JPH01225775A - Formation of ceramic coating film on inner surface of tubular material - Google Patents

Formation of ceramic coating film on inner surface of tubular material

Info

Publication number
JPH01225775A
JPH01225775A JP5079088A JP5079088A JPH01225775A JP H01225775 A JPH01225775 A JP H01225775A JP 5079088 A JP5079088 A JP 5079088A JP 5079088 A JP5079088 A JP 5079088A JP H01225775 A JPH01225775 A JP H01225775A
Authority
JP
Japan
Prior art keywords
tubular material
film
frequency power
tube
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5079088A
Other languages
Japanese (ja)
Inventor
Kazuto Yasuda
和人 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO SUTOUFUAA CHEM KK
Tosoh Finechem Corp
Original Assignee
TOYO SUTOUFUAA CHEM KK
Tosoh Finechem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO SUTOUFUAA CHEM KK, Tosoh Finechem Corp filed Critical TOYO SUTOUFUAA CHEM KK
Priority to JP5079088A priority Critical patent/JPH01225775A/en
Publication of JPH01225775A publication Critical patent/JPH01225775A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a ceramic film generated by the decomposition of a raw gas on the inner surface of a tubular material at low temp. by introducing the raw gas into the material, and supplying a high-frequency power. CONSTITUTION:The gaseous mixture of TiCl4 and NH3, TiCl4 and CH4, AlCl3 and BCl3, SiH4 and N2O, SiH4 and NH3, (CH3)3Al and N2O, etc., is introduced into the tubular material 1-5 from a raw gas feeder 1-4 with H2, Ar, N2, etc., as the carrier gas. A high-frequency power is simultaneously supplied from a high-frequency generator 1-1 through a waveguide 1-8 to produce plasma in the material, hence the raw gas is decomposed, and the thin film of the TiN, TiC, AlB, SiO2, Si3N4, Al2O3, etc., as the ceramic material is formed on the inner surface of the tubular material 1-5. In this case, when the tubular material 1-5 is made of a material transmitting a high-frequency power such as quartz, the outside of the material 1-5 is coated with a metal to reflect the high-frequency power. In addition, a magnetic field generator is provided on the outside or inside of the material 1-5 to control the plasma state, and the quality and thickness of the ceramic film can be controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は管状材料の内面及び管に連結した物体内面上に
セラミック薄膜を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of forming a ceramic thin film on the inner surface of a tubular material and on the inner surface of an object connected to a tube.

(従来の技術) 珪化物、酸化物、窒化物等のいわゆるセラミック材料は
耐摩耗性、耐熱性、耐腐食性が金属等の材料と比較して
優れているため工作工具や閤械部品の特性向上を目的と
してそれらの表面に薄膜としてコーティングすることが
広く行なわれている。
(Prior art) So-called ceramic materials such as silicides, oxides, and nitrides have superior wear resistance, heat resistance, and corrosion resistance compared to metals and other materials, so they are suitable for use in machine tools and machine parts. Coating their surfaces with thin films is widely practiced for the purpose of improving the quality of their surfaces.

これらに対するコーティング方法としてはCVD法(化
学気相蒸着法)、F)VD法(プラズマ物理気相蒸着法
)、CVR法(化学的気相反応法)が主として用いられ
ているが、これら方法では対象物を密閉容器内に設置し
、その中へセラミック原料を導入した後、熱反応、プラ
ズマ反応を生じさせて材料表面にセラミック膜を析出さ
せている。
The main coating methods used for these are CVD (chemical vapor deposition), VD (plasma physical vapor deposition), and CVR (chemical vapor reaction). After the object is placed in a closed container and the ceramic raw material is introduced into the container, a thermal reaction and a plasma reaction occur to deposit a ceramic film on the surface of the material.

一方、セラミック材料にはその表面に対するガス分子等
の汚染物質の吸着が金属等と比較して著しく少ない性質
がおることも明らかとなっており、化学工業をはじめ広
〈産業分野で製造、輸送、保管のため用いられている。
On the other hand, it has become clear that ceramic materials have the property of adsorbing pollutants such as gas molecules to their surfaces significantly less than metals. It is used for storage.

管状材料の内面にセラミック薄膜をコーティングするこ
とにより高純度及び高清浄性が要求される製品の製造、
保管や強い腐食性を有する材料を安全に取吸うことが可
能となる。
Manufacture of products that require high purity and high cleanliness by coating the inner surface of tubular materials with a ceramic thin film.
It becomes possible to store and safely extract highly corrosive materials.

しかしながら管状材料内面に対するコーティングにおい
て従来法を適用することは困難であり、実用的な方法は
開発されていなかった。この理由は従来法のもつ次の欠
点による。
However, it is difficult to apply conventional methods to coating the inner surface of a tubular material, and no practical method has been developed. The reason for this is the following drawbacks of the conventional method.

■対象物が管状形状をもつ長尺物である場合には、密閉
容器が巨大化する。
■If the object is a long object with a tubular shape, the sealed container will become huge.

■管内部への原料ガス供給及び内部でのガス反応制御が
困難なため形成v4質及び膜厚の制御が不可能でおる。
(2) It is difficult to supply the raw material gas to the inside of the tube and control the gas reaction inside, so it is impossible to control the quality and film thickness formed.

■長尺管内部では通常装置ではプラズマ反応が生じない
ため反応温度の低減化が困難でおる。
■Since plasma reaction does not occur inside the long tube in normal equipment, it is difficult to reduce the reaction temperature.

また、近年管状材料の一端から原料ガスを流入させ外部
から管状材料の一部をIll熱し、またその加熱領域を
移動することにより長尺管内部にセラミック膜を形成し
たという報告がなされているが(Journal of
 )Iaterials、 5cience 21(1
986) 751−756.)、この方法ではセラミッ
ク形成機構を熱分解法で行なっているため高温に加熱を
行う必要があり、加熱温度以上の耐熱性を有する材料に
しか適用できない欠点がおる。
Furthermore, in recent years, there have been reports that a ceramic film was formed inside a long tube by flowing raw material gas from one end of the tube, heating a part of the tube from the outside, and moving the heating area. (Journal of
) Iterials, 5science 21(1
986) 751-756. ), since this method uses a pyrolysis method for the ceramic formation mechanism, it is necessary to heat it to a high temperature, and it has the disadvantage that it can only be applied to materials that have heat resistance above the heating temperature.

具体的には報告ではTiN膜を形成するのにi、ioo
oCの加熱が必要であった。また、膜形成に高温が必要
であるということは膜形成後材料温度を低下させた場合
に管状材料と形成膜との熱膨張係数差にもとづく応力が
、膜及び材料の間に生じるということを意味しており、
膜の剥離、ひび割れ等が生じやすくなる。
Specifically, the report states that i, ioo are used to form a TiN film.
oC heating was required. In addition, the fact that high temperatures are required for film formation means that when the material temperature is lowered after film formation, stress is generated between the film and the material due to the difference in thermal expansion coefficient between the tubular material and the formed film. It means,
Peeling and cracking of the membrane are likely to occur.

従ってこの方法では形成膜と管状材料との組合せに著し
い制限があり、また材料と膜との組合せ方を広げるため
には目的膜と管状材料との間に応力緩衝膜を形成する必
要が生じる等製造プロセスの複雑化が必至で必る。
Therefore, in this method, there are significant restrictions on the combinations of the formed film and the tubular material, and in order to expand the combinations of materials and films, it is necessary to form a stress buffer film between the target film and the tubular material, etc. The manufacturing process will inevitably become more complex.

(発明が解決しようとする課題) 本発明の目的は上記問題点を解決し、さらに管状材料内
面及び管状材料に連結した物体内面に均一かつ良質のセ
ラミック膜を低温で形成する装置を提供することにある
(Problems to be Solved by the Invention) It is an object of the present invention to solve the above-mentioned problems, and further to provide an apparatus for forming a uniform and high-quality ceramic film on the inner surface of a tubular material and the inner surface of an object connected to the tubular material at a low temperature. It is in.

(課題を解決するための手段〕 本発明の要旨とする所はセラミック原料を流入した管状
材料内部に高周波電力を導入し、管状材料内面上および
管状材料及び管に連結した物体内面上にセラミック膜を
析出させることを特徴とするコーティング膜の製造方法
に存し、以下これを詳述すると、本発明では管状形状を
有する材料の一端から原料ガスを導入し、他の一端から
排気し、管内を減圧乃至加圧状態に保持する。この状態
で管の一端から高周波電力を導入することにより管内部
でプラズマを生じさせ、原料ガスを分解反応させて管内
面にセラミック膜を形成する。本発明では管状材料が金
属等の導体である場合、管内部を高周波電力が伝搬する
現象を効果的に使用するため長尺物であっても管内に均
一なプラズマを生成することが可能でおり、長さ方向に
均一な膜質及び膜厚を有したセラミック膜を形成できる
(Means for Solving the Problems) The gist of the present invention is to introduce high-frequency power into a tubular material into which a ceramic raw material has been introduced, and to form a ceramic film on the inner surface of the tubular material and on the inner surface of an object connected to the tubular material and the tube. The method of manufacturing a coating film is characterized by precipitating a coating film, which will be described in detail below.In the present invention, a raw material gas is introduced from one end of a material having a tubular shape and exhausted from the other end, and the inside of the pipe is The tube is maintained in a reduced pressure or pressurized state. In this state, plasma is generated inside the tube by introducing high frequency power from one end of the tube, causing a decomposition reaction of the raw material gas and forming a ceramic film on the inner surface of the tube. In the present invention, When the tubular material is a conductor such as metal, it is possible to generate uniform plasma inside the tube even if it is a long tube by effectively using the phenomenon of high frequency power propagating inside the tube. A ceramic film having uniform film quality and film thickness in all directions can be formed.

また管内に導入する高周波電力の周波数を管内径及び形
状に応じて選択することにより、どの様な形状の管状材
料にもセラミック膜を形成できる。
Furthermore, by selecting the frequency of the high-frequency power introduced into the tube depending on the inner diameter and shape of the tube, a ceramic film can be formed on any shape of the tube material.

さらに、膜生成中に高周波電力周波数を変化させ、管内
部を伝搬する高周波のモード(磁界と電解の分布状態)
を変化させることにより、膜厚の分布及び膜質の均一化
をはかることが可能である。
Furthermore, the high-frequency power frequency is changed during film formation, and the high-frequency mode propagating inside the tube (magnetic field and electrolytic distribution state)
By changing , it is possible to make the film thickness distribution and film quality uniform.

管状材料が石英等の様に高周波電力の反射能力が低く、
また高周波電力を透過する性質を有する材料の場合、材
料の外部を金属管等の反射能力の大きい材料で覆うこと
により管内面にセラミック膜を形成できる(第3図)。
The tubular material has a low ability to reflect high frequency power, such as quartz, etc.
Furthermore, in the case of a material that has the property of transmitting high-frequency power, a ceramic film can be formed on the inner surface of the tube by covering the outside of the material with a material having a high reflective ability, such as a metal tube (FIG. 3).

管内面に生成するセラミックの膜質及び膜厚を微細に制
御するには管外部に磁場発生装置を設け、管に対して印
加する磁場強度及び配置を変化することにより管外部か
ら管内部のプラズマ状態を制御し、膜質及び膜厚を制御
することも可能である(第4図)。
To finely control the quality and thickness of the ceramic film formed on the inner surface of the tube, a magnetic field generator is installed outside the tube, and by changing the magnetic field strength and position applied to the tube, the plasma state inside the tube can be controlled from outside the tube. It is also possible to control the film quality and film thickness (Fig. 4).

以上の構成において、管外部から適切な加熱を行い、膜
質の改善を行うこともできる。
In the above configuration, film quality can also be improved by applying appropriate heating from outside the tube.

〔作 用〕[For production]

第1図は本発明方法に対応する装置の基本構成のブロッ
ク図の一例を表わしており、図中、実線は高周波電力の
流れ、破線は原料ガスの流れを示す。
FIG. 1 shows an example of a block diagram of the basic configuration of an apparatus corresponding to the method of the present invention, in which solid lines indicate the flow of high-frequency power and broken lines indicate the flow of raw material gas.

第2図は本発明方法に対応した装置で、第1図のガス導
入部及び高周波導入部の詳細である。
FIG. 2 shows an apparatus compatible with the method of the present invention, showing details of the gas introduction section and high frequency introduction section of FIG. 1.

ガス排気部、高周波反射部の構成は導入部と同様であり
、ガス導入部が排気部となる。
The configurations of the gas exhaust section and the high frequency reflection section are the same as those of the introduction section, and the gas introduction section serves as the exhaust section.

第3図は本発明方法に対応する図面を表わし、第1図及
び第2図に付加する部分のみを示す。
FIG. 3 shows a drawing corresponding to the method of the invention, showing only the parts added to FIGS. 1 and 2.

第4図は本発明方法に対応した図であり、第1図及び第
2図または第3図に付加する部分を示す。
FIG. 4 is a diagram corresponding to the method of the present invention, and shows parts added to FIG. 1 and FIG. 2 or 3.

次に本発明の応用例を第5−図に示す。この応用例は大
口径管状材料に有効な方法でおる。この例は大口径管の
一部の領域のみでガス反応を生じさせ、その場所を管の
内周にそって移動さぜる様にしたものでおり、大口径管
に対する高周波電力のマツチング(同調)特性が取りや
すい利点がある。
Next, an application example of the present invention is shown in Fig. 5. This application example is an effective method for large diameter tubular materials. In this example, a gas reaction is generated only in a part of a large-diameter pipe, and the reaction is moved along the inner circumference of the pipe, which is used to match high-frequency power to a large-diameter pipe (tuning). ) has the advantage of being easy to characterize.

第6図に示すのは他の応用例であり、管状材料の内部ま
で高周波電力導入用導波管を入れたものであり、導波管
と管状材料とを相対的に移動させることによりプラズマ
発生領域を変化させ、また管内の所望の位置の膜状態を
制御できる利点がある。また高周波の導入部とガス流導
入部を互いに入れ換えた配置を取ることも可能である。
Figure 6 shows another application example in which a waveguide for introducing high-frequency power is inserted into the inside of a tubular material, and plasma is generated by moving the waveguide and the tubular material relatively. It has the advantage of being able to change the area and control the membrane condition at a desired position within the tube. It is also possible to arrange the high frequency introduction part and the gas flow introduction part interchangeably.

またこれら応用例はすべて本発明方法のいずれかと組合
せて用いることが可能である。
All of these applications can also be used in combination with any of the methods of the present invention.

第7図に示すのは本発明の更に他の応用例であり、本発
明方法の変形例であり、磁場発生装置を管状材料内部に
配置した例である。この例は管状材料が強磁性体で外部
から磁場を印加できない場合に有効である。
FIG. 7 shows still another application of the present invention, which is a modification of the method of the present invention, in which a magnetic field generator is placed inside a tubular material. This example is effective when the tubular material is ferromagnetic and a magnetic field cannot be applied from the outside.

この例では原料ガスは高周波流れと排気流れに対し向流
式となっているが、括弧内に示したように高周波流れと
排気流れを互いに入れ替えても同様な効果が期待できる
In this example, the raw material gas flows counter-currently to the high-frequency flow and the exhaust flow, but the same effect can be expected even if the high-frequency flow and the exhaust flow are replaced with each other as shown in parentheses.

(実施例〕 本発明の実施例を内径4#(外径174インチ)のステ
ンレスパイプの内面にTiN膜を形成する場合を例とし
て第1図に示す基本構成に基いて説明する。
(Example) An example of the present invention will be described based on the basic configuration shown in FIG. 1, taking as an example a case where a TiN film is formed on the inner surface of a stainless steel pipe with an inner diameter of 4# (outer diameter of 174 inches).

管内を伝搬可能な高周波周波数fは管が円形断面形状を
なす場合、内径D(cm)のときf =2.99x 1
(No / (1,841xπXD)[1−1z]であ
ることが電磁気理論から知られており、D=0.4cm
のとき、13[GHz]以上の周波数となる。この周波
数程度の発振器は広く実用化されており、本目的のため
には容易に入手可能である。
When the pipe has a circular cross-sectional shape, the high frequency f that can be propagated in the pipe is f = 2.99x 1 when the inner diameter is D (cm).
It is known from electromagnetic theory that (No / (1,841xπXD)[1-1z], and D=0.4cm
In this case, the frequency is 13 [GHz] or more. Oscillators of this frequency range are widely used and can be easily obtained for this purpose.

TiN膜形成には原料としてT i C14及びN H
3を用い、これらをN2.H2,またはAr等をキャリ
アガスとして管の一端から供給し同時に他端に設けた排
気装置により排気することにより、管内圧力を10−3
 torrから10torr程度に保持する。
For TiN film formation, T i C14 and N H are used as raw materials.
3, and these were N2. By supplying H2, Ar, etc. as a carrier gas from one end of the pipe and simultaneously exhausting it with an exhaust device installed at the other end, the pressure inside the pipe can be reduced to 10-3.
Maintain the pressure between torr and 10 torr.

この状態で管内に前記高周波を10Wから1KW程度の
電力で供給すると管内にはプラズマが発生し、このプラ
ズマにより原料ガスの分解及び反応が促進され、管内面
上にTiNが析出する。
In this state, when the high frequency wave is supplied with a power of about 10 W to 1 KW into the tube, plasma is generated in the tube, and this plasma promotes the decomposition and reaction of the raw material gas, and TiN is deposited on the inner surface of the tube.

本発明の場合、管内面には常温でも膜析出が観測される
が、管内面と析出質との密着性及び析出膜の膜質向上を
目的として管外部を200℃〜500℃程度に加熱を行
う。しかしながらこの程度の加熱では膜材料と管材料と
の熱膨張率に原因する膜の剥離等は生じ難く、また、こ
の程度の加熱に耐える管材料は多数存在するため本発明
方法を膜材料及び管材料の多数の組合せに対して適用す
ることが可能である。
In the case of the present invention, film precipitation is observed on the inner surface of the tube even at room temperature, but the outside of the tube is heated to about 200°C to 500°C in order to improve the adhesion between the inner surface of the tube and the precipitate and the quality of the deposited film. . However, this degree of heating is unlikely to cause peeling of the membrane due to the coefficient of thermal expansion between the membrane material and the tube material, and there are many tube materials that can withstand this degree of heating. It is possible to apply it to numerous combinations of materials.

ここで例として述べた以外に、原料ガスとしてT i 
C14とCH4,AlCl3とBCJ!3とH2等の組
合せによりTiC,AiB等の膜が、マタS i H4
ト’N20. S i H4(S 1t−1zCJ!z
 >とNH3,(CH3) 3 AJ!とN20からそ
れぞれS ioz、 S i3N4 、 A1203等
を生成させることも可能である。
In addition to the examples mentioned here, Ti
C14 and CH4, AlCl3 and BCJ! By combining 3 and H2, etc., films such as TiC, AiB, etc.
To'N20. S i H4(S 1t-1zCJ!z
> and NH3, (CH3) 3 AJ! It is also possible to generate S ioz, S i3N4, A1203, etc. from and N20, respectively.

T i CJ!aとNH3を原料ガスとしてTiN膜を
形成する場合の反応式は T i C124+  4/3Nl13  →T i 
N+4HCj!+ 1/6N2で記述される。
T i CJ! The reaction formula when forming a TiN film using a and NH3 as raw material gases is T i C124+ 4/3Nl13 → Ti
N+4HCj! + 1/6N2.

T i C14は常温で固体であるためガス化すて供給
する必要があるが、これは次の如くに行う。
Since T i C14 is solid at room temperature, it needs to be supplied after being gasified, which is carried out as follows.

T i C1a容器を30’Cに保持し、この容器の一
端からt−1z (またはN2)ガスを毎分3CC(3
SCC)l )流入させ、T i C14で飽和したH
2ガスを取り出す。
The T i C1a container is maintained at 30'C, and t-1z (or N2) gas is supplied from one end of the container at 3 CC (3 CC) per minute.
SCC)l) injected with H saturated with T i C14
2 Take out the gas.

本例の場合、毎分当りのT i C14の供給量は約2
.8 Xl0−6m01程度となる。
In this example, the supply amount of T i C14 per minute is approximately 2
.. It will be about 8Xl0-6m01.

またNH3ガスは1」2または陣ガスで10%程度に希
釈したガスを原料とし、毎分1CC(1CC)1)供給
することにより、毎分3.7 x 10−6 nof供
給する。
Further, the NH3 gas is made from a gas diluted to about 10% with 1"2 or a gas, and is supplied at a rate of 3.7 x 10-6 nof per minute by supplying 1 CC (1 CC) 1) per minute.

以上2つのガスは混合後、さらにキャリアガスである+
12または陣ガス流量20〜303CC)!で希釈した
後に管内に供給した。この方法では毎分約300人程度
のTiN膜が形成できるが、原料ガス供給間を各々1桁
増加させれば析出量も1桁程度増加する。
After mixing the above two gases, they are further used as a carrier gas +
12 or gas flow rate 20-303CC)! It was diluted with water and then supplied into the tube. With this method, about 300 TiN films can be formed per minute, but if the feed rate of each source gas is increased by one order of magnitude, the amount of precipitation will also increase by about one order of magnitude.

また、TiC,AIB等の膜の場合、反応式%式% と記述できる。この場合も前記程度の原料供給量の範囲
で良好な膜が形成できる。
In addition, in the case of films such as TiC and AIB, the reaction formula can be written as %formula%. In this case as well, a good film can be formed within the above-mentioned raw material supply amount range.

〔発明の効果〕〔Effect of the invention〕

本発明によれば管状をなす無機材料の内面および管に連
結した物体内面上に均一かつ良質のセラミック膜を低温
で形成可能であり、また長尺物に対してもセラミック膜
を形成できる。
According to the present invention, it is possible to form a uniform and high quality ceramic film at low temperature on the inner surface of a tubular inorganic material and the inner surface of an object connected to the pipe, and it is also possible to form a ceramic film on a long object.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係わるブロック図の例示図、
第2図ないし第4図は第1図の各詳細図および部分図で
あり、第5図(イ)(ロ)は本発明の応用例を示す径方
向断面図、長さ方向断面図でおり、第6図および第7図
は夫々本発明の伯の応用例を示す説明図である。 第1図において、 1−1は高周波発生器 1−2は高周波方向性結合器 1−3は高周波吸収装置 1−4は原料ガス供給装置 1−5は管状材料 1−6は高周波反射調整器 1−7はガス排気装置 1−8は導波管 第2図において、 2−1は導波管 2−2は導波管7ランジ 2−3は石英板(高波透過窓) 2−4はOリング 2−5はマニオールド 2−6はガス導入口 2−7は管状材料 2−8はプラズマ発生領域 2−9は高周波 第3図において、 3−1は管状材料 3−2は高周波反射材料 第4図において、 4−1は管状材料 4−2は磁場発生用コイル 4−3は支持部 4−4は台車 4−5はレール部 4−6はガス流、プラズマ流 第5図において、 5−1は大口径 5−2はガス、高周波閉じ込め装置 5−3はガス流及びプラズマ 第6図において、 6−1は導波管 6−2は管状材料 第7図において、 7−1は管状材料 7−2はガス導入パイプ 7−3はvj1石 7−4はガス噴出口 を表わす。 第3図 第4図 手続補正四輸発) 昭和63年5月16日 特許庁長官 ノコ1月!yβ夫 殿 昭和63年 特許願 第50790号 成方法 名 称 ゛ 株式会社 東洋ストウファー・ケミカル明
細書における発明の詳細な説明の欄および図面の簡単補
正の内容 ■9発明の詳細な説明の欄のうち下記事項を訂正する。 1、明細書筒5頁14行目に 「装置」とあるを「方法」と訂正。 2、明細書筒12頁4行目に 「常温で固体」とあるを 「常温で液体」と訂正。 ■0図面の簡単な説明の欄のうら下記事項を訂正する。 1、明細書筒14頁16行目に 「高波透過窓」とあるを 「高周波透過窓」と訂正。 2、同頁18行目に 「マニホールド」とあるを 「マニホールド」と訂正。
FIG. 1 is a block diagram illustrating an embodiment of the present invention;
Figures 2 to 4 are detailed and partial views of Figure 1, and Figures 5 (a) and 5 (b) are radial and longitudinal cross-sectional views showing application examples of the present invention. , FIG. 6, and FIG. 7 are explanatory diagrams each showing an example of application of the present invention. In FIG. 1, 1-1 is a high-frequency generator 1-2 is a high-frequency directional coupler 1-3 is a high-frequency absorber 1-4 is a raw material gas supply device 1-5 is a tubular material 1-6 is a high-frequency reflection adjuster 1-7 is a gas exhaust device 1-8 is a waveguide in Figure 2, 2-1 is a waveguide 2-2 is a waveguide 7, a flange 2-3 is a quartz plate (high wave transmission window), 2-4 is a waveguide The O-ring 2-5 is the manifold 2-6, the gas inlet 2-7 is the tubular material 2-8, the plasma generation area 2-9 is the high-frequency wave reflector, and 3-1 is the tubular material 3-2 is the high-frequency reflector. In Fig. 4, 4-1 is a tubular material 4-2 is a magnetic field generating coil 4-3 is a supporting part 4-4 is a trolley 4-5 is a rail part 4-6 is a gas flow, and a plasma flow in Fig. 5. , 5-1 is a large diameter 5-2 is a gas, high frequency confinement device 5-3 is a gas flow and plasma in FIG. 6, 6-1 is a waveguide 6-2 is a tubular material in FIG. 7, 7-1 The tubular material 7-2 represents the gas introduction pipe 7-3, and the stone 7-4 represents the gas outlet. Figure 3 Figure 4 Procedure Amendment 4 Export) May 16, 1985 Commissioner of the Patent Office Noko January! yβo, 1988 Patent Application No. 50790 Name of the process Name ゛ Toyo Stouffer Chemical Co., Ltd. Contents of the detailed description of the invention column and simple amendments to the drawings in the specification ■9 Of the column of the detailed description of the invention Correct the following matters. 1. On page 5, line 14 of the specification, the word "apparatus" has been corrected to "method." 2. On page 12, line 4 of the specification, the phrase "solid at room temperature" has been corrected to "liquid at room temperature." ■0 Correct the following items in the brief explanation column of the drawing. 1. On page 14, line 16 of the specification, the phrase "high wave transmission window" has been corrected to "high frequency transmission window." 2. On the 18th line of the same page, the word "manifold" has been corrected to "manifold."

Claims (4)

【特許請求の範囲】[Claims] (1)セラミック原料を流入した管状材料内部に高周波
電力を導入し、管状材料内面上および管状材料及び管に
連結した物体内面上にセラミック膜を析出させることを
特徴とするコーティング膜の製造方法。
(1) A method for producing a coating film, which comprises introducing high-frequency power into a tubular material into which a ceramic raw material has been introduced, and depositing a ceramic film on the inner surface of the tubular material and on the inner surface of an object connected to the tubular material and the tube.
(2)請求項1の管状材料が導電性材質で少くとも1箇
所の開口部を有する材料において、少くとも1箇所の開
口部から内部に高周波電力を導入することを特徴とする
セラミック薄膜の形成方法。
(2) Formation of a ceramic thin film characterized in that the tubular material of claim 1 is a conductive material and has at least one opening, and high frequency power is introduced into the interior through at least one opening. Method.
(3)請求項1の管状材料が高周波電力を透過する材料
の場合、管状材料の外部表面を高周波反射材料で被覆す
ることにより、前記管状材料内部にセラミック薄膜を形
成することを特徴とするコーティング膜の形成方法。
(3) When the tubular material according to claim 1 is a material that transmits high-frequency power, a coating characterized in that a ceramic thin film is formed inside the tubular material by coating the outer surface of the tubular material with a high-frequency reflective material. How to form a film.
(4)請求項1〜3のいずれか1項の形成方法において
、管状材料の外部または内部に1箇所もしくは複数箇所
の磁場発生装置を設け、磁場発生装置を管状材料に対し
て相対的に移動可能としたことを特徴とするコーティン
グ膜の形成方法。
(4) In the forming method according to any one of claims 1 to 3, a magnetic field generator is provided at one or more locations outside or inside the tubular material, and the magnetic field generator is moved relative to the tubular material. A method for forming a coating film characterized by making it possible.
JP5079088A 1988-03-04 1988-03-04 Formation of ceramic coating film on inner surface of tubular material Pending JPH01225775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5079088A JPH01225775A (en) 1988-03-04 1988-03-04 Formation of ceramic coating film on inner surface of tubular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5079088A JPH01225775A (en) 1988-03-04 1988-03-04 Formation of ceramic coating film on inner surface of tubular material

Publications (1)

Publication Number Publication Date
JPH01225775A true JPH01225775A (en) 1989-09-08

Family

ID=12868603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5079088A Pending JPH01225775A (en) 1988-03-04 1988-03-04 Formation of ceramic coating film on inner surface of tubular material

Country Status (1)

Country Link
JP (1) JPH01225775A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US9545360B2 (en) 2009-05-13 2017-01-17 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
US9554968B2 (en) 2013-03-11 2017-01-31 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US9572526B2 (en) 2009-05-13 2017-02-21 Sio2 Medical Products, Inc. Apparatus and method for transporting a vessel to and from a PECVD processing station
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
CN108315713A (en) * 2017-01-17 2018-07-24 清远先导材料有限公司 The method of quartz container plating carbon film
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241736A (en) * 1985-08-07 1987-02-23 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Method and equipment for coating inside of pipe
JPS6270578A (en) * 1985-09-24 1987-04-01 Sumitomo Electric Ind Ltd Coating method for inside surface of pipe
JPS62170477A (en) * 1986-01-22 1987-07-27 Nippon Kokan Kk <Nkk> Coating method for inside and outside surface of pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241736A (en) * 1985-08-07 1987-02-23 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Method and equipment for coating inside of pipe
JPS6270578A (en) * 1985-09-24 1987-04-01 Sumitomo Electric Ind Ltd Coating method for inside surface of pipe
JPS62170477A (en) * 1986-01-22 1987-07-27 Nippon Kokan Kk <Nkk> Coating method for inside and outside surface of pipe

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9545360B2 (en) 2009-05-13 2017-01-17 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
US9572526B2 (en) 2009-05-13 2017-02-21 Sio2 Medical Products, Inc. Apparatus and method for transporting a vessel to and from a PECVD processing station
US10537273B2 (en) 2009-05-13 2020-01-21 Sio2 Medical Products, Inc. Syringe with PECVD lubricity layer
US10390744B2 (en) 2009-05-13 2019-08-27 Sio2 Medical Products, Inc. Syringe with PECVD lubricity layer, apparatus and method for transporting a vessel to and from a PECVD processing station, and double wall plastic vessel
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US11123491B2 (en) 2010-11-12 2021-09-21 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US11148856B2 (en) 2011-11-11 2021-10-19 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US10577154B2 (en) 2011-11-11 2020-03-03 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11724860B2 (en) 2011-11-11 2023-08-15 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11884446B2 (en) 2011-11-11 2024-01-30 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US10363370B2 (en) 2012-11-30 2019-07-30 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
US11406765B2 (en) 2012-11-30 2022-08-09 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US9554968B2 (en) 2013-03-11 2017-01-31 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US10912714B2 (en) 2013-03-11 2021-02-09 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US11684546B2 (en) 2013-03-11 2023-06-27 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US10016338B2 (en) 2013-03-11 2018-07-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US10537494B2 (en) 2013-03-11 2020-01-21 Sio2 Medical Products, Inc. Trilayer coated blood collection tube with low oxygen transmission rate
US11298293B2 (en) 2013-03-11 2022-04-12 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US11344473B2 (en) 2013-03-11 2022-05-31 SiO2Medical Products, Inc. Coated packaging
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate
CN108315713A (en) * 2017-01-17 2018-07-24 清远先导材料有限公司 The method of quartz container plating carbon film

Similar Documents

Publication Publication Date Title
JPH01225775A (en) Formation of ceramic coating film on inner surface of tubular material
JP4195198B2 (en) An apparatus for plasma technical deposition of polycrystalline diamond.
JPS59137311A (en) Method for synthesizing polycrystalline diamond
CN1049018C (en) Diamond-phase carbon tubes and CVD process for their production
JPS6270578A (en) Coating method for inside surface of pipe
JPS62120B2 (en)
JPS62142780A (en) Formation of deposited film
JPH0448757B2 (en)
JPH0492893A (en) Vapor-phase synthesis of diamond thin film
JPH02278208A (en) Energy guide
JPH0449518B2 (en)
JPS6242030B2 (en)
JPS63256596A (en) Method for synthesizing diamond in vapor phase
JPS6311511A (en) Production of isotropic thermally decomposed carbon
JPS62136569A (en) Coating method for diamond
JPS61103539A (en) Vapor growth method
US3573092A (en) Method for introducing carbon into chemical vapor deposited refractory metal,and resulting product
JPS63282200A (en) Method of chemical vapor growth for diamond
JPS6240376A (en) Method for synthesizing cubic boron nitride
JPH05888A (en) Vapor phase epitaxy device
JPH0532489A (en) Synthesis of diamond using plasma
JPS63265892A (en) Method for synthesizing diamond and synthesizer
JPH02278209A (en) Production of energy guide
JPH03111573A (en) Method for synthesizing cubic boron nitride
Ling et al. A Recent Patent on Microwave Plasma Chemical Vapor-Deposited Diamond Film on Cutting Tools