwaves were sent to the cavity resonator section. The length of the plasma generated at that time was 50 mm. When the microwave was stopped after 30 minutes, diamonds with a thickness of 1 μm were deposited densely at a 30 mm length in the center of the inner wall of the pipe. At this time, the temperature of the base material pipe is 700 at the center.
It was ℃.

(実施例2) ニクロム線の形が図3に示すように異なる事と電力が1
30Wである以外は実施例1と同じ条件でダイヤモンド
を析出させたところ長さ30mmのプラズマが発生しパ
イプ内壁中央部に長さ25mmのダイヤモンド析出物を
得た。この時の基材の温度は700℃であった。
(Example 2) The shape of the nichrome wire is different as shown in Figure 3, and the power is 1
When diamond was deposited under the same conditions as in Example 1 except that the power was 30 W, plasma with a length of 30 mm was generated and a diamond precipitate with a length of 25 mm was obtained at the center of the inner wall of the pipe. The temperature of the base material at this time was 700°C.

(実施例3) 石英パイプが30度空洞共振器E面内で傾いている事と
電力が120Wである車重外は実施例2と同じ条件でダ
イヤモンドを析出させたところ長さ20mmのプラズマ
が発生しパイプ内壁中央部に長さ20 m mのダイヤ
モンド析出物を・得た。この時の基材温度は700℃で
あった。ここに示した例のなかで実施例3の場合が最も
ダイヤモンドの析出している所といない所がはっきり識
別できた。
(Example 3) Diamond was deposited under the same conditions as in Example 2 except that the quartz pipe was tilted at 30 degrees in the plane of the cavity resonator E and the power was 120 W. Diamond was deposited under the same conditions as in Example 2. A diamond precipitate with a length of 20 mm was obtained at the center of the inner wall of the pipe. The substrate temperature at this time was 700°C. Among the examples shown here, in the case of Example 3, the areas where diamond was precipitated and the areas where diamond was not precipitated could be most clearly distinguished.

(比較例1) ニクロム線が無い事と電力が180Wである車重外は実
施例1と同じ条件にてダイヤモンドを析出させたところ
長さ100 m mのプラズマが発生し長さ50 m 
mのダイヤモンド析出物を得た。この時の基材温度は7
00℃であった。
(Comparative Example 1) Diamond was deposited under the same conditions as in Example 1 except for the absence of a nichrome wire and a power of 180 W. When diamond was deposited, a plasma with a length of 100 mm was generated and a length of 50 m was generated.
A diamond precipitate of m was obtained. The base material temperature at this time is 7
It was 00℃.

(比較例2) E面を直角に貫通する以外は実施例1と同じ条件にてダ
イヤモンドを析出させたところ長さ60mmのプラズマ
が発生し長さ40 m mのダイヤモンド析出物を得た
。この時の基材温度は700℃であった。
(Comparative Example 2) When diamond was deposited under the same conditions as in Example 1 except for penetrating the E plane at right angles, a plasma with a length of 60 mm was generated and a diamond precipitate with a length of 40 mm was obtained. The substrate temperature at this time was 700°C.

(発明の効果) 以上の実施例に示したようにマイクロ波空洞共振器内に
金属線を所定の形に配置することによって必要とする所
定の場所にのみ限定して、ダイヤモンドを析出させるこ
とができる。
(Effects of the Invention) As shown in the above embodiments, by arranging the metal wires in a predetermined shape within the microwave cavity, diamond can be deposited only in the required predetermined locations. can.

【図面の簡単な説明】[Brief explanation of the drawing]

図1はマイクロ波が導波管の中をH[I+モードで進ん
でいる時の電場の様子、図2は本発明の方法による基材
と装置の関係1図3は耐熱金属体の基材への置き方の一
例である。 (bン 十踵茸へ°イフ。
Figure 1 shows the electric field when microwaves travel in the H [I+ mode in the waveguide. Figure 2 shows the relationship between the base material and the device according to the method of the present invention. Figure 3 shows the base material of a heat-resistant metal body. This is an example of how to place it. (If you want to go to 10 heel mushrooms.

Claims (1)

【特許請求の範囲】[Claims] マイクロ波プラズマCVD法で、マイクロ波空洞共振器
内に置かれた基材に金属体を配置する事により、パイプ
状又は球状基材内壁面の任意の場所にダイヤモンドをコ
ーティングする方法。
A method of coating diamond anywhere on the inner wall surface of a pipe-shaped or spherical base material by placing a metal body on the base material placed in a microwave cavity resonator using the microwave plasma CVD method.
JP25644490A 1990-09-26 1990-09-26 Method for coating inside with diamond Pending JPH04136172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25644490A JPH04136172A (en) 1990-09-26 1990-09-26 Method for coating inside with diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25644490A JPH04136172A (en) 1990-09-26 1990-09-26 Method for coating inside with diamond

Publications (1)

Publication Number Publication Date
JPH04136172A true JPH04136172A (en) 1992-05-11

Family

ID=17292740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25644490A Pending JPH04136172A (en) 1990-09-26 1990-09-26 Method for coating inside with diamond

Country Status (1)

Country Link
JP (1) JPH04136172A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565645A (en) * 1991-09-04 1993-03-19 Seiko Epson Corp Diamond formed body
CN100387753C (en) * 2005-10-14 2008-05-14 南京航空航天大学 Method for mfg. diamond coating on spherical substrate and device thereof
JP2009296006A (en) * 2004-03-29 2009-12-17 Tokyo Electron Ltd Particle monitor window member and window member
US8854625B2 (en) 2004-03-29 2014-10-07 Tokyo Electron Limited Vacuum apparatus including a particle monitoring unit, particle monitoring method and program, and window member for use in the particle monitoring

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565645A (en) * 1991-09-04 1993-03-19 Seiko Epson Corp Diamond formed body
JP2009296006A (en) * 2004-03-29 2009-12-17 Tokyo Electron Ltd Particle monitor window member and window member
US8854625B2 (en) 2004-03-29 2014-10-07 Tokyo Electron Limited Vacuum apparatus including a particle monitoring unit, particle monitoring method and program, and window member for use in the particle monitoring
CN100387753C (en) * 2005-10-14 2008-05-14 南京航空航天大学 Method for mfg. diamond coating on spherical substrate and device thereof

Similar Documents

Publication Publication Date Title
CN100505976C (en) Plasma-assisted joining
US20060228497A1 (en) Plasma-assisted coating
US20050233091A1 (en) Plasma-assisted coating
CN100523288C (en) High velocity method for deposing diamond films from a gaseous phase in shf discharge plasma and device for carrying out said method
KR20070038935A (en) Semiconductor processing
JP2011140716A (en) Process and apparatus for continuous coating of fibrous material
US7498066B2 (en) Plasma-assisted enhanced coating
JP2001247965A (en) Protective film, treating equipment for semiconductor wafer and method for depositing thin film diamond film
JPH01225775A (en) Formation of ceramic coating film on inner surface of tubular material
JPH04136172A (en) Method for coating inside with diamond
JP2974879B2 (en) Synthesis method by plasma CVD
JPS6411713B2 (en)
EP0772699B1 (en) Cvd process for the production of diamond-phase carbon tubes
WO2018019669A1 (en) Method for manufacturing an annular thin film of synthetic material and device for carrying out said method
IE922255A1 (en) Apparatus and process for diamond deposition by microwave¹plasma assisted cvpd
US6749931B1 (en) Diamond foam material and method for forming same
JPS6270578A (en) Coating method for inside surface of pipe
JPH0234509A (en) Process and apparatus for preparation of polycrystalline diamond by core body floating method
JPH06262525A (en) Grinding wheel and its manufacture
JPS5935674A (en) Vapor deposition device
JP3027378B1 (en) Method and apparatus for producing alloy film by chemical vapor deposition
JPS61139667A (en) Formation of thin silicon carbide film
KR970000381B1 (en) A process for coating silica glass with diamond thin layer
JP2833848B2 (en) Synthesis method of vapor phase diamond
JPS61275197A (en) Formation of boron nitride coated film by deposition